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This paper proposes a continuum approximation model framework to solve a dynamic facility location

problem for a large-scale growing market. The objective is to determine the optimal facility location and

deployment time that minimize the costs for facility construction and customer service. To overcome com-

putational challenge, a continuous approximation model is developed to find the optimal facility density in

the spatiotemporal continuum. Then we propose a tube model to discretize the resulted continuous facility

density function into a set of time-varying facility location trajectories. To enforce consistency of facility

location over time, an iterative regulation procedure based on a penalty method is applied. We present

convergence properties of the proposed iterative regulation procedure and further derive conditions under

which the proposed continuous approximation approach and the tube model provide tight approximation

error bounds. A series of numerical experiments, including comparison with discrete model counterparts,

are conducted to illustrate the performance (accuracy and convergence) of the proposed modeling frame-

work. Our results show that the proposed method solves the dynamic facility location problem effectively to

reasonable accuracy.

1. Introduction

Facility location decisions are critical to many problems in business practice, where a decision

maker (e.g., a government or a firm) needs to find spatial distribution of a set of facilities (e.g.,

fire stations or local branches) in order to minimize the total cost (e.g. facility and transportation

cost) for satisfying various demands. Facility location decisions typically imply long-term commit-

ment of significant resources. Once the decisions are made (facilities are opened), they are very

difficult to reverse. Despite the long term impacts associated with facility location decisions, due

to computational challenges, a great deal of research focuses on static facility location problems,

where parameters are constant over time. In reality, however, any parameters of the system (e.g.,

customer demand, operating cost) may vary over time and facility additions can occur at different

times. That is, not only where but also when to build a facility becomes a critical decision.
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In this paper, we focus on a dynamic facility location problem, in which a central planner aims

to determine the best location and timing of facility deployment that minimizes the cumulative

logistics cost during a planning horizon. In particular, we consider a growing market where demand

increases (whereas the unit operating cost may decrease) such that new facilities are added over

time. The goal of this paper is to provide an effective solution method that is suitable for large-scale

instances of such dynamic facility location problems.

Suppose a set of facilities, indexed by i= 1,2, · · · , are opened in a continuous compact service

area1 Ω⊆R2 over a finite planning horizon Ψ = [0, T ]. Facility i will be opened at location xi ∈Ω

at time τi ∈Ψ, covering a set of customers in its service region Si(t)⊆Ω for all t∈Ψ (or Si(t) = ∅

for all t < τi). Each customer is assumed to be served by a facility, hence {Si(t)}∀i forms a partition

of Ω at any time t. We consider that the total system cost consists of three parts: one-time fixed

facility investments, operating costs over time, and transportation costs over time. Suppose near

location x at time t, the fixed investment is h(x, t), and the prorated customer service cost including

facility operating cost and transportation cost per unit area per unit time is an integrable function

over space and time, z (x,xi, Si(t), t), where x ∈ Si(t) and facility i is the corresponding serving

facility. Considering the time value of money, both cost functions are converted into the present

value. In addition, we assume opened facilities cannot be closed or relocated due to high penalties

associated with such actions (Current et al. 1997). For convenience, we define Si := {Si(t)}∀t. Then,

the system design decisions with respect to location, service region, and timing are represented by

{xi}∀i, {Si}∀i, and {τi}∀i, respectively. Therefore, we can formulate a generic form of a dynamic

facility location problem as follows.

Dynamic Facility Location Problem (DFLP):

min
{xi}∀i,{Si}∀i,{τi}∀i

P =

ˆ
Ψ

ˆ
Ω

z (x,xi, Si(t), t)dxdt+
∑
∀i

h(xi, τi) (1)

s.t. Si(t) = ∅,∀i, t∈ [0, τi), (2)

Si1(t)∩Si2(t) = ∅,∀i1 6= i2, t, (3)⋃
∀i

Si(t) = Ω,∀t, (4)

τi ∈Ψ, xi ∈Ω,∀i. (5)

The objective (1) minimizes the total customer service cost over the entire spatiotemporal contin-

uum Ω×Ψ, and the sum of fixed facility investment costs. Constraints (2) enforce that a service

1 In fact, the service area can contain multiple separated continuous compact subareas (Ouyang and Daganzo 2006).
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region should be an empty set before the construction of its corresponding facility. Constraints (3)–

(4) stipulate that the set of service regions of the opened facilities always form an non-overlapping

partition of Ω (e.g., customers are always served by the nearest facility where ties can be broken

arbitrarily).

