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This review presents the potential that lattice~or spring network! models hold for micromechan-
ics applications. The models have their origin in the atomistic representations of matter on one
hand, and in the truss-type systems in engineering on the other. The paper evolves by first
giving a rather detailed presentation of one-dimensional and planar lattice models for classical
continua. This is followed by a section on applications in mechanics of composites and key
computational aspects. We then return to planar lattice models made of beams, which are a
discrete counterpart of non-classical continua. The final two sections of the paper are devoted
to issues of connectivity and rigidity of networks, and lattices of disordered~rather than peri-
odic! topology. Spring network models offer an attractive alternative to finite element analyses
of planar systems ranging from metals, composites, ceramics and polymers to functionally
graded and granular materials, whereby a fiber network model of paper is treated in consider-
able detail. This review article contains 81 references.@DOI: 10.1115/1.1432990#
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INTRODUCTION

Lattice~or spring network! models are based, in principle, o
the atomic lattice models of materials. These models w
best when the material may naturally be represented b
system of discrete units interacting via springs, or, more g
erally, rheological elements. It is not surprising that spa
trusses and frameworks have been the primary material
tems thus modeled. In the case of granular media, the la
methods are called discrete element models. Spring netw
can also be used to model continuum systems by a la
much coarser than the true atomic one—the idea dates b
at least, to Hrennikoff@1#, if not to Maxwell @2# in a special
setting of optimal trusses. This coarse lattice idea obvi
the need to work with the enormously large number of
grees of freedom that would be required in a true lat
model, and allows a very modest number of nodes per si
heterogeneity~eg, inclusion in a composite, or grain in
polycrystal!. As a result, spring networks are a close relat
of the much more widespread finite element method.

In this paper, we focus on basic concepts and applicat
of spring networks, in particular, to anti-plane elasticity, p
nar classical elasticity, and planar micropolar elasticity. T
settings of such models are elaborated in some detail:
odic lattices and those with disordered topologies. We
indicate connections with other, related studies such as
neric rigidity in the field of structural topology. Additionally
an adaptation of lattice methods to modeling crack propa
tion are presented. This spring network models are s
ciently general to apply to systems ranging from met
composites, ceramics and polymers to functionally gra
Transmitted by Associate Editor RB Hetnarski
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and granular materials. The most extensive example treate
here is that of mechanics of paper from the standpoint of
disordered network of cellulose, beam-type fibers.

1 ONE-DIMENSIONAL LATTICES

1.1 Simple lattice and elastic string

Let us first consider a lattice-based derivation of a wave
equation for a one-dimensional~1D! chain of particles; see
also@3#. The particles~parametrized byi!, each of massmi ,
interact via nearest-neighbor springs, Fig. 1. For the potentia
and kinetic energies we find
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Fi~ui 112ui !5
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K~ui 112ui !
2

T5
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2 (
i

mu̇i
2 (1.1)

whereFi5K(ui 112ui) is the axial force ati, andK is the
spring constant betweeni and i 11. Using the Euler-
Lagrange equations for the LagrangianL5T2U, we arrive
at the dynamical equations

K~ui 1122ui1ui 21!5müi (1.2)

which describe a system of coupled oscillators. By taking a
Taylor expansion up to the second derivative for the dis
placementui 61[u(xi6s),

ui 61>uuxi
6u,xuxi

s1
1

2!
u,xxU

xi

s2 (1.3)
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we find from Eq.~1.2! an approximating continuum mechan
ics model,ie, a basic wave equation

EAu,xx5rAü (1.4)

where~A being the cross-sectional area of the rod!

E5
Ks

A
r5

m

As
. (1.5)

Of course, Eq.~1.4! can also be obtained from the Hami
ton’s principle for the LagrangianL expressed in terms of
continuum-like quantities, by first introducing Eq.~1.3! in
(1.1)1 with terms up to the first derivative,

U5
AE

2 E
0

d

~u,x!
2dx T5

Ar

2 E
0

d

~ u̇!2dx. (1.6)

1.2 Micropolar lattice and elastic beam

We now generalize the preceding lattice model to descr
transverse motions of a 1D chain of dumbbell particles~rigid
bars! pin-connected by central-force~axial! springs, Fig. 2.
We need to consider two degrees of freedom per particli:
total transverse displacementwi and rotationw i . The consti-
tutive laws for a single bay~betweeni and i 11! are

F̃ i5K'~wi 112wi2sw i 11! Mi52K& ~w i 112w i !.
(1.7)

Here F̃ i is shear force andMi is bending moment ati,
whereby the termw i 11s is subtracted in Eq. (1.7)1 to so as
to deal with shear only. For this 1D chain of particles, w
write down potential and kinetic energies

U5
1

2 (
i

K'@wi 112wi2sw i 11#21K& ~w i 112w i !
2

T5
1

2 (
i

mẇi
21Jẇ i

2. (1.8)

The first term in Eq. (1.8)1 accounts for shear deformations
while the second for bending.

Using the Euler-Lagrange equations for the Lagrang
L5T2U, we obtain a system of equations

K'@wi 1122wi1wi 212s~w i 112w i !#5mẅi

K& @w i 1122w i1w i 21#1K'@wi 112wi 212sw i #s5Jẅ i .
(1.9)

By introducing the Taylor expansions forwi and w i in Eq.
(1.9)1 with terms up to the second derivative, and taking t
limit s→0, we find

GA@w,x2w# ,x5rAẅ

EIw ,xx1GA@w,x2w#5rI ẅ (1.10)

where~A and I being the area and second moment of cro
section of the beam-like lattice!

Fig. 1 A 1D chain of particles of lattice spacings, connected by
axial springs~thin lines!
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Equations~1.10! are recognized as the equations of a Ti-
moshenko beam. Evidently, this is a 1D micropolar con-
tinuum with two degrees of freedom: displacementw and
rotationw.

As in Section 1.1, Eq.~1.10! could alternatively be ob-
tained by first introducing Taylor series with terms up to the
first derivative into Eq.~1.8! to first get

U5
1

2 E0

d

@GA~w,x!
21EI~w ,x!

2#dx

T5
1

2 E0

d

@Ar~ẇ!21Ir~ẇ !2#dx (1.12)

and then, by employing the Hamilton’s principle.
A question arises here: Can other, more complex~micro!

structures, especially those made of little beams connected
by rigid joints, of a general beam-like geometry-such as
shown in Fig. 3 be sufficiently well described by this beam
model? The general answer isno. ~see eg,@4#!. The basic
procedure, however, recommended by that author is basically
the same as that outlined here:
1! the equivalent micropolar beam model is set up from the

postulate of the same strain and kinetic energies stored in
the original lattice when both are deformed identically;

2! a typical repeating element is identified and the energies
for this element are expressed in terms of the nodal dis-
placements, joint rotations, as well as the geometric and
material properties of the individual members;

3! a passage to an effective continuum is carried out via a
Taylor expansion, whereby it turns out that higher-order
terms show up in the governing continuum equations, de-
pending on the actual microgeometry of the rods making
up the structure; see also@5#.

