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Introduction

The human bone structure is a hierarchical composite of collagen
and hydroxyapatite (HA) with several mechanisms to resist fracture at
various scales [20,27,32].These size scales relate to the characteristic
structural dimensions in bone, which vary from twisted peptide chains
at the nanometer scale to the (secondary) osteon (haversian) struc-
tures, which are several hundred micrometers in size. The hierarchical
structure at the intermediate scales includes (i) hydroxyapatite-
impregnated twisted collagen fibrils at the scale of tens of nanometers;
(ii) collagen fibers that are typically a micrometer in diameter and (iii)
the lamellar structure of collagen fibers at several micrometer dimen-
sions. The combination of this complex geometry and unique blending
of material properties provides bone with remarkable levels of strength
and toughness [10,11].

In this paper, we focus on the mechanical response of a single miner-
alized collagen fibril sliding on a polymeric layer that includes sacrificial
bonds and hidden length (SBHL) systems [36]. The fibril utilizes the
breakage of sacrificial bonds and the release of hidden length to dissipate
energy while being stretched [14]. This process introduces a microscopic
mechanism for fracture resistance [12]. Our primary focus is investigating
the effect of the polymeric glue material on the basic characteristics of
crack propagation such as critical crack size, stable crack growth speed
and energy dissipation.
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The basic structure and operation mechanism of the SBHL system is
shown in Fig. 1. The assembled glue molecule may include more than
one polymer chain with sacrificial bonds forming within the chain itself,
crosslinking the different chains and connecting the chains to the colla-
gen fibrils. The large scale separation of the collagen fibrils is resisted by
an array of parallel gel molecules as shown in Fig. 1(a). As long as the
bond is intact, it shields parts of the polymer length from contributing
to the end-to-end distance. This corresponds to a reduction in the
chain entropy (the possible number of configurations resulting in the
same end-to-end distance) and a corresponding increase in the initial
stiffness of the polymer chain. After the sacrificial bond is broken, the
shielded loop unfolds and significant energy is dissipated in reducing
the chain entropy as it straightens out.

Previous theoretical models describing the mechanical behavior of
bone glue polymers [e.g. 10,13,25] have implemented the worm-like
chain model [8] as an approximation for the AFM experimental curves.
We adopt this model here as well. The more flexible the glue polymers
are, the better this approximation will be. Nonetheless, further work is
required to constrain the force displacement relation of single polymer
molecules in the bone glue along its whole deformation history.

The existence of SBHL systems is incorporated in the worm-like-
chain model by introducing a dynamical variable: the available length
[10]. This available length is the difference between the polymer con-
tour length and the sum of the length of the hidden loops that have
not been unfolded yet. The rate dependence of the SBHL system is
modeled using the transition state theory [4,25]. In this paper we will
implement the rate and displacement model developed by Lieou et al.
[25] as the constitutive law for the polymeric layer with SBHL system.
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Fig. 1. The structure and the basic operation principles of the SBHL system. (a) High-resolution Scanning Electron Micrographs (A and B) and AFM (C) show glue molecules resisting
fracture in bone suggesting that these molecules form quasi-one-dimensional bundles. Subplots (D) and (E) show two adjoining mineralized collagen fibrils at rest and during the forma-
tion of microcracking respectively. (Reprinted with permission from Fantner et al. [12]). (b) Force change associated with sacrificial bond breakage and hidden length release. (i) Before a
sacrificial bond is broken, only the black length of the molecule contributes to the entropic configurations and to the force with which the molecule resists stretching. The red length of the
molecule is hidden from the force by the sacrificial bond. (ii) When the bond breakage threshold is reached, the bond breaks and the whole length of the polymer (black plus red) con-
tributes to its configurational entropy. This sudden increase in entropy leads to an abrupt force drop. (iii) As the polymer molecule is further stretched, the force it supports increases, until
the entire molecule detaches from the substrate and ruptures. The gray area represents the extra work done in stretching a polymer with sacrificial bonds and hidden lengths, relative to a
polymer of the same length but without such structural features (from Elbanna and Carlson [10]).

The primary component of the human bone structure is mineralized
collagen fibril. Buehler [6] developed a model for the mineralized fibril
in nascent bone in which collagen is represented by tropocollagen
molecules, cross-linked by hydrogen bonds, and the mineral plates are
hydroxyapatite (HA) crystals forming in the gap regions between the
collagen fibrils. The stiffness of collagen fibrils depends on the mineral-
ization percentage. With aging, bone properties degrade [e.g. 47]. The
mineralization percentage decreases and both the stiffness and the
peak strength of the fibrils are reduced. We will also study the influence
of mineralization on fracture properties of the mineralized fibril-
polymer system.

We developed a coarse grained model for the mineralized collagen fi-
bril with polymeric glue. The fibril is modeled using a one-dimensional
mass-spring system. The stiffness of the springs is calculated using the
fibril geometric properties and the stress strain behavior computed
from Beuhler [6]. The polymeric layer is modeled using the constitutive
description of Lieou et al. [25]. The system is integrated in the quasistatic
limit which is appropriate for exploring nucleation characteristics and
stable crack growth speeds. Depending on the polymer density, the sys-
tem may fail by the breakage of the collagen fibril and not the detach-
ment of the polymers. In this limit we use a fully dynamic approach to
track these instabilities. This failure mode is relevant for understanding
the deterioration of bone quality with age since the ability of bone cells
to produce the polymeric glue decreases with age. We have also investi-
gated the properties of the SBHL system since it has been shown previ-
ously that these molecular bonding provide a small scale energy
dissipation mechanism and hence contribute to fracture toughness
[36]. There are still insufficient experimental data about the geometrical
properties of these systems and the effect of this mechanism on crack
resistance. Hence, we pursue in this paper a parametric study to explore
their relative contribution on fracture processes.