Following the pioneering work of Ballou (1968), there has been a stream of research literature

on the DFLP. See Arabani and Farahani (2012) for a review. Wesolowsky (1973) extended the

static single facility location model to one with a sequence of location decisions in multiple peri-

ods. Schilling (1980) developed a heuristic method based on multi-objective analysis for dynamic

planning of public-sector facilities. Erlenkotter (1981) compared the performance of seven heuristic

methods for the DFLP with a growing demand. Roy and Erlenkotter (1982) and Frantzeskakis and

Watson-Gandy (1989) introduced branch and bound approaches based on dual ascent and state-

relaxation, respectively. Daskin et al. (1992) discussed the impact of time horizon length on DFLP

and found an optimal forecast time horizon. Hormozi and Khumawala (1996) proposed a dynamic

programming method to solve the DFLP with time dependent weights. Current et al. (1997) ana-

lyzed a dynamic p-Median location problem that minimizes the expected value of opportunity loss

(or the maximum regret). Despite various differences among these proposed solution approaches,

they typically involve dynamic programming or its variants (often with heuristics) and hence suffer

from the “curse of dimensionality”, i.e., obtaining the solution becomes extremely challenging as

the size of the problem instance increases.

One approach that showed promise in overcoming the computational difficulties associated with

large-scale facility location problems is continuous approximation (CA). The underlying idea of CA

is to approximate discrete facility locations and their service regions by using continuous facility

service area functions; hence the problem is to determine the optimal service area size for each

facility. This approach avoids the combinatorial nature of facility location decisions and typically

yields an analytically tractable solution, often in closed-forms (e.g., Newell 1973, Langevin et al.

1996, Daganzo 2005). The CA approach has been applied extensively to various sorts of facility

location problems as shown in the review paper by Geoffrion et al. (1995). In addition, there has

been more diverse applications of CA in the recent literature. Shen and Qi (2007) implemented CA

to solve a nonlinear sub-problem from a Lagrangian relaxation framework for supply chain network

design. Cui et al. (2010), Li and Ouyang (2010), and Lim et al. (2013) used CA to investigate facility

location problems under the impacts of random facility disruptions. Dasci and Laporte (2005) and

Wang and Ouyang (2013) used continuous models to optimize bi-level facility location design in the

presence of competition. Wang et al. (2013) further developed CA models for Stackelberg games

that address complex interactions and competitions among manufacturers, farmers, markets, and

the government in a biofuel supply chain.
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The CA solution to facility location models is normally in the form of a continuous facility

density. To translate the CA solution into a set of discrete locations, Ouyang and Daganzo (2006)

proposed a Disk Model, which approximates the service region of a facility by a circular disk. Each

disk center indicates a specific facility location and the disk size is determined by the optimal facility

density function at that location. The algorithm searches for a spatial distribution of overlapping

disks that resembles a reasonable set of facility locations and service regions. We will soon discuss

this model in more detail.

Although CA has been widely used to solve static facility location problems, to the best of our

knowledge, very little work has been done to handle the dynamic version of these problems. The

main idea behind CA is to localize the spatial decisions; i.e., the overall problem is decomposed into

point-wise optimization problems, each depending only on local parameters in the neighborhood.

Based on this idea, Campbell (1990) extended CA to design transportation terminals in a dynamic

setting, but assuming that the terminal locations are “mobile” and can be moved at each time

instant independently. However, in reality, locations of open facilities typically remain unchanged

in the remainder of the planning horizon. We refer to this as the location consistency constraint.

Due to this constraint, a facility deployment decision imposes a persisting impact on the remaining

planning horizon and cannot be determined over local parameters in the temporal neighborhood.

In addition, even if the solution to the DFLP is obtained using CA, a translating method is still

needed to effectively convert the CA solution into discrete facility locations over time and space.

The aforementioned disk model (Ouyang and Daganzo 2006) is designed for static problems and

hence cannot be applied directly to the dynamic ones.

This paper aims to fill these gaps. We propose a CA based modeling framework constructed as

follows. First, we formulate a continuous model for the DFLP by augmenting the time dimension,

while relaxing the location consistency constraints. To translate the CA output into a set of discrete

facility locations, we extend the disk model (for one static time period) to a tube model (for

multiple time periods). Then, the location consistency constraints are enforced through a nonlinear

optimization model with penalty terms. Lastly, we propose an iterative tube regulation algorithm

to solve the penalty-based optimization problem. We analyze the accuracy and convergence of our

modeling framework and conduct numerical experiments to verify its performance. The model and

the solution procedure we propose are very generic and flexible; thus, it can be extended to variants

of the DFLP (e.g., incorporating existing facilities at the beginning of the horizon).

The remainder of the paper is organized as follows. In §2, we present the CA model framework for

the DFLP; §2.1 first reformulates the DFLP into a continuous version, and then derives the optimal

solution with approximate facility building time; §2.2 extends the disk model into a tube model

and shows how the CA solution is translated into discrete facility locations; §2.3 describes the tube
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regulation algorithm that enforces location consistency over time and discusses its convergence.

In §3, we discuss the approximation accuracy of the proposed algorithm. In §4, we show a series

of numerical examples to verify model performance and draw managerial insights. Finally, §5
concludes the paper and discusses future research.