It is appropriate to note here that beam-like lattices can also
be analyzed by a cell transfer matrix approach—the eigen-
values of this matrix are the decay rates relevant in the Saint-
Venant’s principle for these discrete, rather than continuum,
systems@6#. The associated eigenvectors and principal vec-
tors lead to equivalent continuum-beam properties. We end
by noting that continuum approximations of plate-like struc-
tures were also investigated@7#. In that review, among the
problems needing new investigations was also listed the ef-
fect of microstructural material randomness.

Fig. 2 a! A 1D chain of dumbbell particles~vertical rigid bars! of
X-braced girder geometry, pin-connected by axial springs~thin
lines!; andb! the shear and curvature modes of a single bay
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Fig. 3 Planar lattices and their repeating elements~after Noor and Nemeth@4#!
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1.3 Axial-twisting coupling and dynamics of a helix

Suppose we have a wire rope helically wound along
x1-axis @8# ~Fig. 4!. We need then to consider a couplin
between the axial forceF and torqueM on one hand, and th
axial strain« and rotational strainb5RtS on the other, tha
is

F5C11«1C12b M5C21«1C22b. (1.13)

Here, from a requirement of a positive strain energy den
we obtain two conditions on four constitutive coefficientsCi j

C11.0 C22.0 C125C21 C11C222C12C21.0.
(1.14)

In the language of continuum mechanics, the wire rop
a 1D micropolar medium of anoncentrosymmetrictype. In
studies of 2D and 3D models of such continua these te
are also used:hemitropic, antisymmetric, or chiral composite
@9,10#. Interestingly, while the Timoshenko beam involved
shear force and a moment normal to the beam’s axis,
also mutually orthogonal, in the present model the a
force and moment are parallel to the main axis.

It is important to note that Eqs.~1.13! apply to other
physical systems than a wire rope, for example:i! a wood
fiber made of helically wound fibrils, andii ! a simple helix.
Indeed, description~1.13! holds, regardless of whether th
derivation of theCi j coefficients is made from the standpo

Fig. 4 A wire rope of constant helix angle
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of a theory of a bundle of wires or a continuum shell. Indeed
it was shown, in the context of structural mechanics@11#,
that either assumption would lead to a few percent differenc
~at most;11%! for any of these coefficients. It remains to be
seen, however, what those differences would be for a sh
made of a large number of thin cellulose fibrils winding
along the axis of a cellulose fiber rather than a few thic
wires such as shown in Fig. 4.

The constitutive equations~1.13! in combination with the
balance equations led Samraset al @12# to derive a system of
two coupled wave equations governing the axial-twisting re
sponse of a fiber

C11u,xx1C12w ,xx5rü C21u,xx1C22w ,xx5Jẅ (1.15)

wherer is the mass density andJ is the mass polar moment
of inertia. These authors considered a monochromatic wa
propagation along the fiber

u~x,t !5U exp@ ik~x2ct!# w~x,t !5F exp@ ik~x2ct!#
(1.16)

and arrived at a dispersion relation resulting in two wav
speeds

c1,25
2~C11C222C12C21!

~C11J1C22r!6@~C11J2C22r!214rJC12C21#
1/2.

(1.17)

It followed, by inspection, thatc1,c2 , and, in fact, there
may be an order of magnitude difference between both wa
speeds. In view of Eq.~1.16!, axial vibrations of the fiber are
described by two types of waves—slow and fast—each
which consists of forward and backward going pulses
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u~x,t !5U1eik~x2c1t !1U2eik~x1c1t !1U3eik~x2c2t !

1U4eik~x1c2t !

w~x,t !5F1eik~x2c1t !1F2eik~x1c1t !1F3eik~x2c2t !

1F4eik~x1c2t !. (1.18)

Next, by considering the ratio of axial to torsional am
tudesU/F, they concluded that the waves that are prima
axial in nature (U/F.1) propagate at speedsc2 , while the
waves that are primarily torsional in nature (U/F,1)
propagate at speedsc1 . Clearly, by assumingC125C2150
one immediately arrives at two uncoupled wave equa
for purely axial and torsional waves, respectively.

2 PLANAR SPRING NETWORKS ON PERIODIC
LATTICES: CLASSICAL CONTINUA

2.1 Basic idea of a spring network representation

As already demonstrated in the setting of 1D models
basic idea in setting up the spring network models is b
on the equivalence of strain energy stored in a unit cell~Fig.
5!, of volumeV, of a network

Ucell5Ucontinuum. (2.1)

The unit cell is a periodically repeating part of the netw
Two aspects should be noted here:
1! the choice of the unit cell may be non-unique, see F
2! the inner structure of the unit cell is not necessa

‘nicely’ ordered—it may be of a disordered microgeo
etry, with an understanding that it repeats itself in sp

In Eq. ~2.1! the energies of the cell and its continu
equivalent, respectively, are

Ucell5(
b

Eb5
1

2 (
b

Nb

~F•u!~b! Ucontinuum5
1

2 EV
s•«dV.

(2.2)

The superscriptb in (2.2)1 stands for theb-th spring~bond!,
andNb for the total number of bonds. Our discussion is s
the two-dimensional~2D! setting so that, by a volume w
actually mean an area of unit thickness. In the seque
restrict ourselves to linear elastic springs and spatially li
displacement fieldsu ~ie, uniform strain fields«!, so that Eq
~2.2! will become

Ucell5
1

2 (
b

Nb

~ku•u!~b! Ucontinuum5
1

2
«•C•« (2.3)

In Eq. ~2.3! u is a generalized spring displacement ank
its corresponding spring constant. The next step, that
depend on the particular geometry of the unit element an
the particular model of interactions, will involve making
connection betweenu and «, and then derivingC from Eq.
~2.1!. The corresponding procedures and resulting form
are given below for several elasticity problems set in
square and triangular network geometries.
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2.2 Anti-plane elasticity on square lattice

Of all the elasticity problems, the anti-plane one is the sim-
plest on which to illustrate the spring network idea. In the
continuum setting, we thus have the constitutive law

s i5Ci j « j i , j 51,2 (2.4)

wheres5(s1 ,s2)[(s31
0 ,s32

0 ) and «5(«1 ,«2)[(«31
0 ,«32

0 ).
Upon substitution into the momentum balance law

s i ,i50, (2.5)

we obtain

~Ci j u, j ! ,i50. (2.6)

Henceforth, we are interested in approximations of locally
homogeneous media, so that the governing equation be-
comes

Ci j u,i j 50 (2.7)

In the special case of an isotropic medium Eq.~2.7! simpli-
fies to a Laplace equation

Cu,i i 50. (2.8)

We now discretize the material with a square lattice net-
work, Fig. 5a, whereby each node has one degree of freedom

Fig. 5 a! A hexagonal lattice with three different choices of unit
cell; b! a square lattice with a square unit cell; andc! a triangular
lattice with hexagonal unit cell
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~anti-plane displacementu!, and nearest neighbor nodes a
connected by springs of constantk. It follows that the strain
energy of a unit cell of such a lattice is

U5
1

2
k(

b51

4

l i
~b!l j

~b!« i« j . (2.9)

In the above, we employed the uniform strain«5(«1 ,«2).
Also, l(b)5( l 1

(b) ,l 2
(b)) is the vector of half-length of bondb.