The remainder of the paper is organized as follows: In Section II
we introduce our model for numerical simulation as well as its
discretization. Then, the material properties of collagen fibrils and the
polymer system are discussed. In Section III, we describe the numerical
method and the integration scheme. In Section 1V, the results of our
simulations are presented demonstrating the effect of different proper-
ties of SBHL system, polymer density and mineralization ratios. We
discuss the implications of our simplified model on bone fracture in
Section V.

Kinetic model

In this section, we introduce the basic elements of the coarse grained
model for the mineralized collagen fibril and the polymeric layer. We
consider a single fibril, idealized as 1-D array of masses and nonlinear
springs, sliding on a viscoplastic polymeric layer. As the fibril is pulled,
the motion is resisted by the interfacial forces provided by the polymer-
ic system. Detachment of polymer end bonds and failure of collagen
fibril are expected as limit states.

Model setup

A mineralized collagen fibril may be idealized as a 1-D prismatic
solid bar. We are primarily interested in the longitudinal deformation
of the bar as interfibrillar slip is one of the major failure modes in fibril-
lar arrays [6,11]. Polymer molecules are uniformly distributed along the
interface. Displacement controlled loading is applied in the longitudinal
direction on one end of the collagen fibril as shown in Fig. 2(a). We
discretize the collagen fibril into a number of identical blocks connected
with nonlinear springs which capture the behavior of the mineralized
fibril molecules as shown in Fig. 2(b).

The stiffness of the springs interconnecting the blocks is computed
based on the geometric and material properties of the mineralized
fibrils. The material model for the fibril is adapted from Beuhler [6]
(Fig. 3(a)). The different stress drops represent internal slip events
between the tropocollagen molecules or between collagen molecules
and mineral plates. We adopt a simplified version of these curves with
a linear elastic behavior up to the yield point followed by a saw tooth
response in the post-yielding phase up to the point of complete failure
(Fig. 3(b)).

For the stress-strain relation under compression, we assume that
the fibril is linear elastic up to its buckling stress and has no compressive
strength in the post-buckling regime. We take the buckling stress in
compression to be equal to the tensile yield stress. That assumption is
sufficient for our purpose, because simulations show the compression
strain of collagen fibril will not exceed —0.07; the assumed value for
yield strain. We discuss the implications of this assumption and possible
modification in Section V.

If the fibril is unloaded in the post-yielding regime, residual inelastic
strains develop and energy is dissipated. Beuhler [6] found that the
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Fig. 2. The mineralized fibril. (a) Schematic plot of the continuum representation. (b) Schematic plot of discretized model, b, is the number of discretized fibril blocks.

energy dissipation ratio between mineralized collagen fibril and pure
collagen fibril is approximately 5. Since the full stress strain curve
for the unmineralized collagen fibril is known, we use this estimate
of the energy dissipation to extrapolate the stress strain curve for the
mineralized case beyond what is shown in Beuhler [6] (Fig. 3(a)).
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Fig. 3. Constitutive behavior of collagen fibrils. (a) Stress-strain relation of mineralized
collagen fibril & pure collagen fibril [6]. Figure reproduced with permission from Beuhler
[6] (b) Simplified stress-strain relation of mineralized collagen fibril & pure collagen fibril.

Dynamical constitutive behavior of polymer system

Based on the worm-like chain model, the force extension relation-
ship for a single polymer is given by [8,10,33]:

kT x NP1«
F_b{4<1 L,,(x,)’()) 4+La(x,5<)} M

where Fis the polymer force, x is the end-to-end distancexis the pulling
rate, b is the persistence length, kg is Boltzmann constant, T is the tem-
perature and L, is the available length of polymer, which is the sum of
the length of polymer parts that contributes to entropic elasticity [10].
The available length depends implicitly on the pulling rate. To account
for this rate effect, we adopt the rate and displacement model of Lieou
et al. [25]. This model uses the transition state theory to construct a mas-
ter equation of the bond breakage rates and thus provides a tool to track
the variations in the available length. We review this approach in
Appendix A.1.

The polymeric system is usually composed of a large number of
polymers (Np). We assume that the polymer molecules are parallel to
one another forming quasi-one-dimensional bundles and neglect cross
linking between the bundles. Each idealized polymer molecule, howev-
er, may consist of more than one single polymer strand crosslinked
together as shown in Fig. 1a. In this case, the hidden length concept
does not represent globular domains only but is also extended to
cover parts of the polymer chains that are shielded by the cross links.
Also, the persistence length used in the WLC model should be
interpreted as an effective persistence length for the polymer blob to
fit its mechanical behavior and not necessarily the actual persistence
length of a single strand. The blob of polymer molecules deforms pre-
dominantly in one dimension and thus we approximate it by a quasi-
one-dimensional bundle. Fig. 1a suggests that during the separation of
the fibrils, several of these bundles resist the failure with weak connec-
tion between the bundles. We thus neglect the cross linking between
the fiber bundles. This approximate model of polymers with SBHL has
successfully reproduced many of the features observed in previous
AFM experiments [e.g. 10,13,25]. It is possible, nonetheless, that the ac-
tual topology of the polymeric interface is more complicated. In partic-
ular, the cross linking between the polymer molecules may lead to the
development of two-dimensional network structure. We discuss this
further in Section V.