2. Model Framework
2.1. Continuous approximation

We first present a continuous reformulation of the DFLP where the location consistency constraint

is relaxed. Suppose Ω is sufficiently large and both z and h are slow varying with respect to space

and time2. Then the optimal spatial service region should be as “round” as possible (Daganzo and

Newell 1986) and its area size can be approximated by a slow varying smooth function A(x, t)≈
|Si(t)| for x ∈ Si(t). Furthermore, the customer service cost z (x,xi, Si(t), t) can be approximated

by a slow varying function zC (x,A(x, t), t) and the facility fixed cost can be prorated over time and

space as h(x, t)/ (A(x, t)T ), resulting in a local cost function pC(x,A(x, t), t) = zC (x,A(x, t), t) +

h(x, t) [A(x, t)T ]
−1

per unit area per unit time. Hence, the DFLP can be reformulated as follows.

min
A(x,t)

PC =

ˆ
Ψ

ˆ
Ω

pC(x,A(x, t), t)dxdt

s.t. A(x, t)≥ 0,∀x∈Ω, t∈Ψ.

To solve the above problem, we use the solution to a homogeneous system where all parameters

are constant over time and space as a building block toward a general heterogeneous system.

In a homogeneous system, the fixed cost h(x, t) ≡ h is constant and the customer service cost

zC (x,A(x, t), t)≡ zC(A(x, t)) is only a function of the service region size. Under this assumption,

the DFLP is reduced to a simple static facility location problem, and it is straightforward to see that

all facilities should be built uniformly in the beginning of the planning horizon, i.e., A(x, t)≡A.

Hence, the optimization problem for such a homogeneous system reduces to

min
A≥0

pC(A) = zC(A) +h(AT )−1. (6)

Further, in most cases, the optimal service region size, A∗, satisfies the first order condition from

(6); i.e.,
d

dA
[zC(A)]−h

(
A2T

)−1
= 0.

For a general heterogeneous system, the optimal service region size function near location x∈Ω

and time t∈Ψ, A∗(x, t), is approximated by the solution to a homogeneous system that takes local

parameters at (x, t) as the input. That is,

∂

∂A

[
zC (x,A∗(x, t), t)

]
−T−1h(x, t)

[
A∗(x, t)

]−2
= 0,∀x, t. (7)

2 In a sufficiently large service area, its boundary has negligible impact on the solution (Cui et al. 2010). Slow varying
z implies the customer demands are also slow varying.
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The number of opened facilities at time t for the above problem can then be approximated by

n(t) =

⌊ˆ
Ω

[A∗(x, t)]
−1
dx

⌉
,

where operator bxe yields the nearest integer to x. In a growing market, n(t) is a monotone

increasing step-function over time t, hence it contains n(T ) − n(0) discontinuous jumps in the

interval (0, T ). Without loss of generality, we assume that the facilities are sorted based on their

opening time; i.e., τi+1 ≥ τi for all i. The optimal facility opening time can be approximated by

τi ≈ inf
t≥0
{n(t) = i} . (8)

For notational convenience, we let n0 = n(0) and nT = n(T ) respectively denote the numbers of

facilities opened at the beginning and the end of the planning horizon. Hence, facilities i= 1, · · · , n0

are all opened at time 0; i.e., τi = 0, for all 1≤ i≤ n0. We further let τnT +1 := T , and divide the entire

planning horizon Ψ into a set of (nT−n0 +1) levels (i.e., time intervals), {Ψj : [τn0+j−1, τn0+j], j ∈ J},

where J = {1,2, · · · , nT − n0 + 1}. We denote lj = |Ψj| to be the length of level j. The number

of facilities remains constant in each level. In the next section, we introduce a tube model that

translates the CA solution into discrete facility locations.

2.2. Tube model

In this subsection, we extend the disk model (Ouyang and Daganzo 2006) to a tube model by

incorporating a time dimension. The disk model approximates the service region of a facility to a

circular disk in a static problem. As illustrated in Figure 1(a), Si is the service region of facility i,

located at xi. This is then approximated by a disk with size A(xi)≈ |Si|, also centered at xi. Given

the output of the CA model, the optimal service region size function A∗(x),∀x∈Ω, the disk model

first generates a set of disks as an initial approximation, while the number of disks is approximated

by
´

Ω
[A∗(x)]

−1
dx. At the beginning, the algorithm randomly selects the center of each disk, xi,

and computes its size as A∗(xi). Then repulsive forces are imposed on the disks that overlap with

another disk or with the boundary of Ω. With the imposed forces, the disks reposition themselves

to reduce the overlaps. As the disks move, the repulsive forces and disk sizes are updated according

to the new disk locations. This iterative process repeats until an equilibrium distribution of non-

overlapping disks is found (see Figure 1(b)). Then a weighted Voronoi tessellation is used to obtain

facility service areas based on the disk centers.

We now incorporate the time dimension into the disk model. For the DFLP, the optimal service

region of a facility i, Si(t), is often time varying or even discontinuous, as shown in Figure 2(a).

However, under slow varying parameters, the service regions will not vary significantly over time

unless a new facility is opened in the neighborhood area. In other words, we can approximate
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(a) (b)

Figure 1 (a) Approximating service regions by disks; (b) Disk movements under repulsive forces.