In view of Eq. ~2.1!, the stiffness tensor is obtained as

Ci j 5
k

V (
b51

4

l i
~b!l j

~b! i , j 51,2 (2.10)

whereV54 if all the bonds are of unit length (u l(b)u51).
This leads to a relation between the bond spring constak
and theCi j tensor

C115C225
k

2
C125C2150. (2.11)

In order to model an orthotropic medium, different bon
are applied in thex1 and x2 directions:k(1) and k(2). The
strain energy of a unit cell is now

U5
1

2 (
b51

4

k~b!l i
~b!l j

~b!«̄ i «̄ j (2.12)

so that the stiffness tensor is

Ci j 5
1

V (
b51

4

k~b!l i
~b!l j

~b! (2.13)

which leads to relations

C115
k~1!

2
C225

k~2!

2
C125C2150. (2.14)

If one wants to model an anisotropic medium~ie, with
C12Þ0!, one may either choose to rotate its principal axe
coincide with those of the square lattice and use the netw
model just described, or introduce diagonal bondsk(5) and
k(6) oriented along~1, 1! and~1, 21! directions, respectively
In the latter case, the unit cell energy is given by the form
~2.12! with Nb58. The expressions forCi j ’s are

C115
k~1!

2
1k~5! C225

k~2!

2
1k~6! C125C215k~5!2k~6!.

(2.15)

It will become clear in the next section how this model c
be modified to a triangular spring network geometry.

2.3 In-plane elasticity: Triangular lattice
with central interactions

In the planar continuum setting, which is discussed in so
more detail in the Appendix, the isotropic Hooke’s law

s i j 5Ci jkm«km i , j ,k,m51,2 (2.16)

upon substitution into the balance law

s i j , j50 (2.17)

results in planar Navier’s equation for the displacementui
re

nt

ds

to
ork

la

n

me

mui , j j 1kuj , j i 50. (2.18)

In Eq. ~2.18!, m is defined bys125m«12, which makes it the
same as the classical 3D shear modulus. On the other handk
is the ~planar! 2D bulk modulus, that is defined bys i i

5k« i i .
As in the foregoing section, we are interested in approxi

mations of locally homogeneous media. Consider a regula
triangular network of Fig. 5b with central force interactions
only, which are described, for each bondb, by

Fi5F i j
~b!uj where F i j

~b!5a~b!ni
~b!nj

~b! . (2.19)

Similar to the case of anti-plane elasticity,a (b) is the spring
constant of half-lengths of such central~normal! interactions,
ie, of those parts of the springs that lie within the given unit
cell. The unit vectorsn(b) at respective anglesu (b) of the first
threea springs are

u~1!50° n1
~1!51 n2

~1!50

u~2!560° n1
~2!5

1

2
n2

~2!5
)

2

u~3!5120° n1
~3!52

1

2
n2

~3!5
)

2
. (2.20)

The other three springs (b54,5,6) must, by the requirement
of symmetry with respect to the center of the unit cell, have
the same properties asb51,2,3, respectively. All the
a-springs are of lengthl, that is, the spacing of the triangular
mesh iss52l . The cell area isV52) l 2.

Every node has two degrees of freedom, and it follows
that the strain energy of a unit hexagonal cell of such a
lattice, under conditions of uniform strain «
5(«11,«22,«12), is

U5
l 2

2 (
b51

6

a~b!ni
~b!nj

~b!nk
~b!nm

~b!« i j «km (2.21)

so that, again by Eq.~2.1!, the stiffness tensor becomes

Ci jkm5
l 2

V (
b51

6

a~b!ni
~b!nj

~b!nk
~b!nm

~b! . (2.22)

In particular, taking alla (b) the same, we see that

C11115C22225
9

8)
a C11225C22115

3

8)
a

C12125
3

8)
a (2.23)

so that there is only one independent elastic modulus, and th
modeled continuum is isotropic.

It is important to note here that the isotropy follows from
the triangular lattice having an axis of symmetry of the sixth
order. This, combined with the fact that Eq.~2.22! satisfies
the conditions of Cauchy symmetry@13# with respect to the
permutations of all the four indices

Ci jkm5Ci jmk5Cjikm5Ckmi j5Cik jm (2.24)

implies thatCi jkm is of the form
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Ci jkm5l~d i j dkm1d ikd jm1d imd jk!. (2.25)

In view of ~2.23!, we obtain the classical Lame´ constants

l5m5
3

4)
a. (2.26)

One might try to model anisotropy by considering thr
different a’s in Eq. ~2.21!, but such an approach would b
limited—one needs to have six parameters in order to fre
adjust any planar anisotropy which involves six independ
Ci jkm’s. This can be achieved by introducing the addition
angular springs as discussed below. In fact, angular spr
are also the device to vary the Poisson’s ratio.

2.4 In-plane elasticity: Triangular lattice
with central and angular interactions

We continue with the triangular network, and introduce a
gular springs acting between the contiguous bonds incid
onto the same node. These are assigned spring cons
b (b), and, again by the argument of symmetry with respec
the center of the unit cell, only three of those can be in
pendent. Thus, we arrive at six spring constan
$$a (1),a (2),a (3),b (1),b (2),b (3)%. With reference to Fig. 6b,
let Du (b) be the ~infinitesimal! angle change of theb-th
spring orientation from the undeformed position. Noting th
n3n5 lDu, we obtain

Duk
~b!5eki j« jpninp i , j ,p51,2 (2.27)

where eki j is the Levi-Civita permutation tensor. Sincek
53, we can simply writeDu (b) for Duk

(b) . The angle change
between two contiguousa springs~b andb11! is then mea-
sured byDf5Du (b11)2Du (b), so that the energy stored i
the springb (b) is

E~b!5 1
2 b~b!uDfu2

5 1
2 b~2!$«ki j« jp~ni

~b11!np
~b11!2ni

~b!np
~b!!%2. (2.28)

By superposing the energies of all the angular bonds w
the energy~2.21!, the elastic moduli are derived as@14#

Ci jkm5
l 2

V (
b51

6

a~b!ni
~b!nj

~b!nk
~b!nm

~b!