Moreover, we assume that the contour lengths of polymers as well
as the lengths of the hidden loops are chosen from a uniform random
distribution. By coupling the worm-like chain model equations with
the transition rate factors (See Appendix A.1 for details) it is possible
to generate force extension curves for the polymeric system at different
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Fig. 4. Constitutive response of the polymer molecules, stretched at v = 10% m/s (green),
v = 10> m/s (blue) and v = 10* m/s (red). (a) Single polymer molecule force-extension
curve. (b) Polymer system force-extension curve.

pulling rates. This is shown in Fig. 4 for both the single and multiple
polymers cases. If all polymers are detached, we assume that the resid-
ual frictional resistance of the polymeric layer is negligible. The rate
dependence of the residual friction will be the subject of future
investigation.

Additionally, we allow for the case of polymer retraction. That is,
when the pulling rate becomes negative, the system unloads. The
unloading force decreases according to the worm-like Force-Elongation
model (Eq. (1)), now applied to a group of polymers simultaneously
with their available lengths the same as their values at the unloading
point (i.e. we assume no bonds break during unloading). This is shown
in Fig. 5.

Parameter selection

In the numerical simulations we used the following parameters for
the collagen fibril model. We assume that its cross section is square
with side dimension Iy = 100 nm. The total length of the fibril bar
is L= 2000 nm, and is discretized into b, = 100 identical blocks with
each length = 20 nm. The density of fibril is assumed to be
p=1500 kg/m>. We apply a constant pulling rate of vy = 1 um/s at
the first block. The elastic modulus E of the fibril is approximately
5.7 GPa for the fully mineralized case and 4.3 GPa for the unmineralized
case. The stiffness of the spring is calculated as k = EAb,/L. The yielding
strain is €= 0.07 for both tension and compression.

We assume the polymer density is spatially homogeneous along the
interface. We consider different values for this density D varying be-
tween 5 and 25 polymers per nm. Each polymer is assumed to have
the same number of sacrificial bonds (N). The effect of increasing the
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Fig. 5. Polymer force under loading (Blue) and unloading (Black) in a representative
numerical experiment.

number of sacrificial bonds per polymer from 0 to 8 will be discussed
shortly. Setting a uniform number of sacrificial bonds across the poly-
mer enables us to investigate the effect of number of SBHL on crack
propagation independent of other factors. In real systems it is possible
that the number of sacrificial bonds may vary from one polymer bundle
to another. This is accounted for, partially, in our simulations by
allowing randomness in other system variables (e.g. contour length
and length of hidden loops) as we will shortly discuss. Furthermore,
previous work [e.g. 10] has shown that the maximum increase in tough-
ness from a polymer blob is achieved with just a few sacrificial bonds
(less than 10). The contour lengths of polymers (L) are chosen from a
uniform random distribution with average length, minimum length
and maximum length of 150 nm, 75 nm and 225 nm, respectively.
These values are consistent with what is observed in AFM experiments
[18]. The hidden lengths (L) are also generated randomly between 0
and C*L. / N with the only constraint that the initial available length
(Lp) is positive, where C is a positive design coefficient typically set as
unity.

All the parameters are summarized in Table 1.

Results of simulations

We numerically integrate the equations of motion of the different
blocks coupled with the rate and displacement model of the polymeric
interface using Newmark’s integration method and a predictor-
corrector scheme. The detailed numerical approach is provided in
Appendix A.2. Here we describe some of the quantitative predictions
of our model for the different characteristics of crack nucleation and
propagation in the fibril-polymer system.

Effect of sacrificial bonds and hidden length (SBHL) system

First, we focus on the effect of sacrificial bonds and hidden length
system on the energy dissipation and crack nucleation properties. In
each group of simulation, the number of sacrificial bonds (N) per poly-
mer molecule ranges from 0 to 8. The lengths of hidden loops (L,) are
chosen from a uniform random distribution.

Critical crack size

Fig. 6(a) shows the time history for crack propagation along the in-
terface for different numbers of sacrificial bonds per polymer (N). We
define the crack tip position by the location of the farthermost block
whose all polymers have been completely detached. The crack length
is thus defined as the distance between the edge block and the crack tip.
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Table 1
List of parameters used in model and simulation.
Parameter Physical meaning Value in simulation References
I Collagen fibril cross section side dimension 100 nm [32]
Le? Length of collagen fibril bar 1000 nm 2000 nm* [6,32]
*Assumed in simulation
b, Number of discretized blocks in fibril bar 100 Assumed in simulation
p density of fibril bar 1500 kg/m> [23]
voP Loading velocity 1 pm/s Assumed in simulation
E Elastic modulus of collagen fibril 5.7/4.3 GPa (mineralized/unmineralized) [6]
€ Yielding strain of collagen fibril 0.07 [6]
D Polymer density 5-25 /nm Varies in simulation
N Number of SBHL in each polymer 0-8 Varies in simulation
Le Contour length of polymer molecule 75-225 nm [18,25]
L, Hidden length of each hidden loop 0-C'L./N Varies as uniform distribution in simulation
Lo Initial available length of polymer molecule >0 Determined by L. and L,

? Lyhas been estimated previously to be of the order of 1 um [32]. However, we extended the bar to 2 um to ensure that there is no effect for the end conditions on the crack charac-
teristics in the stable growth regime. We got identical results for the critical crack size and stable crack growth for simulations with a bar of length 1 micron (not shown here). The longer

bar enables the observation of the dynamic propagation regime.
b Consistent with loading rates adopted in AFM tests [e.g. 1].