(a) (b) (c)

Figure 2 (a) An example of time varying Si; (b) Approximation of {Si(t)}t∈Ψj by Si(tj) × Ψj ; (c) Cylinder

approximation of {Si(t)}t∈Ψj .

the service region of an open facility within a level j by a prism, as shown in Figure 2(b), i.e.,

Si(t)≈ Si(tj),∀t∈Ψj where tj = 1
2

(τn0+j + τn0+j−1) is the median of Ψj.

Under this condition, the facility fixed cost and the service cost per unit area near x in level j

near x can be respectively approximated as follows:

h (x, τn0+j−1) ≈ h (x, tj) , (9)ˆ τn0+j

τn0+j−1

z (x,xi, Si(t), t)dt ≈ ljz (x,xij, Si(tj), tj) . (10)

Therefore, given {tj}j∈J and {lj}j∈J , the original DFLP can be approximated by the following

level-based DFLP.

Level-Based DFLP:

min
{xij}∀i,j ,{Si(tj)}∀i,j

∑
j∈J

{
lj

ˆ
Ω

z (x,xij, Si(tj), tj) +h(xn0+j−1,j, tj)

}
dx+

n0−1∑
i=1

h(xi1, t1) (11)

s.t. xij = x̄i,∀i, j, (12)

Si(tj) = ∅,∀i, j < i−n0 + 1, (13)

Si1(tj)∩Si2(tj) = ∅,∀i1 6= i2, j, (14)



Wang et al.: Continuum Approximation for Dynamic Facility Location
8 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)⋃

∀i

Si(tj) = Ω,∀j, (15)

xij ∈Ω,∀i, j. (16)

The level-based DFLP focuses on the variations of service regions when a new facility is open. The

objective function (11) approximates (1) by summing the approximated costs (9)–(10) across all

levels. The terms in the first summation capture the total service cost and facility fixed costs for all

the facilities opened within each level, while the second summation captures the facility fixed costs

for all those opened at time 0. Constraints (12) enforce location consistency of facilities across all

levels. Constraints (13)–(15) are reformulations of Constraints (2) to (4) in each level.

Note that Si(tj) can be approximated by a circular disk (Ouyang and Daganzo 2006). We extend

this method to approximate {Si(t)}t∈Ψj
by a cylinder Sij as shown in Figure 2(c), where the height

of the cylinder is lj, the cross-section of the cylinder is a circle with size |Si(tj)|, and its center is

located at xij. When i > n0 + j − 1, facility i has not been opened at time tj (Si(tj) = ∅) and the

cylinder degenerates to a line.

Then a collection of cylinders corresponding to facility i across all levels j ∈ J , {Sij}j∈J , forms

a tube that approximates Si. That is, each time level is represented by a cylinder and a set of

cylinders form a tube. The location consistency constraints require xij = xi,∀j ∈ J . We refer to

such a tube satisfying the location consistency constraints as a right tube, as shown in Figure

3(a). Otherwise, we say a tube is oblique if there exists j, j′ ∈ J such that xij 6= xij′ , as shown in

Figure 3(b). The center of a general tube {Sij}j∈J is defined as the weighted average of all its

non-degenerated cylinder centers; i.e.,

x̄i :=

 nT−n0+1∑
j=max{i−n0+1,1}

ljxij

 nT−n0+1∑
j=max{i−n0+1,1}

lj

−1

. (17)

Hence, by approximating each prism by a cylinder, the optimal solution to the level-based DFLP

can be represented by a set of non-overlapping right tubes.

The above tube approximation inspires us to convert the CA solution (to the original DFLP,

A(x, t)) into the solution to the level-based DFLP (which is approximated by a set cylinders that

are piled into right tubes); i.e., A(x, t)≈ Si(tj),∀x∈ Si(t), t∈Ψj. The optimal CA solution A∗(x, t),

obtained from (7), can therefore be discretized into a set of non-overlapping right tubes. In doing

so, we propose a two-step method: (i) first relax the location consistency requirement (over time)

and convert A∗(x, t) to a set of (oblique) tubes; (ii) enforce the tubes into right ones via penalty-

based regulation method. The first step is rather straightforward. We implement the disk model

for each level j ∈ J to convert A∗ (x, tj) into a set of cylinders {Sij}i∈I , each with a given height

lj. Since the disk model is implemented independently on each level, it is likely that xj1i 6= xj2i for
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(a) (b)

Figure 3 (a) A right tube; (b) An oblique tube.

j1 6= j2 and {Sij}j∈J collectively form an oblique tube (see Figure 3(b)). The second step involves

an iterative tube regulation algorithm to adjust the cylinder centers in each tube. Once the tubes

converge to a set of non-overlapping right ones, we have obtained an solution to the level-based

DFLP. More detail on tube regulation will be introduced in the following section.

2.3. Tube regulation

Note that any set of oblique tubes approximates a feasible solution to the level-based DFLP, where

the location consistency constraints (12) are relaxed. We now allow the locations of facilities to

change over time and enforce Constraints (12) by imposing a penalty term in the objective. Hence,

the level-based DFLP is extended to the following problem.