1
1

V (
b51

6

$~b~b!1b~b21!!d iknp
~b!nj

~b!np
~b!nm

~b!

2~b~b!1b~b21!!ni
~b!nj

~b!nk
~b!nm

~b!

2b~b!d iknp
~b!nj

~b11!np
~b11!nm

~b!

1b~b!ni
~b!nj

~b11!nk
~b11!nm

~b!

2b~b!d iknp
~b!nj

~b!np
~b11!nm

~b11!

1b~b!ni
~b11!nj

~b!nk
~b!nm

~b11!% (2.29)

whereb50 is the same asb56. This provides the basis fo
a spring network representation of an anisotropic materia
e

ely
nt

al
ngs

n-
ent
ants
to
e-
ts:

t,

ith

; it

also forms a generalization of the so-calledKirkwood model
@15# of an isotropic material. The latter is obtained by assign
ing the samea to all the normal and the sameb to all the
angular springs

Ci jkm5
a

2)
(
b51

6

ni
~b!nj

~b!nk
~b!nm

~b!

1
b

2) l 2 (
b51

6

$2d iknj
~b!nm

~b!22ni
~b!nj

~b!nk
~b!nm

~b!

2d iknp
~b!nj

~b11!np
~b11!nm

~b!1ni
~b!nj

~b11!nk
~b11!nm

~b!

2d iknp
~b!nj

~b!np
~n11!nm

~b11!

1ni
~b11!nj

~b!nk
~b!nm

~b11!%. (2.30)

It follows from the above that

C11115C22225
1

2)
S 9

4
a1

1

l 2 b D
C11225C22115

1

2)
S 3

4
a2

1

l 2

9

4
b D

C12125
1

2)
S 3

4
a1

1

l 2

9

4
b D . (2.31)

Fig. 6 a! Unit cell of a triangular lattice model;a (1),...,a (6) are
the normal spring constants,b (1),...,b (6) are the angular spring
constants; in the isotropic Kirkwood modela (b)5a (b13) andb (b)

5b (b13), b51,2,3; andb! details of the angular spring model.
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ConditionC12125(C11112C1122)/2 is satisfied, so that the
are only two independent elastic moduli.

From Eq.~2.31!, thea andb constants are related to t
planar bulk and shear moduli by

k5
1

2)
S 3

2
a D m5

1

2)
S 3

4
a1

1

l 2

9

4
b D . (2.32)

It is noted here that the angular springs have no effect ok,
ie, the presence of angular springs does not affect the d
tional response. The formula for a planar Poisson’s ratio@16#
is

n5
k2m

k1m
5

C111122C1212

C1111
5S 12

3b

a l 2D Y S 31
3b

a l 2D .

(2.33)

From Eq. ~2.33!, there follows the full range of Poisson
ratio which can be covered with this model. It has two l
iting cases

n5
1

3
if b/a→0 a2model

n521 if b/a→` b2model. (2.34)

For the subrange of Poisson’s ratio between21/3 and 1/3
one may also use a Keating model@17# which employs a
different calculation of the energy stored in angular bon

2.5 Triple honeycomb lattice

It is recalled from Section 2.4 that 1/3 is the highest P
son’s ratio of central-force triangular lattices with one spr
constant. An interesting model permitting higher valu
from 1/3 up to 1, was introduced in@18,19#. The model set
up three honeycomb lattices, having spring constantsa, b,
andg, respectively, overlapping in such a way that they fo
a single triangular lattice, Fig. 7. The planar bulk and sh
moduli of a single phase are

k5
1

A12
~a1b1g! m5A27

16S 1

a
1

1

b
1

1

g D 21

. (2.35)
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In the case of two or more phases, a spring that cross
boundary between any two phases 1 and 2 is assign
spring constant according to a series rulea5@(2a1)21

1(2a2)21#, wherea i is a spring constant of the respecti
phase.

3 APPLICATIONS IN MECHANICS
OF COMPOSITES

3.1 Representation by a fine mesh

In order to solve the field equations of a two-phase comp
ite we employ a spring network method, Fig. 8a. The idea is
to approximate the planar, piecewise-constant continuum
a very fine mesh. In the following, we shall assume tha
square mesh in thex1 ,x2-plane for discretization of anti
plane displacement fieldu[u3 is used. The governing equa
tions are

u~ i , j !@kr2kl1ku1kd#2u~ i 11,j !kr2u~ i 21,j !kl

2u~ i , j 11!ku2u~ i , j 21!kd5 f ~ i , j ! (3.1)

where f ( i , j ) is the body force~or source! at the point (i , j ),
while i and j are the coordinates of mesh points, andkr , kl ,
ku andkd are defined from the series spring model

kr5@1/C~ i , j !11/C~ i 11,j !#21

kl5@1/C~ i , j !11/C~ i 21,j !#21

ku5@1/C~ i , j !11/C~ i , j 11!#21

kd5@1/C~ i , j !11/C~ i , j 21!#21. (3.2)

In Eq. ~3.2!, C( i , j ) is the property at~i,j!.
This type of a discretization is equivalent to a finite d

ference method that would be derived by considering
expansions
and

Fig. 7 a! A triple honeycomb lattice made of three different spring typesa, b, andg belonging, respectively to three sublattices A, B, and
C; andb! A 42342 unit cell of a triangular lattice of hexagonal pixels, with 11 pixel diameter circular inclusions centered on pixels
randomly placed with periodic boundary conditions; after Snyderet al @19#
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u~ i 61,j !5u~ i , j !6s
]

]x1
~u~ i , j !!u i , j1

s2

2!

]2

]x1
2 u~ i , j !U

i , j

u~ i , j 61!5u~ i , j !6s
]

]x2
~u~ i , j !!u i , j1

s2

2!

]2

]x2
2 u~ i , j !U

i , j
(3.3)

in the governing equation~recall ~2.8!!

CS ]2
u

]x1
2 1

]2
u

]x2
2D 50. (3.4)

However, in the case of in-plane elasticity problems, a spr
network approach is not identical to a finite differen
method, as the node-node connections of a spring netw
do really have a meaning of springs, whereas the finite
ference connections do not.

In the case of a composite made of two locally isotro
phases: matrix~m! and inclusions~i!, the Hooke’s law is

s i5Ci j « j i , j 51,2 Ci j 5C~m!d i j or C~ i !d i j . (3.5)

The above leads to a so-calledcontrast C( i )/C(m), sometimes
also called amismatch. It is clear that by increasing the con
trast we can approximately model materials with rigid inc

Fig. 8 a! Parameter plane: aspect ratio of inclusions and the c
trast; b! spring network as a basis for resolution of round dis
ellipses, pixels, and needles in the parameter plane; andc! another
interpretation of the parameter plane: from pixels to needles
ng
e
ork
if-

ic

-
-

sions. Similarly, by decreasing the contrast, we go to ve
soft inclusions and nearly reach a system with holes.

