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This review presents the potential that lattice spring network models hold for micromechan-
ics applications. The models have their origin in the atomistic representations of matter on one
hand, and in the truss-type systems in engineering on the other. The paper evolves by first
giving a rather detailed presentation of one-dimensional and planar lattice models for classical
continua. This is followed by a section on applications in mechanics of composites and key
computational aspects. We then return to planar lattice models made of beams, which are a
discrete counterpart of non-classical continua. The final two sections of the paper are devoted
to issues of connectivity and rigidity of networks, and lattices of disordéatier than peri-

odic) topology. Spring network models offer an attractive alternative to finite element analyses
of planar systems ranging from metals, composites, ceramics and polymers to functionally
graded and granular materials, whereby a fiber network model of paper is treated in consider-
able detail. This review article contains 81 referencf80Il: 10.1115/1.1432990

INTRODUCTION and granular materials. The most extensive example treated

Lattice (or spring networkmodels are based, in principle, Onh_ere is that of mechanics of paper from the _standpoint of a
the atomic lattice models of materials. These models wofiordered network of cellulose, beam-type fibers.

best when the material may naturally be represented by a

system of discrete units interacting via springs, or, more gen- ONE-DIMENSIONAL LATTICES

erally, rheological elements. It is not surprising that spatial ) . ) )

trusses and frameworks have been the primary material syst ~ Simple lattice and elastic string

tems thus modeled. In the case of granular media, the lattloet us first consider a lattice-based derivation of a wave
methods are called discrete element models. Spring netwoekgiation for a one-dimensionélD) chain of particles; see
can also be used to model continuum systems by a latti@lso[3]. The particlegparametrized by), each of massn;,
much coarser than the true atomic one—the idea dates bdbkeract via nearest-neighbor springs, Fig. 1. For the potential
at least, to Hrennikoff1], if not to Maxwell[2] in a special and kinetic energies we find

setting of optimal trusses. This coarse lattice idea obviates 1

the need to work with the enormously large number of de- U= EZ Fi(ujr1—uj)= EZ K(Ujy1—Up)?

grees of freedom that would be required in a true lattice : !

model, and allows a very modest number of nodes per single 1

heterogeneity(eg, inclusion in a composite, or grain in a TZEZ mif (1.1)
polycrysta). As a result, spring networks are a close relative '

of the much more widespread finite element method. whereF; =K(u;;1—U;) is the axial force at, andK is the

In this paper, we focus on basic concepts and applicatiosgring constant betweem and i+1. Using the Euler-
of spring networks, in particular, to anti-plane elasticity, pld-agrange equations for the LagrangiasT—U, we arrive
nar classical elasticity, and planar micropolar elasticity. Twat the dynamical equations
se'Ftings.of such models are ellaborated in some detail: peri'K(qu—Zui+ui,1):m'ui (1.2)
odic lattices and those with disordered topologies. We also
indicate connections with other, related studies such as §#ich describe a system of coupled oscillators. By taking a
neric rigidity in the field of structural topology. Additionally, Taylor expansion up to the second derivative for the dis-
an adaptation of lattice methods to modeling crack propagdacement;..;=u(x*s),
tion are presented. This spring network models are suffi- 1
ciently general to apply to systems ranging from metals, uiﬂ%ulxiiu,xlxiSJrgu,xx s? (1.3)
composites, ceramics and polymers to functionally graded ' %i
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we find from Eq.(1.2) an approximating continuum mechan- K,s m JA Ksm

ics model,ie, a basic wave equation G=—— | =

A P7as Tm BT A (1.19)

EAU,,= pAll (1.4)
. ) Equations(1.10 are recognized as the equations of a Ti-
where(A being the cross-sectional area of the)rod moshenko beam. Evidently, this is a 1D micropolar con-
Ks m tinuum with two degrees of freedom: displacema&ntand
E=X P as (1.5) rotation ¢.
. ~As in Section 1.1, Eq(1.10 could alternatively be ob-
Of course, Eq(1.4) can also be obtained from the Hamil+ained by first introducing Taylor series with terms up to the
ton’s principle for the Lagrangiah expressed in terms of first derivative into Eq(1.9) to first get
continuum-like quantities, by first introducing E¢L.3) in
1.1); with terms up to the first derivative, 1 (d
(1.1 P U=§J [GA(W,)2+El(g,)?]dx
AE (d Ap [d 0
Uz—f (u,)?dx Tz—f (U)?dx. (1.6)
2 Jo ' 2 Jo

d
T=35 [ tAnti+1p(e210x (1.12)

1.2 Micropolar lattice and elastic beam 0

We now generalize the preceding lattice model to describgd then, by employing the Hamilton’s principle.

transverse motions of a 1D chain of dumbbell parti¢tégid A question arises here: Can other, more comfaicro)

barg pin-connected by central-ford@xial) springs, Fig. 2. structures, especially those made of little beams connected
We need to consider two degrees of freedom per pariicleby rigid joints, of a general beam-like geometry-such as
total transverse displacement and rotationy; . The consti- Shown in Fig. 3 be sufficiently well described by this beam

tutive laws for a single bagbetweeni andi+1) are model? The general answer . (see eg[4]). The basic
- R procedure, however, recommended by that author is basically
Fi=K, (Wit1—Wi—Spit1) Mi=—K(gir1—¢i). the same as that outlined here:
1.7 1) the equivalent micropolar beam model is set up from the
Here F; is shear force andM; is bending moment at, postulate of the same strain and kinetic energies stored in

whereby the termyp; ., ;s is subtracted in Eqg. (1.7)to so as the original lattice when both are deformed identically;
to deal with shear only. For this 1D chain of particles, w&) a typical repeating element is identified and the energies

write down potential and kinetic energies for this element are expressed in terms of the nodal dis-
1 placements, joint rotations, as well as the geometric and
U= Ezi K, [Wis1—Wi—S@i 112+ K(@i 41— ¢i)2 material properties of the individual members;

3) a passage to an effective continuum is carried out via a
1 Taylor expansion, whereby it turns out that higher-order
T=_ > mW+Jp2 (1.8) terms show up in the governing continuum equations, de-
25 pending on the actual microgeometry of the rods making
The first term in Eq. (1.8)accounts for shear deformations, UP the structure; see al$6].
while the second for bending. It is appropriate to note here that beam-like lattices can also
Using the Euler-Lagrange equations for the Lagrangiase analyzed by a cell transfer matrix approach—the eigen-
L=T-U, we obtain a system of equations values of this matrix are the decay rates relevant in the Saint-
Venant's principle for these discrete, rather than continuum,
systemg6]. The associated eigenvectors and principal vec-
R[‘PHl_Z(Pi_"(Pifl]"_KL[WiJrl_Wifl_S‘Pi]S:\]ébi . tors lead to equivalent continuum-beam properties. We end
(1.9) by noting that continuum approximations of plate-like struc-
tures were also investigatdd]. In that review, among the
roblems needing new investigations was also listed the ef-
ect of microstructural material randomness.

Ki[Wip1—=2Wi+Wi_1—S(@j 1~ @) ]=miy

By introducing the Taylor expansions far; and ¢; in Eqg.
(1.9); with terms up to the second derivative, and taking t
limit s—0, we find

GA[W,X_ ‘P],XZPAW
Elgo T GAlWx—¢]=plo (1.10)

where(A andl being the area and second moment of cross-
section of the beam-like lattige

i-1 i i+1

e ° P (a) (b)

i-1 i i+1

Fig. 2 a) A 1D chain of dumbbell particleévertical rigid bar$ of
Fig. 1 A 1D chain of particles of lattice spacisgconnected by X-braced girder geometry, pin-connected by axial sprifisn
axial springs(thin lines lines); andb) the shear and curvature modes of a single bay
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Fig. 3 Planar lattices and their repeating eleméafter Noor and Nemetf])

1.3 Axial-twisting coupling and dynamics of a helix of a theory of a bundle of wires or a continuum shell. Indeed,

Suppose we have a wire rope helically wound along tiewas shown, in the context of structural mecharfis],
x,-axis [8] (Fig. 4. We need then to consider a couplinghat either assumption would lead to a few percent difference

axial straine and rotational straifg=Rrs on the other, that S€€n, however, what those differences would be for a shell
is made of a large number of thin cellulose fibrils winding
along the axis of a cellulose fiber rather than a few thick
F=Cpe+CpoB M=Cpe+CpB. (1.13) wires such as shown in Fig. 4.

Here, from a requirement of a positive strain energy density, The constitutive equationid.13 in combination with the
we obtain two conditions on four constitutive coefficie@ys ~balance equations led Sametsal[12] to derive a system of
two coupled wave equations governing the axial-twisting re-
C11>0 Cp>0 Cyp=Cy (:11(:22_(:12(321>0(-1 1) sponse of a fiber

In the language of continuum mechanics, the wire rope is C11Uxxt C12¢0 xx=pl  Coqll xx+ Coop =J&  (1.15)

a 1D micropolar medium of aoncenirosymmetritype. In wherep is the mass density anblis the mass polar moment

r81Sinertia. These authors considered a monochromatic wave

are also usechemitropic, antisymmetrjor chiral composite gropagation along the fiber

[9,10]. Interestingly, while the Timoshenko beam involved
shear force and a moment normal to the beam’s axis, andy(x,t)=U exgdik(x—ct)] ¢(x,t)=® exdik(x—ct)]
also mutually orthogonal, in the present model the axial (1.16)
force and moment are parallel to the main axis.