Tube Regulation Problem (TRP):

min
{xij}∀i,j ,{Si(tj)}∀i,j

∑
j∈J

{
lj

ˆ
Ω

z (x,xij, Si(tj), tj) +h(xn0+j−1,j, tj)

}
dx+

n0−1∑
i=1

h(xi1, t1)

+
∑
∀i

nT−n0+1∑
j=max{i−n0+1,1}

φ (λij||xij − x̄i||)

s.t. (13)− (16), (18)

where

φ(r) :=

{
0, r≤ 1,

∞, r > 1,

is a step-wise penalty function and λij > 0 is the penalty coefficient bounding the location “devi-

ation” of cylinder Sij. When there exists a facility location xij such that ||xij − x̄i|| > 1/λij, the

objective function goes to infinity. Hence, the feasible region of xij in the TRP is given by {x : ||x−

x̄i|| ≤ 1/λij}. Given {λij}∀i,j, the optimal solution to the TRP, {xij(λij)}∀i,j and {Si(tj, λij)}∀i,j,

determine a set of oblique tubes. For all i, j, there exists a minimum penalty coefficient, i.e.,
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λ̄ij = ||xij− x̄i||−1, with which the optimal solution to the TRP corresponds to the aforementioned

oblique tubes converted from A∗(x, t) via the disk model (as described in Section 2.2). Hence, we

set the initial value of {λij}∀i,j to its corresponding minimum penalty coefficient, {λ̄ij}∀i,j.

To solve TRP, we increase the penalty coefficients λij,∀i, j, in each iteration k; e.g., making it

proportional to
√
k. As λij increases over the iterations, the feasible region for xij shrinks, which

forces the cylinders to align toward the center. Thus, the corresponding tubes become “less” oblique.

This however may result in a greater degree of overlaps among the cylinders. This procedure reflects

the trade-off between the system cost and the facility location consistency requirement.

We define a repulsive force between any two overlapping cylinders, and let its magnitude represent

the loss of the objective value due to such overlap. To illustrate the idea, we use the simpler

notation from the homogeneous continuous model (6), and assume the objective pC(A) is twice

differentiable (due to the slow varying assumption). When the cylinders are with the optimal size

A∗, the first order derivative of pC is zero, i.e., d
dA
pC(A)

∣∣
A=A∗

= 0. Suppose the size of the cross-

sectional overlapping area between two adjacent cylinders is ∆A�A, from Taylor series expansion

of pC at A∗, the change of pC due to the change in ∆A can be approximated as

∆pC = pC(A∗+ ∆A)− pC(A∗)≈ ∆2
A

2
· d

2pC(A)

dA2

∣∣∣∣
A=A∗

.

Then, we let the repulsive force f(∆A) be a function of the overlapping area ∆A (Peng et al. 2013),

whose magnitude equal to the gradient of ∆pC with respect to ∆A; i.e.,

|f(∆A)|= d(∆pC)

d(∆A)
= ∆A ·

d2pC(A)

dA2

∣∣∣∣
A=A∗

. (19)

The direction of the repulsive forces f(∆A) is along the line connecting the centers of overlapping

cylinders.

At every step of the iteration, for every level j, all repulsive forces are calculated based on the

current locations and the sizes of the cylinders. Figure 4(a) illustrates the generation of repulsive

forces among overlapping cylinders. The total force on each tube {Sij}j∈J is computed as the

weighted vector sum of all forces across all non-degenerated cylinders, with weights equal to the

cylinder heights. The formula would have a similar form to that of the tube center formula (17),

except that location is now replaced by a vector force.

Based on the repulsive forces, we shift each cylinders and tubes to find the best displacement

as the solution to the TRP for each iteration k. The single movement of each cylinder or tube

is controlled by a diminishing and cumulatively unbounded force-to-distance factor, βk, satisfying

limk→∞ βk = 0 and
∑∞

k=1 βk =∞, and a small force perturbation is added to avoid local optimum at

each move. Specifically, the shift includes the following two stages: (i, cylinder movement), for each
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tube, shift all cylinders in the tube according to their repulsive forces (when the cylinder center

goes out its feasible region, it will be projected to the nearest feasible point) until convergence,

as shown in Figure 4(b), updating the repulsive forces after each movement; (ii, tube movement)

shift the entire tube according to the total force until converging, i.e., all cylinders in the tube are

moved identically. Such an algorithm continues for each iteration until the system converges to a

set of right tubes with non-overlapping cylinders at each level, and its convergence is shown by the

following proposition.

Proposition 1. (a) Convergence of cylinder movements. Consider a non-degenerate

cylinder. Suppose all the other cylinders and the feasible region sizes are fixed. The cylinder center

location will converge to a local minimum with respect to the total cost over iterations.

(b) Convergence of tube movement. Consider a tube. Suppose the relative locations of each

cylinder in the tube, feasible region sizes, and all other tubes are fixed. The tube center location will

converge to a local minimum with respect to the total cost under such forces over iterations.