While the disk is the most basic inclusion shape whe
dealing with composites, a departure from this is of interes
Thus, another basic parameter specifying the composite
the aspect ratioof ellipsesa/b, wherea (b) is the major
~minor! semi-axis. By varying the aspect ratio from 1 up
through higher values, we can model systems having dis
type, ellipse-type, through needle-type inclusions. We a
thus led to the concept of a parameter plane as shown in F
8a.

Resolution of several different types of inclusions by
spring network is shown in Fig. 8b. That is, we can model
disks, ellipses, needles, etc. Admittedly, this type of mode
ing is approximate so that a somewhat different interpret
tion of a parameter plane is given in Fig. 8c. It is seen that
disks may most simply be modeled as single pixels or mo
accurately as finite regions; in the latter case arbitra
anisotropies can be modeled. The former case allows one
deal with very large scale systems, while the latter allows
much better resolution of local stress/strain fields within an
around the inclusions. By decreasing the spring netwo
mesh size, an increasingly better accuracy can be achiev
Somewhat more accurate results may be obtained by a fin
element model, albeit at a higher price of costly and cumbe
some remeshing for each and every new disk configurati
B(v) which is required in statistical studies.

It is noteworthy that, in contradistinction to a finite ele-
ment method, no need for remeshing and constructing of
stiffness matrix exists in our spring network method: sprin
constants are very easily assigned throughout the mesh,
the conjugate gradient method finds the solution of the equ
librium displacement fieldu( i , j ). In that manner, a system
having 106 million degrees of freedom~100031000 nodes!
can readily be handled on a computer workstation wit
;90MB of random access memory. For 200032000 nodes,
one requires some 360MB, and so on, because of a line
scaling of memory requirements with the number of degre
of freedom.

The quality of approximation of ellipses and needle-typ
cracks/inclusions can be varied according to the number
nodes chosen to represent such objects. Local fields can
be perfectly resolved—boundary elements may be bet
suited for this—but the solution by the spring network i
sufficient to rapidly establish the elastic moduli of a numbe
of different B~v! realizations from the random mediumB,
and the corresponding statistics with a sufficient accuracy

3.2 Solutions of linear algebraic problems

The steady-state conductivity and elastostatics problems
spring networks always lead to linear algebraic systems

A•x5b (3.6)

because they simply are elliptic problems in discretize
forms. There are, in principle, two methods to set up an
solve the governing equations. One of them is exactly th
same as that conventionally used in the finite eleme
methods—involving the global stiffness matrix accompanie

n-
s,
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by the connectivity of all the nodes—and will therefore n
be elaborated here. The second one comes, just like
spring networks themselves, from the condensed m
physics. It is the so-calledconjugate gradientmethod, which
involves the energy of the system as a functional

F~x!5 1
2 x•A•x2b•x (3.7)

of all the relevant degrees of freedomx, and the gradient o
this energy

¹F~x!5A•x2b (3.8)

with respect to all these degrees. Once written in an exp
form as two subroutines, the program is connected with
of the widely available solvers~see,eg, @20#!. Note thatF(x)
is minimized when Eq.~3.8! equals zero, which is the
equivalent to Eq.~3.6!. Of course, one may also emplo
other algebraic solvers.

It is noteworthy that the entire task of mesh generati
such as typically required by the finite element methods
absent. The energy and energy gradient subroutines are
ten once and for all for the given mesh of, say, Fig. 9. T
assignment of all the local spring stiffnesses—according
any chosen lattice model of Section 2—is done very rap
in the first stage of the program. These stiffnesses are s
in the common block~in case of a Fortran program! and are
readily accessible to the conjugate gradient subroutines
are activated in the second, and main, stage of the prog
Once the energy minimum is reached to within any speci
accuracy, this energy is used to compute the overall, effec
moduli of a given domain of the lattice based on the pos
late of the energy equivalence, seeeg, @21–23#.

Here we list several exact relations that may be use
testing the resulting computer programs. Some of them
well as others, are also elaborated in@24#.

i! Suppose we have solutions of two elasticity proble
on a certain domainB, with boundary]B, correspond-
ing to the displacement~d! and traction~t! boundary
value problems, respectively. Then we can ch
whether the Betti’s reciprocity theorem

E
]B

ui
~t!ti

~d!ds5E
]B

ui
~d!ti

~t!ds (3.9)

is satisfied numerically within some acceptable ac
racy.

ii ! Perfect series and parallel systems are well known
result in the arithmetic and harmonic averages, or
so-called VoigtCV and Reuss boundsCR

CV5f1C11f2C2 CR5S f1

C1
1

f2

C2
D21

(3.10)

wheref 1 and f 2 are the volume fractions of phases a
1 and 2, respectively.

iii ! The case of small contrast in properties allows an
pansion of, say, effective conductivity to second or
in the difference (C22C1) as follows@25#

Ceff5C11f2~C22C1!2f1f2

~C22C1!
2

C1

1

d

t
the
tter

cit
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n,
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1O~C22C1!
31... (3.11)

whered is the dimensionality of the space.
iv! There are many exact relations in the 2D conductiv

Perhaps the best well known one, due to@26# ~also
@27#! says that, for a two-phase isotropic system in 2

Ceff~C1,C2!C
eff~C2,C1!5C1C2 (3.12)

whereCe f f(C1 ,C2) is the effective conductivity of a
given system, whileCe f f(C1 ,C2) is the effective con-
ductivity with the phases 1 and 2 interchanged.

v! The CLM theorem@28,29# may be employed for plana
elastic ~classical as well as micropolar! simply con-
nected inhomogeneous materials with twice differe
tiable properties. To this end, let us consider an eff
tive compliance tensorSi jkl

e f f relating the volume
averaged~denoted by overbar! stress and strain tenso

«i j̄5Sijkl
ef fskl̄. (3.13)

Now, the stressess11, s22 ands12 are the same in the
original and the equivalent materialsSi jkl (x) and
Si jkl

T (x), so that the strain fields« i j and« i j̄ satisfy the
relation

«i j̄5Sijkl
T skl5Sijklskl1Sijkl

I ~L,2L!skl

5«ij1Sijkl
I ~L,2L!skl . (3.14)

HereT stands for a transformed material. Carrying o
the volume averaging of Eq.~3.14!, and noting that
Si jkl (L,2L) is independent of positionx, we find

«i j̄5Sijkl
ef fTskl5Sijkl

ef fskl̄1Sijkl
I ~L,2L!skl̄ (3.15)

which shows that the effective compliance tensor of
second material is given by that of the first mater
plus the same shift as that for the individual phases

Sijkl
ef fT5Sijkl

ef f1Sijkl
I ~L,2L!. (3.16)

Fig. 9 A functionally graded matrix-inclusion composite wi
47.2% volume fraction of black phase is partitioned into 838 sub-
domains, corresponding to a 64-processor parallel computer
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When dealing with very large systems, the spring netw
method is limited by the available computer memory si
This is, for example, the case with a functionally grad
material. A composite of that type is shown in Fig. 9, whe
the disk-matrix interphase is taken as a finite thickness z
of two randomly mixed phases of the disk~2! and the matrix
~1! material. Both phases are locally homogeneous
isotropic—they are described by two constant isotropic c
ductivities C1 and C2 . We see here three different lengt
scales: the fine structure of interphase region, the size
spacing of inclusions, and the macroscopic dimension of
composite.