It is important to note that Eq91.13 apply to other
physical systems than a wire rope, for exampjea wood
fiber made of helically wound fibrils, anid) a simple helix. 2(C11Car— C1,Ca1)

Indeed, descriptiori1.13 holds, regardless of whether thec, ,= > -
derivation of theC;; coefficients is made from the standpoint (C11J+Coop) £[(C11—Copp) +4pICy1Coil .17)

and arrived at a dispersion relation resulting in two wave
speeds

It followed, by inspection, that;<c,, and, in fact, there

F .M may be an order of magnitude difference between both wave
= L‘—B —’( speeds. In view of Eq1.16), axial vibrations of the fiber are
described by two types of waves—slow and fast—each of
Fig. 4 A wire rope of constant helix angle which consists of forward and backward going pulses
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u(x,t)=U ekt y,ekx+eit) 4y elk(x=cat) 2.2 Anti-plane elasticity on square lattice
LU, ekxtest) Of all the elasticity problems, the anti-plane one is the sim-
4 plest on which to illustrate the spring network idea. In the
o(x,1) =D, elkx—C10 4 @ eik(xtert) 4 @ gik(x—ct continuum setting, we thus have the constitutive law
b yelkOcreat) (1.18) gi=Cje; 1,j=1,2 (2.4)

L _ _ _ Whereo=(01,0,)=(0%,0%) ande=(g,,8,)=(e3,63,).
Next, by considering the ratio of axial to torsional ‘f"mpl_'Upon substitution into the momentum balance law
tudesU/®, they concluded that the waves that are primarily

axial in nature J/®>1) propagate at speeds, while the ~ 0ii=0, (2.5)
waves that are primarily torsional in naturdJ/®<1) e obtain
propagate at speeds. Clearly, by assuming,,=C,;=0

one immediately arrives at two uncoupled wave equations(ciju,i),izo- (2.6)

for purely axial and torsional waves, respectively. Henceforth, we are interested in approximations of locally
homogeneous media, so that the governing equation be-
comes

2 PLANAR SPRING NETWORKS ON PERIODIC Cyju,;;=0 (2.7)

LATTICES: CLASSICAL CONTINUA ) . _ _ o
In the special case of an isotropic medium E2}7) simpli-

2.1 Basic idea of a spring network representation fies to a Laplace equation

As already demonstrated in the setting of 1D models, the ¢y, =0. (2.8)

basic idea in setting up the spring network models is based ) ) ) ) )

on the equivalence of strain energy stored in a unit @&4. We now discretize the material with a square lattice net-

5), of volumeV, of a network work, Fig. 5, whereby each node has one degree of freedom
U cen= U continuum (2.1)

The unit cell is a periodically repeating part of the networl

Two aspects should be noted here:

1) the choice of the unit cell may be non-unique, see Fig

2) the inner structure of the unit cell is not necessaril
‘nicely’ ordered—it may be of a disordered microgeom
etry, with an understanding that it repeats itself in spac

In Eq. (2.1) the energies of the cell and its continuun
equivalent, respectively, are @)

N
18 1
UceIIZE Eb:_z (F’U)(b) Ucontinuum:_f o-edV.
b 2“6 2 v
2.2) V

The superscripb in (2.2); stands for théo-th spring(bond, .
andNj, for the total number of bonds. Our discussion is set |

the two-dimensional(2D) setting so that, by a volume we =
actually mean an area of unit thickness. In the sequel \
restrict ourselves to linear elastic springs and spatially line(p)
displacement fields (ie, uniform strain fields), so that Eq.
(2.2) will become

N
120 1
Ucellzzg (ku‘u)(b) Ucontinuumzzs'c's (2.3)

In Eq. (2.3 u is a generalized spring displacement &nd
its corresponding spring constant. The next step, that w
depend on the particular geometry of the unit element and /\/\/\/\/\/\/
the particular model of interactions, will involve making Ea /\/\/\/VW

connection between and &, and then derivindC from Eg.

(2.0. The corresponding procedur_es and resulting formulq&@_ 5 a) A hexagonal lattice with three different choices of unit
are given below for several elasticity problems set in th&ll; b) a square lattice with a square unit cell; ar)da triangular
square and triangular network geometries. lattice with hexagonal unit cell
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(anti-plane displacement), and nearest neighbor nodes are ,u; jj+«u; i=0. (2.18)
connected by springs of constdatlt follows that the strain ' ’
energy of a unit cell of such a lattice is In Eq.(2.18), u is defined byo,= ue 1, which makes it the
1A same as the classical 3D shear modulus. On the other kand,
U=§k2 Ii(b)IJ(b)sisj- (2.9) s the (planay 2D bulk modulus, that is defined by;;
b=1 = KE&jj -
In the above, we employed the uniform strair (&4, e5). As in the foregoing section, we are interested in approxi-

Also, |(b):(|(1b) ,|(2b)) is the vector of half-length of bon. mations of locally homogeneous media. Consider a regular
triangular network of Fig. b with central force interactions
only, which are described, for each bobdby

4
k

Cij=v§l 11D j=1,2 (2.10) Fi=®u; where ®'=a®n”n®. (2.19)
B=1

In view of Eq. (2.1), the stiffness tensor is obtained as

. _ b Similar to the case of anti-plane elasticit/? is the spring
whereV=4 if all the bonds are of unit lengthI(®|=1). constant of half-lengths of such centfabrma) interactions,
This leads to a relation between the bond spring constanis of those parts of the springs that lie within the given unit

and theC;; tensor cell. The unit vectors® at respective angle&® of the first

k three « springs are
C11: CZZZE C12:C21:O. (211) 0(1)200 ng_l):j_ n(zl):O
In order to model an orthotropic medium, different bonds V3
iad i P 1 2 2 o 1 o_Y3
are applied in the; andx, directions:k® andk®. The 6?=60° n{ =5 ny'=%
strain energy of a unit cell is now
4 1 V3
1 S 9¥=120° nP=-= nP=—. 2.20
U= Ebzl KO PP (2.12) 1 2 272 (2.20)

The other three springbE& 4,5,6) must, by the requirement

so that the stiffness tensor is of symmetry with respect to the center of the unit cell, have

14 the same properties ab=1,2,3, respectively. All the
Cij=y > k®IP®) (2.13) a-springs are of length that is, the spacing of the triangular
b=1 mesh iss=2I. The cell area i8/=2v3I2.
which leads to relations Every node has two degrees of freedom, and it follows
k(D) K2 tha_t the strain energy of a unit hexag_onal cell of_ such a
01127 C22=7 Cyy=Cy=0. (2.14) Ii1tt|ce, under  conditions of uniform  strain e
=(e11,822,€12), IS
If one wants to model an anisotropic mediuie, with 2 6
C1,#0), one may either choose to rotate its principal axes to U= = >, a®n®n{Pn®nPe; e, (2.21)
coincide with those of the square lattice and use the network b=1

model just described, or introduce diagonal bokf® and sg that, again by Eq2.1), the stiffness tensor becomes
k® oriented along1, 1) and(1, —1) directions, respectively.

In the latter case, the unit cell energy is given by the formula
(2.12 with N,=8. The expressions fdC;;’s are

2 6

I
b) 1 () (b) g (D
Cijkm:vb§=1 a®nPnPnPnl® (2.22)

k) k(2 In particular, taking alle(® the same, we see that
Comy +K®  Comg+K®  Cipm Co=kK® K. P 9
3
(2.15) Cu= szzf% a Cip= sznzﬁ «
It will become clear in the next section how this model can
be modified to a triangular spring network geometry. 3
C1212=—a (223)
8v3
2.3 In-plane elasticity: Triangular lattice so that there is only one independent elastic modulus, and the
with central interactions modeled continuum is isotropic.

In the planar continuum setting, which is discussed in some It is important to note here that the isotropy follows from
more detail in the Appendix, the isotropic Hooke’s law  the triangular lattice having an axis of symmetry of the sixth
order. This, combined with the fact that E®.22 satisfies

7= Cijkmekm  1,J,k;m=1,2 (2.16) the conditions of Cauchy symmetf§3] with respect to the
upon substitution into the balance law permutations of all the four indices
Uij,jzo (2.17) Cijkm:Cijmk:Cjikm:Ckmij:Cikjm (2.24)

results in planar Navier’s equation for the displacemgnt implies thatC;;,,, is of the form
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Cijkm=N(8ij Skmt SikSjm+ Sim i) - (2.25) also forms a generalization of the so-call€itkwood model
. . _ i [15] of an isotropic material. The latter is obtained by assign-
In view of (2.23, we obtain the classical Lan@nstants  jng the samex to all the normal and the sam@to all the
angular springs
A=u=——a. (2.26)
4v3 N 2 n®nEn(n()

Cljkm 23 52 j
One might try to model anisotropy by considering three

different o’s in Eq. (2.21), but such an approach would be B 6 o ) (b)(b)
limited—one needs to have six parameters in order to freely 2‘/_| 2 {26ikn; —2n{®'n{Pni®n(
adjust any planar anisotropy which involves six independent

Cijkm'S. This can be achieved by introducing the additional — 5ikn§)b)n§b“)n<pb“)n$)+ ni(b)n}b“)nf(b+l)n$)
angular springs as discussed below. In fact, angular springs

. . . b) (b b
are also the device to vary the Poisson’s ratio. - ikn( )n( )nénﬂ)ngnﬂ)

+nPFnEnPn(dt by (2.30)
2.4 In-plane elasticity: Triangular lattice
with central and angular interactions

We continue with the triangular network, and introduce an- 1 (9 1 )
C1115= Copom —— B

gular springs acting between the contiguous bonds incident 2v3

onto the same node. These are assigned spring constants

B®, and, again by the argument of symmetry with respect to 1(3 19

the center of the unit cell, only three of those can be inde- C1125= Coo11= 2V3 (Z _Zﬂ)

pendent Thus, we arrive at six spring constants:

{a®),a? o® ,8(1) B3, BN, With reference to Fig. I 1

let Aa(b) be the (infinitesima) angle change of thé-th Cioi=—— 3

spring orientation from the undeformed position. Noting that,

nxXn=IA#, we obtain

It follows from the above that

|
28] (2.31)

AGY =eyjejpmin, i,j,p=1,2 (2.27)

where g; is the Levi-Civita permutation tensor. Sinée
=3, we can simply writed 6 for A6{") . The angle change
between two contiguous springs(b andb+ 1) is then mea-
sured byA¢p=A 6P - A 6P so that the energy stored in
the spring8® is

V=3 B0 Ag?
@
=5 B aeip(n® Ung TV -nPng}z - (2.28)

By superposing the energies of all the angular bonds with
the energy(2.21), the elastic moduli are derived §54] A x,

122
Cir=— S a®pBR(B) (b)) (D)
ijkm Vbzl i j k "'m b+I b

6
1
- b) 1 (b) 4 (b) (b
_2 {(B®+ B 1) 3,n®n®n®n®)

<

— (B + B D)@

m

b b)~(b+1),(b+1).(b
— B PP+ Db+ D

X
+ BONEN+Dp(D+D(d) )
— B 8, nEn(EIn( (0D )
+ BN I PInPne b} (2.29) Fig. 6 a) Unit cell of a triangular lattice modeky?,...,a(® are

the normal spring constantg™®,...,8® are the angular spring
whereb=0 is the same aB=6. This provides the basis for constants; in the isotropic Kirkwood modef” = «(®*3 and g®

a spring network representation of an anisotropic material;=#tg®°*3, b=1,2,3; andb) details of the angular spring model.
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Condition C1515= (C1111— C1129/2 is satisfied, so that thereln the case of two or more phases, a spring that crosses a

are only two independent elastic moduli. boundary between any two phases 1 and 2 is assigned a
From Eq.(2.31), the « and B8 constants are related to thespring constant according to a series rute=[(2a;) !
planar bulk and shear moduli by +(2a,) 1], whereq; is a spring constant of the respective
phase.
1 /3 1 /3 19
K_%<Ea) M_%(Zadl—rzzﬁ) (232)

It is noted here that the angular springs have no effect,on3 APPLICATIONS IN MECHANICS
ie, the presence of angular springs does not affect the dila@F COMPOSITES

tional response. The formula for a planar Poisson’s . .
; P P felf) 3.1 Representation by a fine mesh

is
In order to solve the field equations of a two-phase compos-
= H_ Ci11172C1210 ( 1 3_'3) / (3 3B _ ite we employ a spring network method, Fig. &he idea is
K+ p Cun al® al® to approximate the planar, piecewise-constant continuum by

(2.33) a very fine mesh. In the following, we shall assume that a
From Eq.(2.33, there follows the full range of Poisson'ssquare mesh in the; ,x,-plane for discretization of anti-
ratio which can be covered with this model. It has two limplane displacement field=us; is used. The governing equa-

iting cases tions are
1 . oo oL
v=3 if pla—0 a—model u(i, )k, =k +ky+kg]—ui+1,j)k—u(i—1,j)k
—u(i,j+1ky—u(i,j—1kg=f(i,j 3.1
v=—1 if Bla—® B—model (2.34) (L) Dky=ul) = Dka=10.)) (3.1)

For the subrange of Poisson’s ratio betweel3 and 1/3 wheref(i,]) is the body forcgor source at the point (,j),
one may also use a Keating moddl7] which employs a while i andj are the coordinates of mesh points, d&pd kK,
different calculation of the energy stored in angular bondsk, andky are defined from the series spring model

— P i1 y]-1
2.5 Triple honeycomb lattice ke=[1/C(, )+ C(I+1))]

It is recalled from Section 2.4 that 1/3 is the highest Pois-
son’s ratio of central-force triangular lattices with one spring
constant. An interesting model permitting higher values, . N .
from 1/3 up to 1, was introduced {i18,19. The model sets ~ Ku=[1/C(i,j)+ 1/C(i,j+1)]
up three honeycomb lattices, having spring constants,

k=[1/C(i,j)+1/C(i—1,j)]*

andy, respectively, overlapping in such a way that they form kq=[1/C(i,j)+ 1/C(i,j—1)] . (3.2)
a single triangular lattice, Fig. 7. The planar bulk and shear
moduli of a single phase are In Eqg. (3.2), C(i,j) is the property ati,j).