Proof. (a) Without loss of generality, let’s consider a cylinder S11. When all other cylinders are

fixed, the total cost increment is a function with respect to the location of S11. From the definition

of the repulsive force (19), we know the vector sum of all repulsive forces on S11 is a gradient

descent direction of the total cost increment (caused by the overlaps between S11 and its adjacent

cylinders or boundaries). Hence the total cost decreases when S11 moves along such a direction for

a sufficiently small distance. Note that each movement is projected into a convex circular feasible

region. Given a diminishing force-to-distance factor, S11 will converge to a local minimum with

respect to the total cost under such gradient projection method (Boyd and Vandenberghe 2004).

(b) The tube movement convergence is a simple extension of cylinder movement convergence.

From the first term in the objective function (11), we know the total cost increment caused by a tube

is the weighted sum of all those from its cylinders across all time levels. Hence, the weighted vector

sum of overlapping forces is the gradient descent direction of the total cost. Given a diminishing

force-to-distance factor, the tube will converge to a local minimum with respect to the total cost

under such gradient search method. �

The aforementioned algorithm fixes all other cylinders or tubes while searching for a local mini-

mum for one tube. Although this is an accurate process, solving the TRP at each iteration can be

very time consuming and ineffective in practice. Therefore, we propose an accelerated algorithm

by shifting all cylinders and tubes simultaneously without awaiting convergence for a particular

tube. We observe that the step size of cylinder movements approaches zero as the feasible region

shrinks to the center of the tube, and as such, the tube movement will become the dominating

component of the recursion (which resembles solving the TRP to convergence). Obviously, the rate
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at which the penalty coefficients increase affects the convergence rate of cylinder movements in the

accelerated algorithm. To see this, we consider a polar coordinate system built at the center of the

tube with the polar axis pointing from the tube center to the cylinder center. Suppose the angle

between the polar axis and the joint repulsive force on the cylinder is θ, simple calculation shows

that in iteration k, the angular coordinate of the cylinder center changes by a small angle

c2 sinθ

k/λk + c2 cosθ
,

where c2 is a positive constant, and λk is a parameter related to the value of λij in iteration k. As

long as λk increases at a rate that is sublinear to k, the change of the angular coordinate of the

cylinder will converge to zero. In our algorithm, we choose λk = λ̄ij
√
k.

(a) (b)

Figure 4 Tube regulation. (a) Repulsive forces; (b) Location adjustment.

3. Approximation Error Bounds

In this section, we evaluate the approximation error of our solution and explore upper and lower

bounds of the optimal DFLP solution. The upper bound is directly given by the discrete solution

from the proposed tube regulation algorithm since it is feasible, while the lower bound is normally

given by the objective of the CA solution under certain conditions.

To stay focused, we consider the following specific DFLP. Near location x at time t, the cus-

tomer demand is denoted by D(x, t) and the facility operating cost is denoted by C(x, t). Suppose

customers always choose the nearest facility and the transportation cost is 1 per unit distance.

Then, we can obtain the objective function of this DFLP as

P =

ˆ
Ψ

∑
∀i

ˆ
x∈Si(t)

||x−xi||D(x, t)dxdt+

ˆ
Ψ

∑
∀i

C(xi, t)dxdt+
∑
∀i

h(xi, τi). (20)
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Accordingly, the service cost in the CA formulation is

zC (x,A(x, t), t) =
2

3
√
π
D(x, t)A1/2(x, t) +C(x, t)A−1(x, t)

and the objective function of CA per unit area per unit time is

pC (x,A(x, t), t) =
2

3
√
π
D(x, t)A1/2(x, t) +C(x, t)A−1(x, t) +

1

T
h(x, t)A−1(x, t).

Hence, we can calculate the first and second order derivatives of pC with respect to A to obtain

the optimal service region size function as follows:

A∗(x, t) =


[

3
√
π

D(x,t)T
(C(x, t)T +h(x, t))

]2/3

, if ∂2

∂A2 [pC(x,A(x, t), t)]
∣∣∣
A(x,t)=A∗(x,t)

> 0

∞, otherwise.
.

Further, the minimum of the CA objective can be obtained by

P ∗C =

ˆ
Ψ

ˆ
Ω

pC (x,A∗(x, t), t)dxdt.

Proposition 2. We have P ∗C ≤ P if the following three conditions are satisfied:

(a) xi is the centroid of Si(t) for all i and t;

(b) within each service region Si(t) at a given time t, the demand density D(x, t) is constant, Di(t),

and the operating cost C(x, t) is concave with respect to x; and

(c) the fixed cost h(x, t) is uniformly far smaller than the total serving cost, or decreasing over time

and far larger than the total serving cost, or remains constant across all x and t.

Proof. We build a piece-wise constant service area function As(x, t) satisfying As(x, t) =

|Si(t)|,∀t, x ∈ Si(t). It is obvious that P ∗C ≤
´

Ψ

´
Ω
pC (x,As(x, t), t)dxdt since A∗(x, t) is the mini-

mum. We only need to show P ≥
´

Ψ

´
Ω
pC (x,As(x, t), t)dxdt.