For this type of problems, we can also use parallel co
puting. Thus, in Fig. 9 we show a partition of the enti
simulated domain of a functionally graded composite in
645838 subdomains, each of which represents a 1
3125 spring network that is assigned to a separate proce
of a parallel computer. Thus, the boundary value is solved
using 64 processors operating in tandem. The computati
effort is limited by the speed of a single processor~which
goes down with the subdomain size! and the communication
between the processors~which simultaneously goes up!.
Finding the optimal partition, is, therefore, an important ta
There are, in principle, two ways to execute such a para
scheme: either to write one’s own software, or to adapt
existing solver running on a given parallel computer. T
latter option is now becoming ever more realistic.

3.3 Example simulation of a polycrystal

The generalization of the Kirkwood spring network mod
outlined in Section 2 to an anisotropic case was motivated
a need to study micromechanics of a planar polycrystal
aluminum specimen@14#. The basic strategy is as follows
First, an image of crystal domains~ie, grains!, such as the

Fig. 10 Scanned image of a very thin polycrystal aluminum sh
All the grain boundaries are orthogonal to the plane of the she
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e.
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one showed in Fig. 10, needs to be scanned and mapped onto
a triangular mesh. Next, every bond is assigned its stiffness
depending on the domain it falls in. And finally, the mechan-
ics problem of the resulting spring network is solved com-
putationally.

In order to assign spring stiffnesses to any node of the
spring network mesh, the 3D stiffness tensorCi jkm for each
crystal must be found according to its transformation~rota-
tion! matrix ai j ( i , j 51,2,3); the latter is provided from the
Kikuchi surface electron backscattering technique. Thus, to
set up the spring network model, we start from the stiffness
matrix Cab of an ~anisotropic! aluminum crystal which is
given as

Cab

53
10.82 6.13 6.13 0 0 0

6.13 10.82 6.13 0 0 0

6.13 6.13 10.82 0 0 0

0 0 0 2.85 0 0

0 0 0 0 2.85 0

0 0 0 0 0 2.85

4 104MPa.

(3.17)

Its fourth-rank stiffness tensorCi jkm is then set up taking into
account three symmetriesCi jkm5Ci jmk5Cjikm5Ckmi j . We
next use a transformation formula for a 4-th rank tensor

C8npqr5aniajpakqamrCi jkm n,p,q,r 51,2,3 (3.18)

to set up the in-plane part ofC8npqr at every mesh node. This
2D part, consisting of C81111, C82222, C81122,
C81112, C82212, C81212 is then mapped into the six spring
constants a1 , a2 , a3 , b1 , b2 , b3 according to Eq.
~2.38!. This mapping is one-to-one and is given as

F C81111

C82222

C81122

C81112

C81212

C82212

G5
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While there was no ambiguity concerning the spring c
stant of anya-bond that entirely belonged to any given cry
tal domain, additional care had to be taken of the bonds
straddled the boundary of two crystals. The effective s
nesses were assigned according to a series rule:a5(1/2a1

11/2a2)21. Assignment of theb-springs, however, pre
sented no such ambiguities. This lattice model offered a b
for study of intergranular multi-crack propagation in
elastic-brittle, thin~quasi-2D! aluminum sheet, that woul
otherwise require a very labor intensive task of finite elem
meshing and inter-element crack advance; see the afore
tioned paper.

4 PLANAR SPRING NETWORKS ON PERIODIC
LATTICES: NONCLASSICAL CONTINUA

4.1 Triangular lattice of Bernoulli-Euler beams

In the solid state physics literature, the Kirkwood and Ke
ing models are sometimes referred to as thebeam-bending
models. This is a misnomer since there is no account take
these models of the actual presence of moments and c
ture change of spring bonds connecting the neighbo
nodes. True beam bending was fully and rigorously con
ered by Wozniak@30# and his coworkers, and considering
limited access to that unique book, in this section we giv
very brief account of the triangular lattice case.

We focus on the deformations of a typical beam, its be
ing into a curved arch allowing the definition of its curvatu
and a cut in a free body diagram specifying the normal fo
F, the shear forceF̃, and the bending momentM, see Fig. 11.
It follows that in 2D, the force field within the beam netwo
is described by fields of force-stressesskl and moment-
stressesmk , so that, we have a micropolar medium.

The kinematics of a network of beams is now describ
by three functions

u1~x! u2~x! w~x! (4.1)

which coincide with the actual displacements~u1 , u2! and
rotations ~w! at the network nodes. Within each triangu
pore, these functions may be assumed to be linear,
hence, the local strain,gkl , and curvature,k i , fields are
related tou1 , u2 , andw by

gkl5ul ,k1elkw k i5w ,i (4.2)

whereelk is the Ricci symbol.
It follows from geometric considerations that

g~b![nk
~b!nl

~b!gkl (4.3)

is the average axial strain, withs(b)g (b) being its average
axial length change. Similarly,

g̃~b![nk
~b!ñl

~b!gkl5nk
~b!ñl

~b!u~ l ,k!2w (4.4)

is the difference between the rotation angle of the be
chord and the rotation angle of its end node. Thus, the
ference between the rotation angles of its ends is

k~b![nk
~b!kk . (4.5)
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The elementary beam theory implies that the forc
displacement and moment-rotation response laws of ea
bond ~Fig. 11! are given as

F ~b!5E~b!A~b!g~b! F̃ ~b!5
12E~b!I ~b!

s2 g̃~b!

M ~b!5E~b!I ~b!k~b! (4.6)

where A(b)5wh is the beam cross-sectional area,I (b)

5w3h/12 is its centroidal moment of inertia with respect t
an axis normal to the plane of the network, andE(b) is the
Young’s modulus of the beam’s material. All the beams a
of lengths[s(b), which is the spacing of the mesh.