2701 1 1\-! This type of a discretization is equivalent to a finite dif-
(a+B+y) p= \ﬁ(_ - _) . (2.35) ference method that would be derived by considering the
1 expansions

K= —

+=+
J12 6la B

Fig. 7 a) Atriple honeycomb lattice made of three different spring types, andy belonging, respectively to three sublattices A, B, and
C; andb) A 42X 42 unit cell of a triangular lattice of hexagonal pixels, with 11 pixel diameter circular inclusions centered on pixels and
randomly placed with periodic boundary conditions; after Snyteal [19]
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202

_ _ o 9 o o sions. Similarly, by decreasing the contrast, we go to very
u(i=1p)=u(i,j)=s o (Ui, -zulj)

soft inclusions and nearly reach a system with holes.
i While the disk is the most basic inclusion shape when
dealing with composites, a departure from this is of interest.
Thus, another basic parameter specifying the composite is
i the aspect ratioof ellipsesa/b, wherea (b) is the major
(3-3) (minor) semi-axis. By varying the aspect ratio from 1 up

J 2 92
U(i,J't1)=U(i,i)tsﬁ—xz(U(i,j))li,ﬁg a_xgu(i’j)

in the governing equatiofrecall (2.8)) through _higher values, we can model systems having disk-
) ) type, ellipse-type, through needle-type inclusions. We are
T thus led to the concept of a parameter plane as shown in Fig.
C| —=+—|=0. (3.4)
Xy IX5 8a.

) , . . Resolution of several different types of inclusions by a
However, in the case of in-plane elasticity problems, a Sprig,jng network is shown in Fig.t8 That is, we can model
network approach is not identical to a finite differencgisys. ellipses, needles, etc. Admittedly, this type of model-

method, as the node-node connections of a spring NeWQtk is anproximate so that a somewhat different interpreta-
do really have a meaning of springs, whereas the finite dify of 5 parameter plane is given in Fig.8t is seen that

ference connections do not. _ disks may most simply be modeled as single pixels or more
In the case of a composite made of two locally iSotropigecyrately as finite regions: in the latter case arbitrary
phases: matrixm) and inclusions(i), the Hooke's law is  ahisotropies can be modeled. The former case allows one to
i,j=12 C;=C™s; or C<i>5ij . (3.5) deal with very Iargg scale systems, while.thg Iatter'all'ows a
A much better resolution of local stress/strain fields within and
The above leads to a so-calledntrast G"/C(™, sometimes around the inclusions. By decreasing the spring network
also called amismatcht is clear that by increasing the con-mesh size, an increasingly better accuracy can be achieved.
trast we can approximately model materials with rigid inclusomewhat more accurate results may be obtained by a finite
element model, albeit at a higher price of costly and cumber-
some remeshing for each and every new disk configuration
rigid disks B(w) which is required in statistical studies.
cDctm 4 It is noteworthy that, in contradistinction to a finite ele-
ment method, no need for remeshing and constructing of a
stiff disks stiffellipses  stiff needles stiffness matrix exists in our spring network method: spring
constants are very easily assigned throughout the mesh, and
the conjugate gradient method finds the solution of the equi-
librium displacement fieldi(i,j). In that manner, a system
soft disks having 16 million degrees of freedonil000x 1000 nodes
softellipses  soft needles ks can readily be handled on a computer workstation with
0.0 LAotes . ~90MB of random access memory. For 2008000 nodes,
one requires some 360MB, and so on, because of a linear
scaling of memory requirements with the number of degrees
] of freedom.
/ The quality of approximation of ellipses and needle-type
cracks/inclusions can be varied according to the number of
d nodes chosen to represent such objects. Local fields cannot
L be perfectly resolved—boundary elements may be better
suited for this—but the solution by the spring network is
sufficient to rapidly establish the elastic moduli of a number

(Ti:Cijgj

homogeneous
1.0 - .
(a) medium

W ctmy § rigidinclusions of different B(w) realizations from the random mediuB)
and the corresponding statistics with a sufficient accuracy.
stiff pixels stiff ‘ellipses”  stiff needles
3.2 Solutions of linear algebraic problems
10 4 hars(_}geneaus S .
©) medium The steady-state conductivity and elastostatics problems on
soft pixels spring networks always lead to linear algebraic systems
soft ‘ellipses’  soft needles “cracks’ A-x=b (36)
0.0 holes

> because they simply are elliptic problems in discretized

Fig. 8 &) Parameter plane: aspect ratio of inclusions and the col@'Ms- There are, in principle, two methods to set up and
trast; b) spring network as a basis for resolution of round disk$0lve the governing equations. One of them is exactly the
ellipses, pixels, and needles in the parameter planechadother same as that conventionally used in the finite element
interpretation of the parameter plane: from pixels to needles ~ methods—involving the global stiffness matrix accompanied
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by the connectivity of all the nodes—and will therefore not
be elaborated here. The second one comes, just like the
spring networks themselves, from the condensed matter
physics. It is the so-calledonjugate gradientmethod, which
involves the energy of the system as a functional

F(X)= 3 X-A-Xx—Db-x (3.7)

of all the relevant degrees of freedomand the gradient of
this energy

VE(X)=A-x—b (3.8)

with respect to all these degrees. Once written in an explicitV)
form as two subroutines, the program is connected with any
of the widely available solversee,eg [20]). Note that-(x)

is minimized when Eq.(3.8) equals zero, which is then
equivalent to Eq.3.6). Of course, one may also employ
other algebraic solvers.

It is noteworthy that the entire task of mesh generation,
such as typically required by the finite element methods, is
absent. The energy and energy gradient subroutines are writ-
ten once and for all for the given mesh of, say, Fig. 9. The
assignment of all the local spring stiffnesses—according to
any chosen lattice model of Section 2—is done very rapidly
in the first stage of the program. These stiffnesses are stored
in the common blocKin case of a Fortran prograrand are
readily accessible to the conjugate gradient subroutines that
are activated in the second, and main, stage of the program.
Once the energy minimum is reached to within any specified
accuracy, this energy is used to compute the overall, effective
moduli of a given domain of the lattice based on the postu-
late of the energy equivalence, seg [21-23.

Here we list several exact relations that may be used in
testing the resulting computer programs. Some of them, as
well as others, are also elaborated 24].

i) Suppose we have solutions of two elasticity problems
on a certain domaiB, with boundarydB, correspond-
ing to the displacementd) and traction(t) boundary
value problems, respectively. Then we can check
whether the Betti’s reciprocity theorem

[ tos [ s
B B

is satisfied numerically within some acceptable accu-
racy.

Perfect series and parallel systems are well known to
result in the arithmetic and harmonic averages, or the
so-called VoigtC" and Reuss bounc@R

fi  fa|”

¢ G
wheref, andf, are the volume fractions of phases and
1 and 2, respectively.

iii) The case of small contrast in properties allows an ex-

pansion of, say, effective conductivity to second order
in the difference C,—C;) as follows[25]

C,—Cy)?1
CM=Cy+f,(C,—Cy) - flfzg =
c, d

(3.9)

(3.10)

cV=f,C,+f,C, CR= (

&jj =Sﬁ|i|”<fk|=5ﬁk| Uk|+§1jk| (A, —A)oy
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+0(C,—Cy)%+

whered is the dimensionality of the space.

(3.11)

|v) There are many exact relations in the 2D conductivity.

Perhaps the best well known one, due[f®6] (also
[27]) says that, for a two-phase isotropic system in 2D,

Ceff(Cl ,Cz)ce”(cz ,C1)=C,C, (3.12)

where C¢''(C,,C,) is the effective conductivity of a
given system, whileC®(C,,C,) is the effective con-
ductivity with the phases 1 and 2 interchanged.

The CLM theorenj28,29 may be employed for planar
elastic (classical as well as micropolasimply con-
nected inhomogeneous materials with twice differen-
tiable properties. To this end, let us consider an effec-
tive compliance tensor e”| relating the volume

averageddenoted by overbaustress and strain tensors
uzslejklo-kl' (313)

Now, the stresses 1, o5, andoq, are the same in the
or|g|nal and the equivalent material§;;(x) and

Jkl(x) so that the strain fields;; ande;; satisfy the
relation

“&j=Sjuou=Sjuou+ (A, — Moy
:sij +SjkI(A!_A)O-k| .

HereT stands for a transformed material. Carrying out
the volume averaging of Eq3.14), and noting that
Sijki(A,—A) is independent of positior, we find

(3.14)

(3.15)

which shows that the effective compliance tensor of the
second material is given by that of the first material
plus the same shift as that for the individual phases

(3.16)

HT_

=S+ S (A, —A).

Fig. 9 A functionally graded matrix-inclusion composite with
47.2% volume fraction of black phase is partitioned inte 8 sub-
domains, corresponding to a 64-processor parallel computer
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When dealing with very large systems, the spring netwodne showed in Fig. 10, needs to be scanned and mapped onto
method is limited by the available computer memory size@. triangular mesh. Next, every bond is assigned its stiffness
This is, for example, the case with a functionally gradedepending on the domain it falls in. And finally, the mechan-
material. A composite of that type is shown in Fig. 9, wher&S problem of the resulting spring network is solved com-
the disk-matrix interphase is taken as a finite thickness zopwtationally. _ : :
of two randomly mixed phases of the di€¥ and the matrix I_n order fo assign spring stH_‘fnesses to any node of the
(1) material. Both phases are locally homogeneous ang""9 network mesh, the 3D_stn‘fne_ss ten&jim for each
isotropic—they are described by two constant isotropic coﬁ[yStaI must be found according to its transformaticota-

ductivities C; and C,. We see here three different Iength-t'on) matrix &; (i,] =1,2,3); the latter is provided from the

scales: the fine structure of interphase region, the size a{ﬁiguchi surface electron backscattering technique. Thus, to

spacing of inclusions, and the macroscopic dimension of tRgt up the spring netyvork ”?Ode" we start from the.st|ff.ness
composite. matrix C,z of an (anisotropig aluminum crystal which is

For this type of problems, we can also use parallel corfiven as
puting. Thus, in Fig. 9 we show a partition of the entir
simulated domain of a functionally graded composite intg«?