Under the displacement controlled loading condition considered
here, the crack goes through a stable growth phase [27] until it reaches

a critical length after which kinetic energy is no longer negligible. This is
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Fig. 6. Effect of sacrificial bonds and hidden length system on crack propagation. (a) Crack
length (nm) as a function of time (ns) for different numbers of sacrificial bonds per polymer
ranging from O to 8. Fully mineralized collagen fibril and polymer density = 25 polymers/nm
are used in this model. Increasing the number of sacrificial bonds increases the time to the
onset of dynamic instability (signaled by divergent crack propagation speed) and increases
the critical crack size (taken as the size corresponding to the end of the stable crack growth
at constant speed regime) (b) Average stable crack propagation speed (nm/ns) as a function
of number of sacrificial bonds per polymer. The results are averaged over 8 runs. The vertical
bars and the red curve indicate one standard deviation and average value, respectively.

shown in Fig. 6(a). In the stable crack growth, the crack expands slowly
at nearly constant speed represented by the initial linear regime in the
crack space time plots. As the crack approaches a critical size its propa-
gation speed increases and eventually it diverges signaling that
the quasistatic solution is no longer valid and the crack propagation
is dynamic. We define the critical crack size as the crack length at
the end of the initial linear regime in Fig. 6(a). For the simulations
shown here, the existence of sacrificial bonds slightly increases
the time to dynamic instability (from 0.1063 s to 0.1075 s) and
increases the critical crack size (from ~510 nm to 600 nm). Thus
the existence of sacrificial bonds increases the flaw tolerance [16] of
the system.

In Fig. 6(b) we plot the stable crack growth speed as a function of
number of sacrificial bonds. The stable crack growth is given by the
slope of the initial linear regime in Fig. 6(a). The presence of sacrificial
bonds reduces the stable crack speed by approximately 1 um/s (~4.4%
of the speed at zero sacrificial bonds). This effect is weakly dependent
on the precise number of sacrificial bonds and the crack stable growth
speed converges to, on average, 17.5 pm/s for N > 4.

Energy dissipation

Another indicator of the system response is its fracture toughness.
This is measured by how much energy is dissipated as the crack grows
and propagates. The higher this energy is, the tougher the system be-
comes and the more resistant to cracking it is [29]. There are two
types of toughness: initiation toughness and propagation toughness
[27]. The initiation toughness is related to the energy necessary to
start the crack growth. The propagation toughness is measured by the
energy dissipated during the crack growth. The evolution of energy dis-
sipation as a function of crack position for different numbers of sacrifi-
cial bonds per polymer is shown in Fig. 7(a). Here, the dissipated
energy is calculated as the sum of inelastic work done by all the blocks
up to the current time t. The initiation toughness increases with increas-
ing the number of sacrificial bonds. The presence of sacrificial bonds
also increases the total energy dissipation during the stable crack
growth. In Fig. 7(b) we compute the total energy dissipation as a func-
tion of the number of sacrificial bonds. The energy value is normalized
by energy dissipation when there are no sacrificial bonds. As the num-
ber of sacrificial bonds increases, the total energy dissipation increases
as well. For N = 8, the relative increase in energy dissipation is approx-
imately 8.5%.

However, similar to what was shown in Elbanna and Carlson [10]
and Lieou et al. [25] for individual polymer systems, energy dissipation
saturates in the limit of large number of sacrificial bonds. For the simu-
lations shown here, increasing number of sacrificial bonds beyond N =
4 has a limited effect on further energy dissipation.
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Effect of polymer density and fibril mineralization

Another important system parameter is polymer density [10] and
degree of mineralization [6,19,26] of the collagen fibril. These are ex-
pected to influence the fracture toughness and affect the mechanical
features of crack nucleation and propagation.

Effect of polymer density on constitutive relation of cohesive interface and
energy dissipation:

Developing cohesive law formulations for the polymeric interface is
an essential ingredient for multiscale modeling of fracture propagation
as it enables the inclusion of small scale physics into macroscopic
models [7,38-43,46]. Fig. 8(a) shows the average force, fu,,, along the in-
terface as a function of the fibril edge displacement for different values
of polymer density (5 to 25 polymers/nm). Both the peak force and
the edge displacement at failure increase as the polymer density in-
creases. Our results indicate a linear dependence of the peak f,,¢ (denot-
ed by red circles) on the polymer density. The edge displacement at
failure is also found to weakly increase as the polymer density increases.
This value depends on the length distribution of polymers more than
the polymer density itself. However, increasing the number of polymer
increases the probability of finding longer polymers leading to larger
maximum elongation.
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Fig. 8. Effect of polymer density on cohesive force and energy dissipation. (a) Average slip
force (1073 N/m) as a function of pulling edge displacement (nm), for different polymer
densities, from 5 to 25 polymers/nm. The average slip force is the total force at the inter-
face of shear over the length of the interface. Peak fu,, is marked with red circles.
(b) Energy consumption (J) by polymer system as function of time (ns) for different
polymer densities ranging from 5 to 25 per nm.