Turning now to the continuum picture, the strain energ
of the micropolar continuum is expressed as

Ucontinuum5
V

2
g i j Ci jkmgkm1

V

2
k iDi j k j (4.7)

from which we find

Ci jkm5 (
b51

6

ni
~b!nk

~b!~nj
~b!nm

~b!R~b!1nj
~b!nm

~b!R̃~b!!

Di j 5 (
b51

6

ni
~b!nj

~b!S~b! (4.8)

where

R~b!5
2E~b!A~b!

s~b!)
R̃~b!5

24E~b!I ~b!

~s~b!!3)
S~b!5

2E~b!I ~b!

s~b!)
.

(4.9)

If we assume all the beams to be the same~R(b)5R, etc!,
we obtain

C11115C22225
3
8~3R1R̃! C12125

3
8~R13R̃!

C11225C22115
3
8~R2R̃! C12215C21125

3
8~R2R̃!

D115D225
3
8S (4.10)

with all the other components of the stiffness tensors bei
zero. That is, we have

Ci jkm5d i j dkmJ1d ikd jmL1d imd jkP Di j
eff5d i j G

(4.11)

in which

J5P5 3
8~R2R̃! L5 3

8~R13R̃! G5 3
2S. (4.12)

We note from Eq. (4.11)1 that this beam lattice is an isotro-
pic continuum, rather than anisotropic as reported in@31,32#.

The micropolar model@30,33# is conveniently expressed
in terms of four compliances—A, S, P, andM—which are
readily identified as

A5
1

J1
L1P

2

S5
2

L1P
P5

2

L2P
M5

2

3G
.

(4.13)

The effective bulk and shear moduli are now identified o
the basis of Eq.~4.11! as
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Fig. 11 The lattice geometry~a!; curvature and internal loads in a single beam element~b!
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k5 3
4R m5 3

8~R1R̃! (4.14)

hich are seen to reduce to the formulas of Section 2.3 i
pecial case of flexural rigidity being absent. Furtherm
he effective Young’s modulus and Poisson’s ratio are

E53R

11
R̃

R

31
R̃

R

n5

12
R̃

R

31
R̃

R

. (4.15)

t is noteworthy that the introduction of beam-type effe
as a similar influence onE andn as the introduction of th
ngular b-interactions in the Kirkwood model. Howev
oting thatR̃/R5(w/s)2, wherew is the beam width, we s

hat, in view of the slenderness assumption of the beam
ents, this model does not admit Poisson’s ratios b
0.2.
Finally, we note that the stiffness tensors~4.11! can be

nverted to get the compliance tensors

Si jkm
~1! 5 1

4@d i j dkm~A2S!1d ikd jm~S1P!1d imd jk~S2P!#

Si j
~2!5

d i j

G
(4.16)

o that, recalling the definition of the micropolar charac
stic length@10#,

l 25
S1P

4M
5

l

24

113S w

s D 2

11S w

s D 2 (4.17)

here we used the basic facts relating the beam’s c
ectional area to its moment of inertia.
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4.2 Triangular lattice of Timoshenko beams

In the foregoing section we began with the model o
Bernoulli-Euler beams, which implies slender connection
between the lattice nodes. It is well known that the situatio
of stubby connections is describable more adequately by T
moshenko beams. The boundary value problem that needs
be solved is that of a beam fixed at its both ends and su
jected to a shear displacement at one end. That is, with t
boundary conditions at the beam’s left end

n~0!50 u~0!50 n8~0!2u~0!50 (4.18)

and right end

n~s!5g̃~b!s u~s!50 n8~s!2u~s!50 (4.19)

it is readily determined from the beam’s governing equation

E~b!I ~b!u91G~b!A~b!~n82u!50 G~b!A~b!~n92u8!50
(4.20)

that a following relation holds between the shear forceF̃ (b)

and the displacementsg̃ (b)

F̃ ~b!5
12E~b!I ~b!

s3~11b!
sg̃~b!. (4.21)

Here

b5
12E~b!I ~b!

G~b!A~b!s2 5
E~b!

G~b! S w

s D 2

(4.22)

is the dimensionless ratio of bending to shear stiffness, wi
A(b)5taw being the beam’s cross-sectional area, andI (b)

5taw3/12 its centroidal moment of inertia.
Two limiting cases ofb are well known:

b→0, high shear stiffness and , hence, less deflection owin
to shear; the Bernoulli-Euler slender beam is recovered;
b.1, low shear stiffness and, hence, deflection owing t



.
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shear dominates over that due to the Young’s modulusE(b);
this is the general case of the Timoshenko beam.

Observing that Eq.~4.21! replaces (4.6)2 , we now pro-
ceed to derive the effective moduli so that~4.9! is replaced
by

R~b!5
2E~b!A~b!

s~b!)
R̃~b!5

24E~b!I ~b!

~s~b!!3)

1

11b

S~b!5
2E~b!I ~b!

s~b!)
(4.23)

wherein the ratioR̃/R is

R̃

R
5S w

s D 2 1

11b
. (4.24)
Following the same steps as in the previous section, we
see that the effective continuum moduli are given by Eqs
~4.14!–~4.15! as before. It is now possible to express them in
terms of the beam aspect ratio andb. Thus, forEeff ~normal-
ized by the beam’s modulusE(b)! andneff, we find

Eeff

taE~b! 52)
w

s

11S w

s D 2 1

11b

31S w

s D 2 1

11b

neff5

12S w

s D 2 1

11b

31S w

2 D 2 1

11b

.

(4.25)

Considering the geometry of the hexagonal unit cell of the
lattice, we can write the above in terms of the volume frac-
tion of the materialp ~ie, unity minus the porosity!
,
l

;

Fig. 12 a! A decrease in pore
sizes ~from left to right!: from
large holes ~slender beams!,
through a lattice of stubby beams
to a plate perforated with smal
holes; shown at porositiesp
510%, 50%, and 90%-from right
to left; b! The effective Young’s
modulus Eeff, normalized by the
beam’s Young’s modulusE(b), as
a function ofp for: 1! the central-
force lattice, 2! the Timoshenko
beams lattice, 3! the Bernoulli-
Euler beams lattice, 4! the Cox
model, and 5! the effective me-
dium theory for a perforated plate
andc! the effective Poisson’s ratio
neff as a function ofp, models
~1–5! shown



e

f

o
d

i
s

t

1
h

fer-

odu-
nec-
slen-
nly.
ume
ctive

ork
isti-
1D
ey
l. A
little

this
ring

now
Fig.

Eq.

eing
f an

48 Ostoja-Starzewski: Lattice models in micromechanics Appl Mech Rev vol 55, no 1, January 2002
Eeff

taE~b! 52~12A12p!