64=8x8 subdomains, each of which represents a 125 [10.82 6.13 6.13 0 0 0]

X125 spring network that is assigned to a separate processor | 13 1082 6.13 0 0 0

of a parallel computer. Thus, the boundary value is solved by

using 64 processors operating in tandem. The computational_ 613 613 1082 0 0 0 10°MPa
effort is limited by the speed of a single proces$ahich 0 0 0 285 0 0 '
goes down with the subdomain sjzend the communication 0 0 0 0 28 0

between the processoisvhich simultaneously goes up

Finding the optimal partition, is, therefore, an important task. L 0 0 0 0 0 283

There are, in principle, two ways to execute such a parallel (3.17)

scheme: either to write one’s own software, or to adapt § ¢qurth-rank stiffness tensét
existing solver running on a given parallel computer. Th&ccount three symmetrie®
latter option is now becoming ever more realistic.

ijkm IS then set up taking into
ijkm= Cijmk= Cjikm= Cixmij- We
next use a transformation formula for a 4-th rank tensor

3.3 Example simulation of a polycrystal (3.18)

The generalization of the Kirkwood spring network modab set up the in-plane part @', at every mesh node. This

outlined in Section 2 to an anisotropic case was motivated Bp  part, consisting of C’1111, C'2299, C’1120,

a need to study micromechanics of a planar polycrystalli@® ,,,,, C’,,15, C’1,15iS then mapped into the six spring

aluminum specimeri14]. The basic strategy is as follows.constants a;, a,, as, 81, B2, Bs according to Eq.

First, an image of crystal domairige, graing, such as the (2.38. This mapping is one-to-one and is given as
.

C/npqr: aniajpakqamrcijkm n,p,q,r=1,2,3

||
1 1 1 V3 V3
- - - = V3 il
% 8 2858 V3 163 16v3 4 4
9 9 V3 V3
: o — — = w3 =
% o S 163 16,3 4 4
faritay X Cli111
Cloe| | g VY3 ¥ _ 8 —v3 V3
T8 NS C’ 1122 _ 16 16 4\/3 2 4
i!- EE C:lllZ 1 1 3 3
s 5 A C'ior2 0 & "168 2 0o - 2
;“: s a : [ C' 2010
RORRR Vi 3 9 9
Xpet 2 : K ° % T 1< ° A
e 6 4v3 4v3
' & 3 3 3 3
¥ X 0 1A TR 7 0 1
: o % 3 L 16 16 4 4 J
v X
D X o M ]
X
@z
x| %3 (3.19)
B1 '
Fig. 10 Scanned image of a very thin polycrystal aluminum sheet. B2
All the grain boundaries are orthogonal to the plane of the sheet L B3]
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While there was no ambiguity concerning the spring con- The elementary beam theory implies that the force-
stant of anya-bond that entirely belonged to any given crysdisplacement and moment-rotation response laws of each
tal domain, additional care had to be taken of the bonds thaind (Fig. 11 are given as
straddled the boundary of two crystals. The effective stiff-

(b)[ (b)
nesses were assigned according to a series aue(1/2a F(B)=EBA®) /b ﬁ(b)zgzl_i,(b)
+1/2a,) 1. Assignment of theB-springs, however, pre- S
sented no such ambiguities. This lattice model offered a basisy; (b) — g(b) (b) .(b) (4.6)

for study of intergranular multi-crack propagation in an (b) _ _ b
elastic-brittle, thin(quasi-2D aluminum sheet, that would Where A®'=wh is the beam cross-sectional ared;
otherwise require a very labor intensive task of finite elememW h/12 is its centroidal moment of inertia with respect to

meshing and inter-element crack advance; see the aforem@h-2xis normal to the plane of the network, 8 is the
tioned paper. Young’s modulus of the beam’s material. All the beams are

of lengths=s®, which is the spacing of the mesh.
Turning now to the continuum picture, the strain energy

of the micropolar continuum is expressed as
4 PLANAR SPRING NETWORKS ON PERIODIC

LATTICES: NONCLASSICAL CONTINUA \% \
UcontinuumZE Yii Cijkm Ykm™ EKiDinj 4.7)

4.1 Triangular lattice of Bernoulli-Euler beams

In the solid state physics literature, the Kirkwood and Ke
ing models are sometimes referred to as Itleam-bending 6 _

models This is a misnomer since there is no account taken in Cijkm= 2, n{*ni”(n{®nPRE +n{PnP'RE)

these models of the actual presence of moments and curva- b=t

ture change of spring bonds connecting the neighboring 6

nodes. True beam bending was fully and rigorously consid- Djj= >, n{”n{®'s® (4.8)
ered by WozniaK30] and his coworkers, and considering a N

limited access to that unique book, in this section we givevehere
very brief account of the triangular lattice case.

afrom which we find

. ; _ b) A(b) b)| (b) b)y (b
We focus on the deformations of a typical beam, its bend- R(D) = 2EPA B(b) _ 2411 b) _ 2EPN®
ing into a curved arch allowing the definition of its curvature, s(b)y3 (sP3y3 sPy3
and a cut in a free body diagram specifying the normal force (4.9)

F, the shear forc€, and the bending momeM, see Fig. 11. If we assume all the beams to be the sdR& =R, etd,
It follows that in 2D, the force field within the beam networIgNe obtain

is described by fields of force-stresseg, and moment-

stressesn,, so that, we have a micropolar medium. C1117=Com= 2A3R+R) Cyy=3(R+3R)
The kinematics of a network of beams is now described . - . _
by three functions C1127=Coni= 5(R—R)  C1221=Cr115=5(R—R)
Ur(X)  Ux(x)  @(x) (41)  Du=Dyp=3S (4.10)

which coincide with the actual displacemerts, u,) and with all the other components of the stiffness tensors being
rotations (¢) at the network nodes. Within each triangulazero. That is, we have

pore, these function; may be assumed to bg linear, andcijkm:5i15km5+5ik51mA+5im5ij Diejff: 8T

hence, the local strainy,,, and curvaturek;, fields are (4.11)
related tou,, u,, ande by

in which
Y=U kT eke Ki=¢ (4.2) _ . = s ~ .
) . E=Il=3R-R) A=3R+3R) I'=3S. (4.12)
whereeg, is the Ricci symbol. _ o _
It follows from geometric considerations that We note from Eq. (4.13)that this beam lattice is an isotro-
(b) — (b} (D) pic continuum, rather than anisotropic as reporte[Bin32.
YUEMNCT Y (4.3) The micropolar mode]30,33 is conveniently expressed
is the average axial strain, wits®® being its average N terms of four compliances#; S, R andM—which are
axial length change. Similarly, readily identified as
(b)) = L(b)=(b) . (b)=(b) _ 1 2 2 2
YUENCNT Ya=0c N U T @ (4.4) —— - 5= = -
_ , o A= xa+m >Ta+m Toa-m MTar
is the difference between the rotation angle of the beam =+ 5
chord and the rotation angle of its end node. Thus, the dif- (4.13)

ference between the rotation angles of its ends is
The effective bulk and shear moduli are now identified on

K P=n® k. (4.5)  the basis of Eq(4.1]) as



46 Ostoja-Starzewski: Lattice models in micromechanics Appl Mech Rev vol 55, no 1, January 2002

FO p0
(@
\(V/ u?
—_ gm
¢
{b)
Fig. 11 The lattice geometrga); curvature and internal loads in a single beam elenient
k=3R p=YR+R) (4.14) 4.2 Triangular lattice of Timoshenko beams

hich q he f | ¢ i . In the foregoing section we began with the model of
which are seen to reduce to the formulas of Section 2.3 in (88, yjji.Euler beams, which implies slender connections

srf)eugl case of er>,<uraI r'gl'd'ty bemg'abse'nt. F_urthermorﬁetween the lattice nodes. It is well known that the situation
the effective Young’s modulus and Poisson's ratio are of stubby connections is describable more adequately by Ti-

B B moshenko beams. The boundary value problem that needs to
1+ — 1—— be solved is that of a beam fixed at its both ends and sub-
E—3R R R 415 jected to a shear displacement at one end. That is, with the
- = V= B (4.15) boundary conditions at the beam’s left end
3+§ 3+§ r(0)=0 6(0)=0 »'(0)—6(0)=0 (4.18)

It is noteworthy that the introduction of beam-type effect@nd right end

has a simi.lar influgnce .oE and v as the introduction of the w(s)=3Ds 6(s)=0 v'(s)—O(s)=0 (4.19)
angular B-interactions in the Kirkwood model. However,
noting thatR/R= (w/s)?, wherew is the beam width, we seeit is readily determined from the beam’s governing equations
that, in view of the slenderness assumption of the beam e|€-E(b)|(b) 0"+ GPAP (L —g)=0 GPA® (" —g')=0
ments, this model does not admit Poisson’s ratios below

mer (4.20)
I.:ir.1ally, we note that the stiffness tensdrks11) can be that a following relation holds between the shear faree
inverted to get the compliance tensors and the displacemerss/®)
(b)y (b)
51<jlk)m:%[5ij5km(A_S)+5ik5jm(5+ P)+ 0imdj(S—P)] ~(b)::LZE I <0 (4.21)
3 Y .
S5 s*(1+p)
ij
SP=1 (4.16) Here
so that, recalling the definition of the micropolar character- , _ 1281 ®) _ E® w 2 (4.22)
istic length[10], cOaADZ ™ g | g -
143 w)? is the dimensionless ratio of bending to shear stiffness, with
, S+P | Tl AP =t.w being the beam’s cross-sectional area, &
= = 22 W2 (4.17)  =t,w312 its centroidal moment of inertia.
1+ s Two limiting cases of3 are well known:

B—0, high shear stiffness and , hence, less deflection owing
where we used the basic facts relating the beam’s cross-shear; the Bernoulli-Euler slender beam is recovered;
sectional area to its moment of inertia. B>1, low shear stiffness and, hence, deflection owing to
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shear dominates over that due to the Young’s modgli) Following the same steps as in the previous section, we

this is the general case of the Timoshenko beam. see that the effective continuum moduli are given by Egs.
Observing that Eq(4.21) replaces (4.6), we now pro- (4.14—(4.15 as before. It is now possible to express them in

ceed to derive the effective moduli so thdt9) is replaced terms of the beam aspect ratio a8dThus, forE®" (normal-

by ized by the beam’s modull&®) and »*", we find

2E( A(D) =) 24 (d) 1

R(b) = pb=-—"—" = wi2 1 w\? 1

sPy3 (sP)3v3 145 1+( — -2 ——

geff w s| 1+ s/ 1+

®=2V3 ¢ g B e > a

SE®)] (D) t.E s, (W71 e [W) 1

o= (4.23) s| 18 2] 1+ 8
sPv3

(4.25)

wherein the ratidR/R is

5 Considering the geometry of the hexagonal unit cell of the
1 (4.24) lattice, we can write the above in terms of the volume frac-
1+B8° ' tion of the materiap (ie, unity minus the porosily

AN A a7
\WAVARRYAVARER SN

ﬁ_(w

R |s

5
e
E i 3
(b) E(b) 0.8 1 2 Fig. 12 a) A decrease in pore
1 sizes (from left to right: from
056 | large holes (slender bean)s

through a lattice of stubby beams,
to a plate perforated with small
04 | 4 holes; shown at porositiesp
=10%, 50%, and 90%-from right
to left; b) The effective Young's
0.2 4 modulus E®™, normalized by the
beam’s Young's modulug®, as
a function ofp for: 1) the central-
0 T T T T force lattice, 2 the Timoshenko
0 0.2 0.4 06 0.8 1 P beams lattice, 8 the Bernoulli-
Euler beams lattice, )4the Cox
model, and 5 the effective me-

05 dium theory for a perforated plate;
© eff andc) the effective Poisson’s ratio
v 1.4 v*" as a function ofp, models
0.4 2 3 (1-5 shown
03]
5
0.2
0.1
0
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1 an effective medium theory in any one of its guises: differ-
peff 1+ 3(1—+B)(1—V1—p)2 ential scheme, self-consistent, €t85]. However, for the
CE® =2(1-VJ1-p) 1 sake of clarity of Fig. 1B, c, we do not plot these.
a 3+_(1_\/1Tp)2 Summing up, it is seen from Fig. 12 that, psgrows,
3(1+p) beam bending tends to increase the effective Young’s modu-
3 lus E®™. In other words, bending effects increase as connec-
3(1—v1- p)le tions become wider. On the other hand, as they become slen-
- B _ (4.26) der, one can work with segments carrying axial forces only.
9+ (1— \/1Tp)zi Thus, beam effects gain in influence as the pores’ volume
1+pB fraction decreases, and lead to an increase of the effective

The above are plotted in Fig. 12 ¢ for the special case YOl_JrCV%SanJOrgutlﬁisn rilar::\;e tgetlii;egggtzotrﬁ: [)neoa:jrﬁl.network
E(®=9G®) We see that the consideration of lattice connec- 9 y

tions as stubbyTimoshenk® beams has a minor softeninngdel' First, Tlmoshenko beams, altho_ugh_ more .SOph'St"
off : . cated than Bernoulli-Euler beams, remain, in principle, 1D
effect on E®" relative to the Bernoulli-Euler beam model.

This may be explained by noting that the admission of th%bjeCtS’ of micropolar type, in fact. Therefore, what they

beam’s angle of rotation as an independent degree of fr éeld Is about as far as one can get with a beam model. A

dom amounts t&® being finite, rather than infinite, in the etter approach should consider beam segments as little

Timoshenko beam model. The Poisson’s ratio falls off nor?—lates"e' 2D objects, as recently implemented [B6]. Fi-

linearly from 1/3 withp increasing in both models. The ad_nally, lattice nodes that are taken as rigid objects in this

mission of finite shear modulus is weak. Also plotted in Fi mhoic:eclj, :c#rl]d br:?ict)r?”rﬁa“vjitlllcsuydbren n:lofrelfcé kljjylcsvn&dermg
12 b, c are the results for the central-force lattice of Sectio €Ir deformability, this € demonstrated below.
4.2, the perforated plate model introduced below, and tﬂe4

Cox model discussed in Section 5. Square lattice of Bernoulli-Euler beams

Following the same procedure as in Section 4.2, we now
4.3 From stubby beams to a perforated plate model analyze a micropolar model of a square lattice network, Fig.

As the volume fractiorp rises beyond 50%, the beam’s as13; the triangular case was treated[87]. Thus, assuming
pect ratiow/s increases so high that one can no longer mod8grnoulli-Euler beams, we find an analogous version of Eqg.
the connections between the lattice nodes as beams. Thué-8

basic question arises: can any simple explicit model be de- 4

rived for this low porosity range? One avenue is offered by a Cijkm= E ni(b)nf(b)(n](wng))R(b)jL n}b)nﬁ,?)NR(b))

perforated plate model. In the limit @— 1, we have a plate b=1

with a regular distribution of triangular-shaped pores, Fig. 4
12a. This is a so-calleddilute limit of a locally isotropic Djj= E ni<b>nj(b>s<b> (4.28)
material with holegin either periodic or disordered arrange- b=1
ments. Following [34,35, the respective formulas are where
= (b) A(b) (b)| (b) (b)) (b)
(g® 1~ «1=p) vel= v —a(v® = vo)(1-p). R“’):Es(ﬁ; R® :1i—<b>)l_s ’ :Esui>
(4.27) (4.29)

The co_efficientsa=4.2019 anw0=0.2312 have been COM-When all the beams are identical, this leads to

puted in the above references, and, in fact, analogous coeffi- _

cients are also available there for plates with other than tri- C111:=Cs0,=R  Cy2;=Cy10.=R D1;=D,,=S

angular holegsquares, pentagons)..lt is noteworthy that: (4.30)

1) both formulas are uncoupled from one another; with all the other components of the stiffness tensors being

2) (4.27), models the low porosity rangéhigh p-valueg Z€ro- Clearly, this beam lattice results in a special case of an
much better than the beam lattice model; summarizingfthotropic continuum.

E®" is modeled by an upper envelope of all the curves in
Fig. 12, ie, curves 3 and 5.

3) (4.27), depends on the Poisson’s ratigd® of the S
plate material; the latter can be specified only in the :l [
Timoshenko beam model.

One more question remains in connection with Fig. 12: :l I:

What happens in the range of theralues which are too high

for a beam lattice model to hold and too low for the dilute :| I:

model to be truly dilute? Or, can anything be done to smooth AT

out the transition between the two curves 3 and p atound
0.8? One could try here a usual device of micromechanics: Fig. 13 A square beam lattice
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In the foregoing derivation, lattice nodes were taken aghere
rigid objects. As WozniaK30] showed, this model may be ) ,
generalized to a situation of deformable nodes, in which cau%e‘I)irjr =a'" ArjAry  Auj(r,r')=u;(r")—u;(r)
we have
4

CijkaE
b=1

4 Ari=r{—r;. (4.34)

APn® S PnROb)
b, =1

Similar to the case of anti-plane elasticity/,’/ is the spring
constant of a half-length of a given interaction. However,
assuming the structures | and Il to be made of two types of
springs, respectively, we simply have two kinds of spring
constantsz' anda!". s'=2I is the lattice spacing of struc-
4 (B ()b ture 1, whiles" =s'v3 is that of structure II.
_bgl nin (4.31) A following question arises now: What continuum model
should be set up to approximate this discrete system? Fol-
where lowing [42], three types of continuum models will now be
d formulated: local, non-local, and strain-gradient.

I=vayvan

+n§b)n}b)n(kb)n$)ﬁ(b>}

Eiy  roEw

V(u)E m  Eam

R(bbﬂ: .
a) Local continuum model

Proceeding as in Section 2.3 under conditions of uniform

24 (D) (b) ©) 2E()|(b) strain, and postulating the equivalence of strain energy in a
= = (4.32) i = i
(s®)3y3 S0y3 unit cell of volumeV=2v3l due to all the spring constants
Recently, an extension of such micropolar models— 2 F(r,r ) Au(r,r)

needed for wave propagation and vibration phenomena—has

been carried out through the introduction of internal vari- 1

ables_[38,3S§. Such models, in contradistinction to the more  _ _2 q).r_r’Au‘(r (AU (r,r) (4.35)

classical homogenization methods, do more correctly ac- 2770

count for the internal microstructure. For more recent work . ) _

on models of lattice structures, sg)], and for mathemati- [© €qual the strain energy of an effective continuum

cal aspects of their homogenization congdii]. 1

Econtinuujmzzj Eij Cljkmskmdv (4.36)
4.5 Non-local and gradient elasticity
on a lattice with central interactions we determine an effective, local-type stiffness tensor
Let us now focus our attention on a lattice made of two
central force structures witlstructure |(a regular triangular  Cijkm=Clikm* Cijkm (4.37)

network with short range interactionandstructure Il (three
regular triangular networks with long-range interactjons
These structures are superposed in a way shown in Fig. 14 so

where

that a typical node communicates with its six nearest neigh-ClL, . =—a' >, nl®n/®ni®p!®)

jkm \/§ b5 3 i j k m
bors via structure |, and with its six second neighbors via “
structure Il. Generalizing the development of Section 2.3, the
central-force interaction in the spring connecting the nades cl :Ea” S Ol b)llb)1 () (4.38)
andr’ is related to the displacementér) andu(r’) of these km= T gy Tk Tm '
nodes by

, o ’ Then!® andn!'® are given by Eq(2.20. The above ten-
Fi(r,r’)=®5 Au(r,r’) (4.33) sors are of the forni2.25), so that

Fig. 14 Two structures, | and I,

IR X 4 Tuo st
KRR
WV “gis -{A:WAVAVA 5 Note that Fhe structure Il consists

IRASEIRIRARA *2" g separate sets of nodes, and
AVA { \/ I substrcture that all these nodes coincide with
AVAV& &VAVA‘?A ' o Dttt the nodes of structure 1.
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3 3 2E'A
M=p'=—0d' N'=p'=—a" 4.39) Cl (rr")= n!®)p! )R )1 (0)
M 43 M 43 ( ) I]k|( ) V3s b:;,2,3 i j koM
b) Non-local continuum model | .. 2E'A'S b)1(b) -1 (b) -1 (b) -1 (b) -1 (b)
A non-local model should result in stresses at a point depecf'nuk'”m(r’r )= Vi 0123, AL ERL LR L,
dent upon the deformation within the range of interactions (4.46)

associated with the point. As a result, the more inhomo
neous is the strain field, the closer is the non-local model

grasping the actual strain state of the lattice. First, we di
tribute the values of tenso;;,,, and Cij, at pointr uni-

formly over the regions of interactions of structures | and
(Fig. 14, and form a new tensdC;j,(r,r') such that

eTth completely analogous formulas holding fﬁg‘}k,(r,r’)

gpd Ci']-',dmn(r,r’). Further considerations of these models,

especially in connection with the setup of boundary value
roblems, the modeling of surface energy accounting for the
eterogeneity of material properties in the boundary layer of

the microstructure, and the determination of the internal

Cijkm(r.r')= ijkm(r,r’)Jr Ciljlkm(r'r,) force_s are given iri_j43]. The subject o_f higher order gradient
theories has received a lot of attention over the last decade,
Clmh'(r,r") eg, [44].
Clim(r.1")= =0

cll R () 4.6 Plate-bending response
""’“A+ (4.40) We can apply the same approach as that outlined so far for
the in-plane problems, to the determination of effective
Here A'=m(s)?, A'==(s")2 are the areas, while plate-bending response of a periodic beam network. We
h'(r,r') andh''(r,r') are the characteristic functions of thesketch the basic ideas in terms of a triangular lattice, within

Clim(r.r')=

regions of interactions in the neighborhoodrof the assumptions of a Kirchhofthin) plate model. To this
' _ ' end, we must consider out-of-plane deformations of a trian-
¢) Strain-gradient continuum model gular geometry lattice, Fig. 15. The kinematics is, therefore,

A strain-gradient model is similar to the non-local model iglescribed by three functions—one out-of-plane displacement

that it resolves the local inhomogeneity of deformatioand two rotationgwith respect to the; andx, axes

within the range of interactions associated with a continuum

point. One begins here with a series expansion of the relative!X)  ¢1(X) = ¢2(X) (4.47)

displacement field involving two terms—linear andvhich coincide with the actual displacemefnt and rota-

guadratic—that is tions (¢1,¢5) at the lattice vertices. Within each triangular

pore these functions may be assumed to be linear. It follows

Auj(r,r)=gf;(r{ =1+ 3 (r{ =r)(rg=ry)  (441) then that the strain and curvature fields are related to

u, ¢1, ¢2 by

Ki=@1k  Y=Uktee . (4.48)

where

e =Ui (N Yik=8(i,jw) (4.42)

are gradients of the first and second orders, respectively, of
the displacement field.