The plots in Fig. 8(a) show the general features characteristic of
cohesive laws [30, and references therein]. In the slip strengthening
regime, the interfacial force increases as a function of slip up to a critical
slip value. Beyond this value, the detachment of polymers lead to pro-
gressive softening and slip weakening behavior; the interfacial force
decreases with increasing slip.

Variations in polymer density affect fracture toughness.
Fig. 8(b) shows the time evolution of energy dissipation during
crack propagation for different values of polymer density. As the
polymer density increases, this leads to (i) an increase in the total
value of energy dissipated, and (ii) an increase in the energy dissi-
pation rate as a function of time. This increased energy dissipation
leads to a longer slip strengthening region; the displacement at
which the peak f,,, is achieved increases as the polymer density
increases.

Crack propagation

Variations in polymer density are also expected to influence charac-
teristics of crack nucleation and growth, Fig. 9(a) shows the crack posi-
tion as a function of time for different values of polymer density.
Increasing the polymer density leads to an increase in the time to
crack initiation. For example, for 5 polymers/nm the crack starts to
grow at t = 6.1 ns, whereas when 25 polymers/nm are used the crack
starts to grow at t = 6.5 ns. Moreover, polymer density affects
the crack growth pattern. At the lowest polymer density, the crack
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speed (nm/ns) as function of polymer density (/nm), averaged over 8 runs. The vertical
bars and the red curve indicate one standard deviation and average value, respectively.

propagates dynamically through the system as soon as it starts. This is
reflected by the nearly vertical crack evolution in the space time plot
shown in Fig. 9(a). On the other hand, at the highest polymer density
there is a stable crack growth regime followed by dynamic instability.
That is, increasing polymer density leads to an increase in the critical
crack size and delays the onset of dynamic crack growth.

These features are further explored in Fig. 9(b) where the average
crack propagation speed is plotted for various polymer densities. The
crack moves approximately 20% to 30% slower for each 5/nm increment
of polymer density. Notice that the large variability in case of 5 polymers
per nm is reflective of the randomness of the polymer system properties
and the significance of discrete effects in the limit of low polymer
density.

Fibril mineralization also influences crack growth patterns.
Fig. 10(a) shows the crack position as a function of time for two limiting
cases: an unmineralized case and a fully mineralized case [6,26]. The
mineralization ratio in the fully mineralized case corresponds to what
is reported in Beuhler [6]. The mineralized case appears to be more brit-
tle with shorter rise time to dynamic instability and a slightly smaller
critical crack size. In this simulation, the polymeric interface was chosen
to be weak enough so that the system fails by sliding along the interface
and not by fracture through the fibril. In particular, both the mineralized
and the unmineralized fibrils are within their elastic regimes through-
out the simulation. In that sense, the difference between the mineral-
ized and the unmineralized cases is that the former is stiffer than the
latter. The crack propagation speed depends on different factors such
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Fig. 10. Effect of fibril mineralization on crack propagation. (a) Crack position in length
(nm) as a function of time (ns) for different fibril mineralization percentages from 0 to
100. (b) Average crack speed (nm/ns) as function of fibril mineralization (%).

as the interface fracture toughness, the collagen fibril density and the
fibril density. Higher fracture toughness leads to lower propagation
speeds (see Fig. 9(b)) while higher rigidity enables faster crack propaga-
tion [15]. Hence, the crack propagates faster as the degree of mineraliza-
tion increases. This is shown in Fig. 10(b) which depicts the average
crack speed as a function of the mineralization percentage. The average
crack speed rises by 23% from unmineralized to fully mineralized case.

Collagen fibril breakage analysis

The results of the previous section are valid when the polymeric
interface is weak enough such that the force in the collagen fibril does
not exceed its yield strength. In the case of unmineralized collagen fibril,
the stiffness and the yielding stress are 33% less than those of the fully
mineralized case. If the polymer density is high enough (e.g. 25 poly-
mers/nm), the limit state of tensile failure governs for the case of
unmineralized fibril. In this limit, the kinetic energy associated with
the fibril softening and breakage is not negligible. To capture these dy-
namic effects we turn on the dynamic solver a few time steps before
the force in the fibril reaches its yield value. The initial conditions for
the full dynamic simulation are taken from the results of the last step
of the quasistatic analysis.

Fig. 11 shows the displacement of the different blocks, representing
the collagen fibril, as a function of time. Shortly after the yield force is
attained in the first spring, the deformation becomes increasingly local-
ized in the leading edge of the fibril. The collagen fibril eventually breaks
in this region before the crack propagates along the interface.
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Fig. 11. Failure of the system by collagen fibril breakage. (a) Displacement of discretized collagen fibril and (b) zoomed in details at the instant of failure (nm) as a function of time after
failure of collagen fibril. Displacements are measured from the initial positions of blocks. Only the first 5 block motions are shown. The displacement of leading block where external force is
applied is not shown. Mineralization percentage = 0% (pure collagen fibril) and polymer density = 25/nm.