First, we consider the transportation cost term and show

ˆ
Ψ

∑
∀i

ˆ
x∈Si(t)

||x−xi||D(x, t)dxdt≥
ˆ

Ψ

ˆ
Ω

2

3
√
π
D(x, t)A1/2

s (x, t)dxdt.

It is sufficient to show

ˆ
x∈Si(t)

||x−xi||D(x, t)dx≥
ˆ
x∈Si(t)

2

3
√
π
D(x, t)A1/2

s (x, t)dx, ∀i, t,

which is equivalent to ˆ
x∈Si(t)

||x−xi||dx≥
2

3

√
|Si(t)|
π

(21)

due to the piece-wise constant property of D(x, t) and As(x, t). Since xi is the centroid of Si(t),

(21) holds (Ouyang and Daganzo 2006).
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Then we consider the operating cost term. Since C(x, t) is concave with respect to x, the Jensen

inequality indicates

C(xi, t)≥
1

|Si(t)|

ˆ
x∈Si(t)

C(x, t)dx, ∀i, t.

Hence C(xi, t) ≥
´
x∈Si(t)

C(x, t)A−1
s (x, t)dx. Integrating it over time Ψ and summing it across i

leads to ˆ
Ψ

∑
∀i

C(xi, t)dxdt≥
ˆ

Ψ

ˆ
Ω

C(x, t)A−1
s (x, t)dxdt.

Finally, we investigate the fixed cost term. A trivial case is when h(x, t) is significantly

smaller than the total service cost. We can directly neglect the fixed cost and conclude P ≥´
Ψ

´
Ω
pC (x,As(x, t), t)dxdt. When h(x, t) is significantly larger than the total serving cost and

decreases over t, most facility should be built at the beginning and we have
ˆ

Ψ

ˆ
x∈Si(t)

1

T
h(x, t)|Si(t)|−1dxdt≤ h(xi, τi).

When h(x, t)≡ h,∀x, t, we have
ˆ

Ψ

ˆ
x∈Si(T )

1

T
h(x, t)|Si(T )|−1dxdt≤ h.

Now, we have shown each term in P is greater or equal to that in
´

Ψ

´
Ω
pC (x,As(x, t), t)dxdt,

which completes the proof. �

4. Numerical Examples

In this section, we provide numerical examples to illustrate the application of the proposed CA

framework, test its computational performance, and explore the impact of heterogeneity.

4.1. Illustrative Case Study

We consider the specific type of DFLP discussed in §3, whose objective function follows (20).

Suppose the entire customer area is a unit square, i.e., Ω = [0,1]× [0,1]. Further, we set T = 10,

D(x, t) = 500 cos(||x||)e1+0.04t, C(x, t) = 3 sin(||x||)e2−0.04t, and h(x, t) = 10 cos(||x||)e1−0.04t. Since

D(x, t) increases and C(x, t), h(x, t) decrease with respect to t, it is intuitive that A∗(x, t) decreases

with t. This implies a growing market. The optimal facility deployment times, n(x, t), are obtained

via continuous approximation, as shown in Figure 5(a). The solution to this numerical example

suggests deploying five facilities in the beginning, n0 = 5, and adding four additional facilities until

the end of the planning horizon, nT = 9. Specifically, we have τi = 0, i= 1,2,3,4,5, and τ6 = 0.56,

τ7 = 3.69, τ8 = 6.37, and τ9 = 8.72. Figures 5(b) and 5(c) illustrate the optimal service region at

t= 0 and T , respectively.

We now illustrate how the tube model is implemented for this example. For each iteration k, we

update λij = λ̄ij
√
k to generate a force perturbation satisfying a bivariate uniform distribution in
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Figure 5 (a) Result of n(t); (b) A∗(x,0); (c) A∗(x,T ).
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Figure 6 Tube model solution: (a) Initial oblique tubes generated by the disk model; (b) Solution after 10

iterations, where λij = 3.2λ̄ij ; (c) Solution after 50 iterations, where λij = 7.1λ̄ij ; (d) Converged solution

after 581 iterations.
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[−0.05,0.05]2, and set the force-to-distance factor as 0.01
k

. Figures 6 (a)–(d) exhibit some snapshots

of the tube regulation procedure. For clear illustration, each cylinder of a tube is simply represented

on a plane, and cylinders of the same tube are connected through lines. The five planes in each

sub-figure represent the timing for new facility construction, where the Voronoi diagram captures

the service region of each facility (i.e., we let customers choose the nearest facility). The square

markers represent the facility locations xij and the star markers on the first level give the center

of each tube x̄i, at convergence to a right tube. The converged solution shown in Figure 6(d) is

reached after 581 iterations, where x̄i becomes an approximation of xi. In addition, we compute

the upper and lower bounds of the problem based on the discussion in §3. For this example, the

lower and upper bound of the optimal total costs are 2544.4 and 2683.5, respectively, indicating a

5.47% approximation error.