In view of Eq. (4.43, the elastic energy of the structure
(4.37 is now expressed as

1
ef(re—r+ E'yirkm(r{(_rk)(rr,n_rm)

1 ,
E= 52 (I)Irjr
rr’

+[8jrm(rr,n_rm)+ %'ermn(rr,n_rm)(rr,]_rm)] . (4.43)

Noting the continuum form of energy

1
E continuuni=5 fv(sij Cijiew T YikCijkimnYimn)dV  (4.44)

one can identify
Cijii (1,1")=Cijp (1,1 )+ Cily (1,1") p®) M
Cijkimn(1r') = Cliimn(1,1) + Cllgma(r.r") (4.45)

Fig. 15 A perspective view of a triangular geometry lattice, show-
where ing the relevant internal loads in a beam cross section



Appl Mech Rev vol 55, no 1, January 2002

Ostoja-Starzewski: Lattice models in micromechanics 51

With reference to Fig. 15, the mechanic@dorce- and Strongé45] derived a micropolar model with the energy
displacement and moment-rotatjoresponse laws of eachof unit cell in the form(4.7). In particular, the non-zero

beam are given as members of stiffness

tensojm andD;; were found as

M®) =) (b [0 = g (b)) (b)(b) sv3 [[s)\?
Cur= szzzzm w +3
., 12ECN®) }
P ):TY (4.49) sV3 [ s\?
C1122:C2211:m 1- w
where AP’ =t w is a cross-sectional area of the bedff) :
=t3w/12 is a centroidal moment of inertia of the cross- sv3 [ [s)\?
sectlonal area of the beam with respect to an axis normal toC1212= Ca121= AWE 3|5 t1

the plane of the lattices®® =21 s the full length of each )
beam. The mechanical quantities are as follo®) is a _ _sv3 S
torsional stiffness of the bear&® is Young's modulus of ~ C1221 sz‘ﬁ_l_
the beamM ® is an in-plane twisting moment in the beam;
M® is an out-of-plane bending moment in the be&? is

a shear force in the bear® is a beam shear deformation;
and «® is a beam’s curvature.

The strain energy of the unit cell is

12v3

= D =
11 22 E

S 4.56
W (4.56)
whereE=E®). Clearly, this beam lattice results in an isotro-
pic continuum, and we not@ecall Appendix againthat its
effective Poisson’s ratio is about unity.

We refer the reader tp46] for continuum-type fracture
analyses of porous materials with hexagonal as well as
square and triangular microgeometries.

V \% off—
U continuun™ 2 KIJCIJlek|+ 2 7|A|] Yi (4.50)

which is consistent with the Hooke’s law
My =Cijkiki Pe=Au - (4.51)

Herem,, is the tensor of moment-stresspg,is the vector of
shear tractions.

Proceeding in a fashion analogous to the in-plane prob:1 Structural topology and rigidity percolation

5 RIGIDITY OF NETWORKS

lems, WozniaI{SO] found

Clia= En

6

N (n{PIn(P's) 4 (P o)

When considering a central forcer trusg system, a ques-
tion of fundamental importance is whether such a structure is
a sufficiently constrained system or not. In other words, is it
an intrinsically rigid body? This is the subject matter of a
field calledstructural topology In the following, we provide

Aﬁ_ff: 2 ni(b)nj(b)R(b) (4.52) its basic concepts. Any central force network is a set of ver-
b=1 tices bars, or edges, and nodésctionless pivot$, or verti-
where ces. We immediately have an edge Bgaind a vertex set,
so that the network is represented by a gr&iV,E). An
edge is an unordered pair of two vertices. Structural rigidity
can be based on statics or on kinematics, and, as we shall see
below they are in a certain sense equivalent.
(E(Ibr)\ihEe C;‘;e \(,)vfeaﬂtr:?ngular lattice made of identical beam S The statical approach involves, in the first place, the con-
' ' cept of an equilibrium load. A system of forces assigned to
Cijki = 8ij oA+ 6k 6, Y + 6y 62 Ajj=6;;B (4.54) the nodes of a network is said to be equilibrium load
if and only if (iff) the sum of the assigned vectors is the zero
vector, and the total moment of those vectors about any one
point is zero. A network resolves an equilibrium laédhere
is an assignment of tensions and compressions to all the bars
2C _ 2El . 24EI of E, such that the sum at each node is equal and opposite to
S=— S=— R=gx. (4.55) its assigned load. A structure is said to be statically riffid
sv3 sv3 sv3 resolves all equilibrium loads.
Same type of derivation may be conducted for a lattice of The kinematical approach involves the concept of an in-
rectangular geometry. finitesimal motion, which is an assignment of velocities to all
) ] the nodes ofV, such that the difference of velocities as-
4.7 Honeycomb lattice of Timoshenko beams signed to the ends of any bar is perpendicular to the bar
Recent years have seen a growing activity in mechanicsitfelf. This means that the motion does not result in any
foams and porous media. Here, a generic model is providextension or compression of the bar. Every connected plane
by a honeycomb lattice of beams. By analyzing the rhombustructure has at least three degrees of freedw transla-
shaped cell of Fig. &with hexagons of side length Wang tions and one rotationand this is called aigid motion A

() (b)) (b) (b)) (b)
so-C  zw Bl pp 1E
S S 301502

(4.53)

in which

A=Q=¥S-S) Y=3S+39 B=3R
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structure is said to bmfinitesimally rigid iffall its infinitesi- tive medium theories and spring network computations. The

mal motions are rigid motions. These statical and kinematitter of these will be demonstrated later on the example of
cal pictures are connected by a theorem due to Crapo @éhaunay networks.

Whiteley[47]: A structure is statically rigidff it is infinitesi- Finally, it is important to keep in mind that the rigidity

mally rigid. ; : o )
Astructure is said to bsostatic iffit is minimally rigid, Percelation typically occurs above the connectivity percola
tion, ie, p,>p.. For examplep, for a triangular network

that is, when it is infinitesimally rigid. But, the removal of

. I ! .~ _equals 1/3.
any bar introduces some infinitesimal motion. Clearly, in ah
isostatic structure all the bars are necessary to maintain S . . )
overall rigidity. In statics, this is called a statically determig1"3 R'Q'd'ty 9f a graph of Poisson Img field geometry
nate structure, as opposed to the indeterminate ones whidl¢ Poisson line fiel53] forms a classical model of a cel-
have more than a minimally sufficient number of bars for tHellose fiber network encountered in papéd]. We now
global rigidity. It is a well known result that, in 2D, a deterJdentify the line segmenttbetween any two consecutive in-

minate structure ofv| nodes has edges numbering tersectionsto be edges oE, and pivots to be vertices of.
Let us recall that the triple-fiber intersections occur with
|E[=2|V|-3 (5-1) probability zero for isotropic and anisotropic distributions of

where| | denotes the number of elements in a given set. A§es angles. Thus, we typically have vertices of connectivity
an example, let us consider an incomplete triangular lattiée!® Va- ) ) _ )
shown in Fig. 16. While it satisfies E¢5.1), it is not at all Now, with reference to Fig. 1 which shows a typical
clear whether it is isostatic. realization of the Poisson line field, we see that there are two

This example shows thdE|=2|V|—3 is only a neces- YPeS of edges: those i.n dirgct cor.1tact.with the square shaped
sary, but not a sufficient condition for rigidity. The latter isvindow, and those entirely in the interior. Clearly, the square
provided by this theorerfeg,[48,49): A planar graph struc- window is needed to p_rev_ent th(_ase boundary layer bo_nds
ture is isostatic if and only if it has|®|—3 bars, and for from dangling, and this immediately renders the entire
everym, 2<ms=|V|, no subset ofn nodes has more than
2m—3 bars connecting it. This, effectively, allows one to
check whether the edges of the graph are not distribut'?
spatially in a uniform manner. If they are crowded locally
than the odds are that the structure is not isostatic.