Fig. 12(aand b) shows the force displacement relation for the first five (Fig. 12(a)) is consistent with the idealized constitutive model adopted
springs in our model. Only the first spring was able to reach the yield force in Fig. 3(b). Other springs unload as their blocks relax to their equilibrium
and explore the post yielding regime. All other springs remain linearly position. This is further shown in Fig. 12(c) where the force displacement
elastic. The deformation increases in the leading edge of the fibril while curves of the polymers attached to the first few blocks are plotted. As the
the remaining springs unload. As a result, the first spring continues to blocks unload, the polymers relax and follow the unloading path shown
stretch until it completely fails. The force-extension curve for this spring schematically in Fig. 5. Since none of the blocks are detaching, the crack
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never had a chance to propagate along the interface. This is an example of
failure by rupture through the collagen fibril rather than by sliding along
the polymeric interface. Unmineralized fibrils are more susceptible to this
rupture mode than the mineralized ones.

Discussions

Problems involving dynamics of cohesively held interfaces arise
broadly in biological [39 and references therein], engineering [3,37,44,
45], and geophysical [24,34; and references therein| applications. Com-
mon to all of these applications are fundamental physical processes
involving deformation, rupture nucleation, propagation and arrest. In
strongly nonlinear problems, like dynamic fracture, small scale instabil-
ities can lead to large scale system fragilities and it is imperative to
understand how the microscopic processes influence the crack macro-
scopic response [9,22,31]. In the case of bone, the internal interfaces
between the mineralized collagen fibrils may fail under different load-
ing conditions, and the details of the resulting dynamic rupture can de-
termine whether only a part or the whole of the body part (e.g. knee)
will fracture.

In this paper, we focused primarily on interfibrillar sliding as one of
the major failure modes in bone structure at the micrometer scale.
Other failure modes definitely exist depending on the fibril orientation,
bone type and loading conditions. These other modes include for exam-
ple: delamination (i.e. mode I cracks), twisting (i.e. mode III cracks) and
mixed fracture (under combined shear and normal loading of the poly-
meric interface). The methodology described in this paper is extensible
to these other modes and it is expected that the quantitative predictions
for the critical crack size, fracture energy and rupture speed may be dif-
ferent. The dominant rupture mode will depend on both the properties
of the fibril-polymer system as well as the orientation of the applied
loading. For example, delamination may be prevalent in trabecular
bone whereas interfibrillar sliding may be dominant in cortical bone.

The separation of the mineralized collagen fibrils under shear or ten-
sion is resisted by a special type of polymeric glue that is composed of
polymers with the sacrificial bonds and hidden length (SBHL) system
[36]. The constitutive response of this glue controls the strength and
ductility of the fibril system.

In this paper we used the rate and displacement model developed by
Lieou et al. [25] to model the polymeric interface. We assume that fibril
sliding is resisted by a series of quasi-one-dimensional polymer bundles.
The idealized SBHL system adapted here represents globular domains
within the polymer chains as well as crosslinking between the polymer
molecules within these bundles. Crosslinking between the bundles has
been neglected here. It is possible; however, that crosslinking may be
dense enough to lead to the formation of two-dimensional polymer net-
works. That will change the force distribution within the polymeric sys-
tem from the idealized parallel bundles model [see for example 13]. In
this case, a description based on theory of statistical mechanics that has
been previously applied to amorphous materials and thin film lubricants
may be more appropriate [5]. These theories implement internal state
variables to discuss the mechanical evolution of the system. In the case
of polymers with SBHL system, the primary state variable will be the
number of active bonds. However, as long as the quasi-one-dimensional
bundle picture is applicable [e.g. see Fig. 1a] the idealized model present-
ed here, with appropriate choice of distribution of hidden length and
strength of sacrificial bonds, is adequate for reproducing the observations
of AFM experiments on polymer blobs [e.g. 25]. Further investigations are
required to explore the influence of extended 2D polymeric structure. Our
numerical results show that the sacrificial bonds and hidden length sys-
tem generally increases energy dissipation and resists crack propagation.
The presence of SBHL system increases the system toughness (~8.5%),
increases the critical crack size that has to be reached before dynamic in-
stability is triggered (~10%), and it also reduces the stable crack growth
speed (~5%). The exact numbers depend on the underlying assumption.
In particular, we have assumed that the length of the polymers and the

hidden loops are drawn from a uniform random distribution. We expect
that other probabilistic distributions may lead to different results quanti-
tatively. We think, nonetheless, that the qualitative nature of our findings
will continue to hold.

We have also shown that the increase in the polymer density leads
to an increase in energy dissipation, peak resistance force and ductility.
Smaller polymer density reduces both the initiation and propagation
toughness leading to increased brittleness. This is signaled by faster
crack propagation as well as smaller critical crack size. Since the number
of polymers produced by the osteocytes may decrease as the individual
ages [18], this investigation reveals that a possible mechanism for bone
toughness degradation with age, other than loss of bone density, is the
reduction in polymer density.