4.2. Comparison with Discrete Model

Next, we compare the performance of our proposed CA model to that of the discrete model (1)–(4)

through a series of DFLP instances. The first test problem instance remains the same as that in

§4.1. For the CA model, we assume that the customer demand density, facility operating cost,

and facility fixed cost are D(x, t) = 400 cos(||x||)e
1+0.05t
1+||x|| , C(x, t) = sin(||x||)e

2−0.05t
1+||x|| , and h(x, t) =

0.001 cos(||x||)e1−0.05t, respectively. For the discrete model, we discretize Ω into q×q discrete spatial

grid cells and use the center of each cell to represent a customer and a candidate facility location.

Thus, we have q2 overlapping customer demand points and candidate facility locations. We then

discretize Ψ into 10 time periods. The total demand of each discrete point is aggregated from each

cell. The remaining input parameters are the same as those in §4.1. The discrete model is solved

by the CPLEX solver. We set a maximum optimality gap of 1% and a maximum computation time

of 10 hours. The solution and computation times for various q values are summarized as Model I

in Table 1.

Then, we consider another test problem instance and repeat the same analysis. All parameters

remain the same, but the facility operating cost now is a function of the total demand served

per unit time, C(xi, t) = 5
(´

x∈Si(t)
D(x, t)dx

)1/2

. Note that this DFLP is no longer convex, and

the discrete model is solved by the GAMS-SBB solver (with the same termination criteria). The

solution and computation times for various q values are summarized as Model II in Table 1.

We observe that the computation time for the discrete model increases drastically with the size

of instances q2 for both cases. Further, the solver fails to obtain a solution for the second instance

when q = 15. In contrast, the CA solution obtains a good approximation of the optimal solution

within a very short amount of time, which highlights its practical value.
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Table 1 Solution comparison for continuous and discrete model.

Model q n0 nT Total cost Time (s)

I

8 15 29 837 19
Discrete 10 17 25 874 178

12 16 21 880 914
15 16 20 890 16661

Continuous ∞ 15 23 886 112

II

8 2 17 5758 316
Discrete 10 2 12 6037 2744

12 1 6 6477 5264
15 no solution 36000

Continuous ∞ 6 10 6536 72

4.3. Sensitivity to Heterogeneity

Finally, we study how spatial and temporal heterogeneity in data input influences the opti-

mal solution. We consider the same problem instance as in §4.1 and generate spatial and tem-

poral heterogeneity with respect to three key parameters: D, C, and h. We set D(x, t) =

150(1 + ρD cos( π√
2
||x||)e1+0.05(1+ρt)t, C(x, t) = (1 + ρC sin( π√

2
||x||)e2−0.05(1+ρt)t, and h(x, t) = 10(1 +

ρh cos( π√
2
||x||)e1−0.05(1+ρt)t, where ρD, ρC , and ρh capture spatial heterogeneity and ρt captures tem-

poral heterogeneity. Note that the system becomes spatially homogeneous when ρD = ρC = ρh = 0.

To illustrate the impact of heterogeneity, we solve a series of DFLPs, each with one heterogeneity

parameter increasing from 0 to 0.5, while others are fixed at zero. The relative difference in the

total costs with respect to each type of heterogeneity is shown in Figure 7. Since the solution to

DFLP from our CA approach is not necessarily unique, we solve each instance five times and plot

the average. The results show that the total cost decreases as spatial heterogeneity increases, and
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Figure 7 Sensitivity of spatial and temporal heterogeneities.

the heterogeneity of demand density has the most significant impact. In contrast, we find that the

total cost increases as temporal heterogeneity increases. As demand density varies faster and the
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facility operating/opening cost decreases faster over time, it becomes more challenging to maintain

low cost.

5. Conclusion

This paper proposes a continuum approximation framework for solving the dynamic facility location

problem. We first extend the static continuous facility location problem by augmenting the time

dimension. While the conversion yields a solution without maintaining consistent facility locations

over time, it provides an analytically tractable solution. We then develop a tube model, an extension

of the disk model, to convert the CA solution into discrete facility locations. Facility location

consistency is enforced through an iterative tube regulation procedure, i.e., via a penalty method,

where the converged solution yields an approximate solution to the DFLP. Through a series of

numerical examples, we show the impact of spatial and temporal heterogeneity and also compare

the performance of the CA model with that of the discrete counterpart.

As a final note, we point out that the proposed model can be applied when a set of facilities may

have already been built at the beginning of the planning horizon. For such cases, we can simply

fix the values of such location variables. During the tube regulation procedure, we do not update

the centers of the corresponding tubes. This extension provides great practical value in deploying

facilities. For example, in case of high degree of system uncertainty and/or long planning horizon,

our model can be implemented in a rolling-horizon. We can redefine (modify) the DFLP in each

prediction cycle to apply the proposed algorithm and implement the solution in the nearest future.

The set of facilities opened up to that point then becomes the fixed initial condition for the new

problem, and this can be handled using the procedure discussed above.

This research can be extended in several ways. First, it would be interesting to address the

possibility that an open facility could be closed, i.e., the market does not have to maintain growth

everywhere. Another possible research direction is to consider the scenario under which an open

facility could be disrupted due to natural or human induced hazards. We leave these promising

research directions for future work.
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