The isostatic concept so far discussed falls in the categc
of generic rigidity, where only the topological information or
a graph’s connectivity comes into picture. However, one m:
also deal with the unexpected infinitesimal motions whe
say, two edges incident onto the same vertex lie on a straif
line. When dealing with very large systems—as encounter
in condensed matter physics—we need to ask the questi
What critical fraction,p,, of edges of needs to be kept so
as to render the structure isostatic? We note that we wot
have|E’| = p,|E| new edges of thus modified, or depleted® ()
set|E’|. It follows immediately fromE’|=2|V|—3 that we

densed matter and biophysics,[88—-52. As shown in these
references, the actual critical point occurs at a little differei
value than 2/3; theoretical methods involved include effe:

Fig. 17 Samples of) a planar Poisson line field arig) a finite
fiber field generated frontb.4) with a;=1 and all othem;’s equal
zero. Test windows of size X L are considerect) Deformation of

a network of(b), with 195 fibers at a preference in tRe-direction

at =2 with originally straight fibers, with fiber bending present,
subjected to axial straig;;=1%. d) The same network, with fiber
bending almost absent, subjected to axial stegii=1%. All dis-
placements inc) and d) are magnified by a factor 8 for clarity.
Figured) shows large, mechanism-type motions of the network in-
Fig. 16 A triangular lattice with 71 edges and 37 vertices; it isluding those of some fibers which spring outside the original do-
generically rigid. main of the network.
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network a mechanism. However, one may argue that ttee latter case, conditio(s.1) is replaced by an even more
boundary layer of dangling bonds is very thin relative to thefingent one as more constraints are needed when dealing
whole field, and ask the question concerning the isostatth the additional degrees of freeddmd].

condition for the grapl&(V,E) representing the interior net-
work of edges not directly in contact with the square windo S )
boundary; these are shown in bold in Fig.alHere we \g'sl Loss of r|g|d|ty-|n a fiber-beam network . .
observe that, while th&/, vertices occur in the interior of Besides the foregoing structural topology considerations,
this graph, its boundary involveg, and V5 vertices. Now, there is another fact which casts doubt on any fiber network
since there are two vertices to every edge, we can calculf@del in which fiber segments are joined by pivots. Namely,
the total number of edges in the bold drawn grap(V/,E) any two cellulosic fibers have a finite contact area of hydro-

according to gen bonding[55], which would be sheared by hinge-type
connections. While it is very difficult to assess experimen-
|E|=|V?3|+ V3| + 2|V, (5.2) tally to what extent this region is deformable, our model will

treat it as somewhat deformable in the sense that bonds are
Evidently, sincev=V,UV3UV,, the total number of all rigid, but have no dimension, and fiber segments are treated

the vertices is as extensible beams from node to node of the gapW,E)
[56]. This modeling of mechanics of fiber networks is similar
[V]=[Va| +[V3] +]V4] (5-3) to that ofi) cement-coated wood strands composfiteg, ii)

. . L highl ialg58], ,60.
so that|E|<2|V|— 3. The system is not isostatic, it is under; 'ghly porous material58], andiil) battery systemks9,6d

constrained(ie, a mechanisi Given this observation, the !Sr:egzneral, it is based on the following assumptions and
Poisson line field of axial force fiber segmefiise so-called |

Cox model[54]) is not a valid model of paper or any otherl) Generate a system of finite-length straight fibers such as
solid material for that matter. The fact that the Cox model shown in Fig. 1B according to specific geometric char-
does give finite values for elastic moduli including the shear acteristics: distribution of fiber lengths and widths, distri-
modulus, is easily explained by the presence of fully bution of angular orientations of fiber chords, etc. The
stretched fibers spanning the entire test window. The situa- fibers are laid in three dimensions on top of one another
tion is analogous to a graph of a square lattice topology, with a possible non-zero out-of-plane angle according to
which, even though it is an obvious mechanism, will give a Fourier series-type probability density function

finite axial moduli in two directions if fully stretched and 1
subjected to kinematic boundary conditions. P(6)=—(1+a, COs H+a, cos H+...
In real networks, fibers have finite length, so their ends
are loose. When fiber ends are removed to eliminate their +a,cosho+..) O0<b=m (5.4)

obvious mechanism motions, the number of vertices in sets @ is the angle a fiber makes with respect to tkexis, and

V, andV; increases. Consequently, E§.1) is even further it must be between zero and

from being satisfied. In order to deal with finite fiber effects) Fibers are homogeneous, but each fiber may have differ-

Cox and others modified the basic model by a so-called ent dimensions and mechanical properties, all sampled

shear-lag theory. However, the latter assumes single fiberfrom any prescribed statistical distribution.

segments to carry axial and shear forces only, whHede 3) Each fiber is a series of linear elastic 3D extensible Ti-

Section §, is not a valid model of a solid element: fiber moshenko beam elements. Each of these is described by a

bending should also be included. stiffness matrix written here in an abbreviated form set up
Paper exhibits finite stiffnesses in 2D as well as in 3D. In in a corotational coordinate syste®l]

EA ]
— 0 0 0 0 0
- F - AL
GJ
T 0o = 0 0 0 0 A by
M2 I 035
i = y (5.5)
M2 0 0 4a(l?+3g) 0 2a(12—6g) 0 62 :
Mg 0 o 0 b(12+3h) 0 2b(12— 6h) 0§
LMzl | 0 o 2a0%2-6h) 0 4a(1%+3g) 0 L 0 ]
L 0 O 0 2(12—6h) 0 4a(12+3g) |
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where aspect is impossible to investigate with models based on
y El, El, El, central-force potentials for single fiber segmef@dl].
9=125, h=12-1 a= [(129+12) b= (12h+12)" Our model, thus, fills the gap pointed out[®5] consist-
(5.6) ing of a need to set up finite element models of 3D dis-

HereF andT are the axial force and the twisting moment, ©rdered fiber networks, yet avoids their simplistic map-
; a pga nb b ; ping into electrical resistor networks of the same
while My, M7, My, andMy, are the bending moments

around they andz axes at thea andb ends, respectively. torE)oIogy. K of fiber-b h ith I
Also, AL, Ag, 03, 5. 93, and 6‘2’ denote axial elon- 4) The network of fiber-beams, together with a two-scale

geometric disorder, offers a possible explanation of the
special orthotropy of paper in which the shear modulus is
effectively invariant with respect to rotatiof66].

gation, angle of twist, and four angles of rotation. Finally,

l, A, J, 1, andl, are, respectively, the length, cross-

sectional area, cross-sectional polar moment of inertia,
and the moments of inertia with respect to thendy

axes.E andG are the Young’s modulus and shear modué SPRING NETWORK MODELS:

lus of a fiber
4) All the intersection points are identified so as to set up%ISORDERED TOPOLOGIES
connectivity matrix. 6.1 Load transfer mechanisms in heterogeneous media

5 Equ'"bryf is found under kinematic boundary Cond'The spring network models are most natural when applied to
IONS U; = €;X; - systems that have the same topology as the underlying lat-

6) All six effective, in-plane stiffness coefficients are deterﬁce. One instinctive example has been discussed in Section

mined from the postulate of _equivalenf:e_ of s_train ENeTWs: a cellulose fiber network. Another one is offered by a

stored in a square-shaped wmgiow of finite th|ckpess W'HTanular medium. Here, the principal method of computa-

the strain energy of an equivalent, hypothetical CORy,na1 mechanics analyses, dating back@a, is called the

tinuum. discrete elementDE) model

The undeformed network, shown in Fig. i its top Let us here employ a graph representation of the planar
view, has the following parameters: window sizex4 granular medium: a grap&(V,E), whereby vertices of the

% 0.1 mma, =1, and other coefficients in E¢5.4) are zero; SetV signify grain centers and edges of the Betepresent

fiber length: 2 mm; fiber width : 0.04 mm; fiber height: 0.01%he existing grain-grain interactions, Fig. (a8 We fix an

mm. As a result of a Boolean process of fiber placentegt '-¢ polar coordinate system at a grain’s center. There are

[62]), we obtain: 195 fibers with an average of 4.8 bonds pégVveral types of the DE model that one may consider.

fiber, the whole system having 859 nodes with six degrees‘ofcentral interactions: the total energy is a sum total of cen-

freedom per node. tral interactions of all the edges
A state of deformation corresponding to axial strajg ~ U=Uc"" (6.1)

=8% is shown in Fig. 1@. The analyzed strain is actually and this model is a generalization of the basic model of

1%, and displacements are magnified for clarity. CompareSection 2.3. , _ _ .

this deformed network to that in Fig. d7which shows the ° Qentral and angular interactions: the total energy is modi-

same network of fibers subjected to the same strain but wittied ©

the ratio of fiber flexural stiffness to fiber axial stiffness re- U=U"akyanouiar (6.2)

duced by a factor of 10*. Note the following: and, this model is a generalization of what we saw in Sec-

1) The sharp kinks we see in both figures are only the arti-tion 2.4. Continuum mechanics tells us thaf, equals
fact of simple computer graphics—the micromechanical dr ~*ué/d6+u,/r. This shows that the angular changes
model assumes fibers deform into differentiable curves.A¢/¢ between two adjacent edg&s-V, and V-V in
Magnification creates the appearance of large displaceFig. 18 correspond tér ~*u6/36 in ther-6 polar coordi-
ments. Actually, an infinitesimal displacement assumptionnate system fixed at a grain's center. This term does not
is used in the computational mechanics program. show up in two other expressions fef, and e;,. How-

2) The kinks are far more pronounced when fibers have loweVver, u,/r is due to a radial displacement, and A¢/¢
flexural stiffness. Portions of the network where con- does not exactly equady,, which leads us to call it a
nected fibers do not form triangular pores can generateff-type strain. We adopt the so-called Kirkwood model to
significant forces in response to deformation when fibersaccount forA¢/¢ in addition to the normal grain-grain
have high flexural stiffness, but they cannot do so wheninteractions. Thus, we introduce angular springs of con-
fibers rely almost entirely on axial stiffness. These por- Stantk?® acting between the edga-V, andV;-V; inci-
tions of the network are not stable in the sense of loss ofdent onto the nod¥',;, Fig. 18; the edges remain straight

generic rigidity discussed earlier. throughout deformation. . .
3) We do not study this rigid-floppy transition by turning, in® Central, shear and bending interactions: the total energy is
anad hocfashion, all the connections into pivots. Rather, U=UCe"aly ysheary. (jmoment (6.3)

with the model taking into account all the displacements and, this model is a generalization of what we saw in Sec-
and rotations of nodes, we can study it as a continuoudions 4.1 and 4.2, depending on the type of beam chosen.
function of fiber slenderness; see a|68]. Note that this  This is a typical DE model, which, of course, may be
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termed a locally inhomogeneous micropolar continuum, Table 1.
with inhomogeneity varying on the scale of grains; Segsempiy of grains

. graph index number of elements
Section 6.2 below. :
. . . rain vertex v \
« Central, shear, bending, and angular interactions: the totgdntacting point edge e E
energy is void (in 2D) |00p | L
One may argue that the three-point interaction should be
introduced in the DE models so as to better represent the Table 2.
micromechanics, and to make, in accordance with Fig: number of
18c, the strain quantity notation elements notation quantity
U=centraly yshear, ymomenty | jangular (6.4) body force BY [V u? grain displacement
energy stored in a single Voronoi cell equal to Eg.4).  body couple N° VI we grain rotation
H th ist ful DE del hich Cﬁntact force Fe |E| Aue relative displacement
owever, there exist successfu models which accounbniact couple  me IE| Awe  relative rotation

for normal and shear forces on[$8,69; this neglect of
the contact moment is justified by the fact that only small
numerical errors are thus caused in problems of interest in
granular materials. In the case of a regular, triangular arrg
of disks, this model is equivalent to a classical Born mod E
of crystal lattices which is known to lack the rotationa(fa1
invariance[70].

d its graph model. Besides the vertex and edge sets intro-
ced earlier, we also have a loop ket

With this geometric reference, we can set up an assign-
ment of mechanical quantities—forces on the left and corre-
sponding kinematic measures on the right—in Table 2.