Many cohesive law formulations exist in mechanics literature and
some of them have been used in the context of multiscale modeling of
bone fracture [e.g. 39; and references therein]. Our approach is different
in the sense that the cohesive law is derived based on physical princi-
ples. The constitutive law parameters (such as peak force, maximum
elongation and fracture energy) vary in response to variations in the in-
ternal variables (e.g. polymer density and number of sacrificial bonds)
in a self-consistent way. Hence, the proposed approach has a more pre-
dictive power and is capable of integrating small scale physics in
multiscale simulations without prior assumptions on the specific
shape of the cohesive law.

Similar to other systems [e.g. 16], we have shown that there exists a
critical crack size beyond which crack propagation becomes dynamic.
Determining this critical crack size is important for both medical and
engineering applications. In particular, it may be used for assessing frac-
ture risk in bone by determining how close the current crack size is to
the critical one. Moreover, the critical crack size sets an important
length scale to be considered in biomimetic material design. For exam-
ple, to increase fracture resistance, polymeric interfaces should be con-
tinuous only for distances smaller than the critical crack length. In that
aspect, staggered or random distribution of the fibrils may be preferred
to the more regular brick and mortar geometry [19].

The degree of mineralization of the collagen fibril is another factor
controlling the fracture properties of bone. We have found that within
the elastic regime of the fibril, the average crack propagation speed
along the interface increases as the percentage of mineralization in-
creases. On the other hand, for unmineralized fibrils and high polymer
density the system fails by strain localization within the fibril rather
than by slip along the interface. This mode of failure is brittle and pre-
vents the full utilization of the SBHL system. With aging, the degree of
mineralization is reduced [21,26,27] and this may be another mecha-
nism for frequent bone fractures in the elderly.

In this paper, we adopted the approximation that mineral plates fill
the gaps between the tropocollagen molecules. The exact distribution of
mineralization is a subject of debate. The distribution, however, may
have strong impact on the mechanical response of the fibril, especially
its compressive strength. Here, we assume that the fibril buckles once
it reaches the yield stress in compression and consequently loses its
compressive strength completely. Better understanding of the mineral-
ization distribution may allow us to track the fibril behavior in the post-
buckling regime.

The model we developed in this paper is one-dimensional. We re-
duced the problem to its basic ingredients related to fibril elasticity
and polymer toughness. We were able to develop some constraints on
the basic fracture response of the collagen fibrils at the microscale.
Three-dimensional effects for bone are important, however, and the
geometrical complexity is an essential ingredient for toughness [32].
This current study represents the first step towards building these
more complicated models.

The model proposed in this paper provides predictions for critical
crack size, stable crack propagation speed and energy dissipation for a
fibril-polymer system under different conditions. These predictions
are derived using a mathematically consistent procedure (integrating
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Newton’s second law) that implements constitutive models that were
validated independently by different experiments. For example, the rate
and displacement model of Lieou et al. [25] reproduces many of the
AFM experimental observations on glue molecules [e.g. 1; and references
therein] including logarithmic rate dependence of strength, time depen-
dent healing and irregular force drops. On the other hand, the mechanical
model of the fibril [6] was validated using Synchrotron diffraction studies
of Gupta et al. [17]. To the best of our knowledge there are yet no exper-
iments that have been done to explore the fracture behavior of a single
fibril-polymeric interface system at the microscale with which we can
compare our predictions to. While the different parts of the model have
been validated independently, we do believe there is a need for develop-
ing experiments that can probe the fracture response at that scale. In this
respect, we believe that extending novel techniques such as the scratch
test [2] to the microscale may provide valuable insight into the fracture
toughness of bone at the scale of collagen fibril. Mechanical testing at
the microscale alongside with Scanning Electron Microscope Imaging
can provide information about crack development and speed. This may
be done by loading the fibril in incremental steps, stopping the experi-
ment after each step, and imaging the deformation patterns. Eventually,
a multiscale framework of fracture that integrates the model proposed
here as its building block, will link the micro and macroscales and provide
more opportunities for validation through classical fracture mechanics
techniques [e.g. 32] and medical diagnostics.

Further extension of this study includes investigating arrays of colla-
gen fibrils in two and three dimensions using the finite element method
including other failure modes such as delamination, twisting and mixed
mode fractures. This will enable the investigation of the characteristics
of the wave field generated by the crack propagation and the influence
of array geometry on crack propagation, crack arrest and energy dissipa-
tion for bone structure. It will also help us better understand the funda-
mental mechanics of deformation in bone which will eventually help in
developing better biomimetic materials.
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Appendix A

This appendix reviews the displacement and rate constitutive model
for polymers with SBHL systems [25] that is implemented in this paper.
We also describe the details of the numerical scheme used in the inte-
gration of the equations of motion.