6.2 Graph models of heterogeneous media The connectivity of the graph is described by the inci-
Let us pursue the planar graph representation of granutience matrixD"e. Let us write down a total of [3/| scalar
media in some more detail, Satak&l,72. First, we list in equilibrium equations, each one with respect to a typical
Table 1 a correspondence between a system of rotund gragnsin of radiusr” and volumeV”

V2
Vl
(b) v,
V2
v, ‘
V3

)

Fig. 18 a) Acluster of five grains showing the lines of interactiobsa discrete element model showing the normal force, the shear force,
and the moment exerted by grains 2 and 3 each onto the grainalmost general model showing the same grain-grain interactions as
before but augmented by an internal, angular spring conktamindd) a simplified model adopted in this paper, showing only norrk&) (

and angular k?) effects.
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Fe

BV} stitutional disorder andtopological disorder. The first of
=0
Me

N (6.5) these connotes a variability in properties per vertex
node, while the second consists in a departure from the pe-
where riodic topology and is therefore called@pological disorder
Dve 0 There is also a third case, of much more interest in solid state
FDEe D (6.6) physics:geometric disorderwhich involves_the variability in
the geometry of a network’s structure—like uneven lengths
Heren® is the unit vector of edge in the nonoriented graph. of various bonds—but preserving a topological periodic
The operatof6.6) also plays a key role in the kinematics ofstructure[73]. The topological disorder is typically caused
all the edges by an incompatibility of crystal-like domains in a granular
INT: material. The material may consist of equisized disks, which
AWE (6.7) are organized into regular, periodic arrays, but the fact that
they happen to be differently oriented in space causes an
where irregular structure and network of domain boundaries.
DE  _pex rVDT As observed earlier in connection with the DE model, the

oA %]

'Dve:|:

uV
WV

ev

Dev— (6.8) topological disorder leads to a locally inhomogeneous polar,
O DEV '

or micropolar, continuuntdepending on the type of vertex-
The kinematics is subject to|B| compatibility constraints VErtex interactionswith inhomogeneity varying on the scale
written for all the loops, where we make a reference & 9rains. Such a continuum model contains a lot of infor-
Satake’s work. mation, but, in the first place, one wants to establish the
The above should be augmented bjERB constitutive €ffective in the macroscopic sense,.modoﬁ“ of the mate-
equations connecting the contact fore& and contact mo- 'al. For a non-polar(classical continuum, these are ob-
ment M® with the relative displacemensu® and relative tained frgm theperiodic boundary conditionen anL XL
rotation Aw?. Given 3 global equilibrium conditions, we SauareB in 2D
have a total of

3(|V|—1+|E|+|L|) =6|E| (6.9)
equations. Taking note of the Euler relatipvi| —|E|+|L| Vxe dB. (6.11)
=1, we see that this budget of equations agrees with the total
of 6|E| unknowns-that isF, M¢, Au® andAw"-defined on Here'g;; is the macroscopic strain, is the traction on the
edges of seE. boundarysB of B, andL=Le,, with g being a unit base
Finally, we note a formal analogy ¢6.5) and(6.7) to the vector. The periodicity means that the network topology is
equilibrium and strain-displacement equations of Cossefgbdified so as to repeat itself with some periodiditjn x;
continua and x, directions, whereby. is usually taken much larger
y u than the typical vertex-vertex spaciggr edge length
K}=Grad[w . (6.10) Let us now consider a disordered, planar, granular me-
dium, whose microstructural connectivity is modeled by a
A similarity of compatibility relations for the graph and theppisson-Delaunay planar tessellation graph; it is generated
continuum descriptions has also been shown by Satake. from a realization of the Poisson point field Rf, eg,[58].
Now, the periodic condition$6.11) require that a periodic
6.3 Periodic graphs with topological disorder network be set up, and this, in turn requires a periodic Pois-

Randomness may be introduced into periodic networks $®n point field on thé X L square; topologically, this square

various ways. Figure 19 displays two basic possibilites- IS a torus.
A typical realization Bw) of a periodic Poisson-Delaunay

network, numbering 200 vertices, is shown in Fig. 20. A set
(b) of all such realization$B(w); w e 1}, where() is a sample
LODOLOHEEO000E space, forms a random mediu a singlew indicates one
AVAVAVAY o FAVAVAVAVAY . 7AYAVAY, realization of the Poisson point field and a chosen assign-
ment of spring constants. In actual simulations, only a
minute subset of the entire sample space can be investigated,
but by the standard Monte Carlo and ergodicity arguments,
this subset is representative of the whole system. Thus, al-
ready the response of a single network much larger than the
grain size is sufficient to gain a good estimate (qifff
(ECF}%). The ensemble average of this tensor is isotropic for
a microstructure of space-homogeneous and isotropic statis-
Fig. 19 Substitutionad) versus topological disordds of a hard- tics, but even one realization of the network should be close
core Delaunay network to isotropic.

Ui(x+L)=ui(X)+eijX t(x)=—t(x+L)

o b_
Dlvﬂ m—O

+

Vs VAVAY s FAVAVAVAVAVAY o FAVAVA
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The procedure to calculate the effective moduind uis In these equations, we introduce a rule of writing the 2D
as follows: a given Bw) realization of the Delaunay net-moduli without any subscripts, so thBtand v stand for the
work, is subjected, separately, to two tests: a biaxial exte®D (or planar) Young’s moduluand2D Poisson’s ratid 16];
sion €;,=€,, and a shear deformatioa;;= —€,,. Actual some authorg31] use the term area moduli. Now, in analogy
equilibrium state is found using a conjugate gradient methad. (A.2) above, we introduce the 2@ and x moduli by
Next, by equating, in each test, the network’s energy to thatiting
of a 2D linear elastic equivalent continuum of aiéa L?

vV 1
UZE K8ii8jj+2/.L 58“8”

Uij:)\ekkéij-i-Z,usij (A5)
(6.12)

&5 — | .
and find the relations

the bulk and shear moduli, respectively, can be calculated
directly. Repeating this process in a Monte Carlo sense for ag— © = _
number of realizationéso as to remove the fluctuationshe A+2u AN+2up
network’s effective bulk and shear moduli are estimated.

In general, effective bulk and shear moduli display con- Just like in the 3D elasticity, from three tests—uniaxial
vex dependence on volume fraction that is characteristic §f€ss. hydrostatic stress, and simple shearing stress—one
effective responses of many composite materials[#%f). can work out basic inequalities that hold between these pla-
Additionally, we observe a softening of these moduli relativear moduli
to those corresponding to regular triangular networks-this is
caused by the topological disorder. More details on theseM t2#>0 A+up>0 u>0 (A7)
models, including a consideration of percolation in the case o
of very high contrast two-phase systems is givefi7is, 7. whereby we note that the plgnar shear modulus is given by

Extensive studies of granular materials employing kindl® same formula in 2D as in 3D. Ji obeys the third of
matic rather than periodic boundary conditions and truf§?€S€ inequalities, the first one is a consequence of the sec-
large particle numbers, up to 50,000, were carried out Wd and can be dropped. It is easy to see th_at, Poisson'’s ratio
Rothenburg and co-workers, s¢§&7—80. Their solution 9Iven by (A.6), assumes the valuel, and, since
method was based on the already mentioned quasi-static nuy,, w
merics of[67], with focus being, among others, on: homog- BN :Zm >0 (A.8)
enization and bounding via uniform strain or uniform stress
assumptions; circular versus elliptical particles; and statistiegncreases monotonically on any vectpparallel to thex

of geometrical quantities and contact displacements undis in the\, u-plane, tending towards 1 with 1 increasing
compressive and shearing loading. distance from Q. Thus we note that ranges from—1

through +1, in contradistinction tar3n, which is bounded
by —1 and 1/2. Now, an inspection @¢A.1), immediately

ANt N

(A.6)

APPENDIX: PLANAR CONTINUUM ELASTICITY

The constitutive relations of a linear elastic, isotropic 3D
continuum are

l 1+ V3D
£11= Eap [011— vap(02ot 039)]  &1=

012
(A1)

together with cyclic permutations-22— 3, or, equivalently,

E3D

O'ij:)\gDSkk(Sij‘Fz,ugDSij i,j,k:].,...,3. (AZ)

HereEsp, v3p, A3p and usp stand for the conventional 3D
Young’s modulus, Poisson’s ratio, and Laroenstants, all
the relations between these moduli being well known.

On the other hand, in 20or planar) elasticity, there is no
Xg direction and sceq;, £5,, €1, are the only strains and
011, O, 012 the only stresses. Thus, we have

[ SR (A3)
811:E 011~ VO3 812:?012 -

with cyclic permutation -2, or, equivalently,

/d

1+v
Sij:?

14
Oij ~ 7 Okkj

1+V |,J,k:l,...,2. A4)

Fig. 20 A periodic Poisson-Delaunay network with 200 vertices
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reveals that the planar shear modulus does not change, whilth
applying the concept of bulk modulus to relatigisl),, we

infer the planar bulk modulus, that is two-
mod

B E B E AQ
T2=y) M 201+ (A.9) 1
E

Two other very useful relations linking these two-
dimensional modulE, », k, and u can readily be inferred

Appl Mech Rev vol 55, no 1, January 2002

cyclic permutation 2. A comparison with Eq(A.3)

readily shows that the following relationships between the

dimensional (plane-stregs and the three-dimensional

uli hold
1 v v 1+v 1+v
_ L v o _1tve (A16)
Esp E 3D E Esp

The third of these relations is redundant, but the most impor-

4 1 1 K— M1 tant thing is that

E « nu K+ pu E
Upon substitution ofA.5) into the balance lawr;; ;=0, we E=Esp v=vsp s TR (A7)
find a planar Navier’'s equation for the displacementsee
also,[45,44) while the 2D bulk modulusc is

/’Lui,jj+Kuj,ji:O- (All) B E

K= 20=v) (A.18)

We now examine the relation of planar elasticity to two
well known special cases of 3D elasticity.
R

Note that Eqs(A.9)—(A.10) hold again.

elations of planar isotropic elasticity shown here may be

generalized to orthotropic and general anisotropic materials.

Plane strain

In that case, one requirag=0 in Egs.(A.1)—(A.2) along
with the independence of all the fields with respect toxhe

direction, so thatsz=e5,=e3,=0 and (1]

(2]
(3]

(4]

€11~ _E3D [(1- V302<711_ (vap— V302)0'22

1+ V3p

€10 012 (A 12)

Esp [5]

again with the cyclic permutation-%2. A comparison with

Eqg. (A.3) readily shows that the following relationships be-
tween the 2D and the 3D moduli hold L6l
[7]

(8]
K

1 _ 1+ V3D2 14 _ V3D+ V3D2

E Esp Esp

1+v 1+wgp
E  Egp

E
(A.13)

This is a mapping of two constants onto two constants, &
that only two relations of the above three are independeniy]
and it is easy to check that E¢A.13); is redundant. Of
particular interest is the relation between the plane strajiy
Poisson’s ratio and the 3D Poisson’s ratio

[13]
[14]

Clearly, the case of=+1 represents a planar incompress-
ible material corresponding to the 3D incompressible mate-
rial of vap=1/2. [15

V3p

V=
1_V3D

(A.14)

[16]
Plane stress [17]
In that case, one requires;s= 03;=03,=0 and the inde-
pendence of all the fields with respect to the direction, [1g]
which leads to
1+v [19]

811:E[0'11_ Vo] 812:?012 (A.15)
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