A.1. Rate dependence breakage mechanism

To account for pulling rate effects, Bell’s theory is applied [4,25]. As-
suming a double well potential for the bond, the rates of bond formation
and breakage depend on the applied force. In particular, the rates of
these two events have exponential dependence on the pulling force
and transition state distance. That is, for sacrificial bonds:

ke = g exp <FAxf > (AL1)
fm kT i
FAx
ky = Bo exp (‘ ﬁ) (A1.2)

For end bonds, we obtain:

FAxend
end f
ke = o, exp( kT > (A1.3)
end
K=, exp(— FAX, ) (A1.4)
kgT

Here, F = F(x) is the polymer force given by Eq. (1), Axrand Ax,
are the distances to the transition state; o and 3y are, respectively, in-
verse time scales which describe the rate at which bond breakage and
formation events occur at zero pulling force. The same applies for end
bonds. The master equation for the change of the number of bonds is
given as:

dNj,
dtb = _kab —+ kbe

(A1.5)

where Nj is the continuous version of integer Ny, representing the num-
ber of sacrificial bonds at a given instant of time. Ny = N — 2N}, is the
number of free sites to form potential sacrificial bonds, with N = L/b
being the number of sites. The same applies for end bonds as:

dN;

= —K" N, + K" (1—N,) (A1.6)
The condition for bond breakage is thus satisfied if:
[}

/ . (ky (F )N, —ky (FGOINy ) dt = 1 (A17)
[C

/ O K (F(o)dt = 1 (A1.8)

For the parameters here, we followed Lieou et al. [25,35] and choose
the following in our simulations: o = 0.3 s~ !, 30 = 0.003s™ !, @, = 0.1
s~1 b =0.1nm, Axg= 0.25 nm, Ax, = 0.1 nm, and Ax, = 0.15 nm.

A.2. Implementation of dynamic and quasistatic analysis

The equations of motion of individual blocks take the following
form:
miX; + Fep, | (X —%;) + Fep, , (6—%i_q) + Fy, (%) = 0 (A2.1)

Here, F;, | Fes, . and Fy, | are the forces on the i block due to its
motion relative to the i + 1 and i-1 blocks, respectively. These forces are
a function of the relative displacement between the adjacent blocks and
their values are determined from Fig. 3(b). Fp, (x;X) is the polymer force
acting on the i block. It is a function of the block absolute displacement
and velocity.

We numerically integrate the system in time using Newmark-beta
method [28]:

).(HA[ =X + {(1 —Q)X; + akHA[]At' (A2.2)

. 1 . .
Koo =+ | (5 )+ s a0 (123)

In the above equations, t is the current time step, t + A, is the next
time step, A, is the time step size, and coefficients o and /3 are set as 1/2
and 1/4 respectively. Since the acceleration at the next time step is
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not known, we implement a predictor-corrector scheme to solve
Egs. (A2.2) and (A2.3).

All the above equations together with Eq. (1) represent a highly
nonlinear system with strong coupling between forces, displace-
ments and velocities. At time t, the displacement and polymer forces
for all the blocks are known. We use this information to compute the
instantaneous accelerations of all the blocks at time t. To estimate the
response of the system at time t + A, we initially assume that the ac-
celeration of each block is constant during the interval [t, t + A;].
Using Egs. (A2.2) and (A2.3) a predicted value for the displacement
and velocity of each block at time t 4+ A, is determined. Using the pre-
dicted values we estimate the polymer and collagen forces acting on
each block. We use these values to compute the new acceleration
magnitude for each block at time t 4 A,. This latter value is not, in general,
equal to the constant acceleration assumed previously. We then use
Newmark-beta method (Eqs. (A2.2) and (A2.3)) to compute corrected
values for displacements and velocities. We repeat the process until the
errors between the predicted and computed displacements (velocities)
are sufficiently small (10~° of the latest predicted value).

We adopt an adaptive time stepping algorithm. To detect bond
breakage events, we integrate Eqs. (A1.7) and (A1.8) numerically
using a trapezoidal rule. We also compute the changes in the polymer
force due to the breakage of a sacrificial or end bond. If the value of
integration of either Egs. (A1.7) or (A1.8) is greater than 1+ ¢, where
¢ is a prescribed small number, there is a probability that the drop in
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polymer force may not be accurately represented. In this case, the
time step is reduced to half its original value and the calculation is re-
peated. Only if the drop in the polymer force is much smaller than the
total force in the polymer system do we tolerate integration outcomes
exceeding 1 by values slightly larger than &. In this case, the effect of
the discontinuity is negligible in the force displacement curve. This en-
ables us to use larger time steps without compromising the accuracy
of the constitutive law.

Two approaches are implemented in this paper: a quasistatic ap-
proach to model stable crack growth, and a fully dynamic approach to
model fracture of the collagen fibril. In the former, the inertia term in
Eq. (A2.1) is set to zero. The time dependent loading (imposed displace-
ment rate at the end) as well as the rate dependence of the polymer
force are still included. In this case, we solve for static equilibrium,
using Eq. (A2.1) but with the left hand side set to zero, at each time
step. In the dynamic approach, the inertia term is included and integrat-
ed numerically. This is appropriate for tracking dynamic crack propaga-
tion and strain localization in the fibril during the post-yielding stage. At
the instant of yielding, we switch to the dynamic solver and repeat the
last few simulation steps from the quasistatic analysis. The initial condi-
tions for the dynamic analysis are taken from the solution correspond-
ing to the last step in the quasistatic solution. Both the dynamic and
quasistatic analysis yield identical results for the stable crack growth re-
gime as long as the collagen fibril remain elastic. The comparison of two
schemes is shown in Fig. A2.1.
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Fig. A2.1. Comparison of quasistatic analysis and dynamic analysis on a benchmark problem. (a) Polymer forces (pN) as a function of extension (nm). Both scheme yield identical results.
(b) Motions (nm) of fibril block as a function of time (ns) and (c) zoomed-in details of motions. The motion of quasistatic analysis can be idealized as the averaged dynamical motion.
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