11
1

3~11b!
~12A12p!2

31
1

3~11b!
~12A12p!2

neff5

3~12A12p!2
3

11b

91~12A12p!2
3

11b

. (4.26)

The above are plotted in Fig. 12b, c for the special cas
E(b)59G(b). We see that the consideration of lattice conn
tions as stubby~Timoshenko! beams has a minor softenin
effect on Eeff relative to the Bernoulli-Euler beam mode
This may be explained by noting that the admission of
beam’s angle of rotation as an independent degree of
dom amounts toG(b) being finite, rather than infinite, in th
Timoshenko beam model. The Poisson’s ratio falls off n
linearly from 1/3 withp increasing in both models. The a
mission of finite shear modulus is weak. Also plotted in F
12 b, c are the results for the central-force lattice of Sect
4.2, the perforated plate model introduced below, and
Cox model discussed in Section 5.

4.3 From stubby beams to a perforated plate model

As the volume fractionp rises beyond 50%, the beam’s a
pect ratiow/s increases so high that one can no longer mo
the connections between the lattice nodes as beams. Th
basic question arises: can any simple explicit model be
rived for this low porosity range? One avenue is offered b
perforated plate model. In the limit ofp→1, we have a plate
with a regular distribution of triangular-shaped pores, F
12a. This is a so-calleddilute limit of a locally isotropic
material with holes~in either periodic or disordered arrang
ments!. Following @34,35#, the respective formulas are

Eeff

taE~b! 512a~12p! neff5n~b!2a~n~b!2n0!~12p!.

(4.27)

The coefficientsa54.2019 andn050.2312 have been com
puted in the above references, and, in fact, analogous co
cients are also available there for plates with other than
angular holes~squares, pentagons, ...!. It is noteworthy that:

1! both formulas are uncoupled from one another;
2! (4.27)1 models the low porosity range~high p-values!

much better than the beam lattice model; summariz
Eeff is modeled by an upper envelope of all the curve
Fig. 12b, ie, curves 3 and 5.

3! (4.27)2 depends on the Poisson’s ration (b) of the
plate material; the latter can be specified only in
Timoshenko beam model.

One more question remains in connection with Fig.
What happens in the range of thep-values which are too hig
for a beam lattice model to hold and too low for the dilu
model to be truly dilute? Or, can anything be done to smo
out the transition between the two curves 3 and 5 atp around
0.8? One could try here a usual device of micromechan
ec-
g
l.
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an effective medium theory in any one of its guises: dif
ential scheme, self-consistent, etc@35#. However, for the
sake of clarity of Fig. 12b, c, we do not plot these.

Summing up, it is seen from Fig. 12 that, asp grows,
beam bending tends to increase the effective Young’s m
lus Eeff. In other words, bending effects increase as con
tions become wider. On the other hand, as they become
der, one can work with segments carrying axial forces o
Thus, beam effects gain in influence as the pores’ vol
fraction decreases, and lead to an increase of the effe
Young’s modulus relative to the central-force model.

Two more things may be said about the beam netw
model. First, Timoshenko beams, although more soph
cated than Bernoulli-Euler beams, remain, in principle,
objects, of micropolar type, in fact. Therefore, what th
yield is about as far as one can get with a beam mode
better approach should consider beam segments as
plates,ie, 2D objects, as recently implemented in@36#. Fi-
nally, lattice nodes that are taken as rigid objects in
model, could more realistically be modeled by conside
their deformability; this will be demonstrated below.

4.4 Square lattice of Bernoulli-Euler beams

Following the same procedure as in Section 4.2, we
analyze a micropolar model of a square lattice network,
13; the triangular case was treated in@37#. Thus, assuming
Bernoulli-Euler beams, we find an analogous version of
~4.8!

Ci jkm5 (
b51

4

ni
~b!nk

~b!~nj
~b!nm

~b!R~b!1nj
~b!nm

~b!R̃~b!!

Di j 5 (
b51

4

ni
~b!nj

~b!S~b! (4.28)

where

R~b!5
E~b!A~b!

s~b! R̃~b!5
12E~b!I ~b!

~s~b!!3 S~b!5
E~b!I ~b!

s~b! .

(4.29)

When all the beams are identical, this leads to

C11115C22225R C12125C21215R̃ D115D225S
(4.30)

with all the other components of the stiffness tensors b
zero. Clearly, this beam lattice results in a special case o
orthotropic continuum.

Fig. 13 A square beam lattice
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In the foregoing derivation, lattice nodes were taken
rigid objects. As Wozniak@30# showed, this model may b
generalized to a situation of deformable nodes, in which
we have

Ci jkm5 (
b51

4 Fni
~b!nj

~b! (
b'51

4

nk
~b!nm

~b!R~bb'!

1ni
~b!nj

~b!nk
~b!nm

~b!R̃~b!G
Di j 5 (

b51

4

ni
~b!nj

~b!S~b! (4.31)

where

R~bb'!5
d

12n~ I !n~ II !
F Ẽ~ I ! n~ I !Ẽ~ I !

n~ II !Ẽ~ II ! Ẽ~ II !

G
R̃~b!5

24E~b!I ~b!

~s~b!!3)
S~b!5

2E~b!I ~b!

s~b!)
(4.32)

Recently, an extension of such micropolar model
needed for wave propagation and vibration phenomena—
been carried out through the introduction of internal v
ables@38,39#. Such models, in contradistinction to the m
classical homogenization methods, do more correctly
count for the internal microstructure. For more recent w
on models of lattice structures, see@40#, and for mathemati
cal aspects of their homogenization consult@41#.

4.5 Non-local and gradient elasticity
on a lattice with central interactions

Let us now focus our attention on a lattice made of
central force structures with:structure I~a regular triangula
network with short range interactions! andstructure II ~three
regular triangular networks with long-range interaction!.
These structures are superposed in a way shown in Fig.
that a typical node communicates with its six nearest ne
bors via structure I, and with its six second neighbors
structure II. Generalizing the development of Section 2.3
central-force interaction in the spring connecting the nodr
andr8 is related to the displacementsu(r) andu(r8) of these
nodes by

Fi~r,r8!5F i j
rr8Duj~r,r8! (4.33)
as

se
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i-
e
c-

rk

o

so
h-
ia
he
s

where

F i j
rr85a rr8Dr iDr j Duj~r,r8!5uj~r8!2uj~r!

Dr i5r i82r i . (4.34)

Similar to the case of anti-plane elasticity,a rr8 is the spring
constant of a half-length of a given interaction. Howev
assuming the structures I and II to be made of two type
springs, respectively, we simply have two kinds of spr
constants:a I anda II . sI52l is the lattice spacing of struc
ture I, whilesII 5sI) is that of structure II.

A following question arises now: What continuum mod
should be set up to approximate this discrete system?
lowing @42#, three types of continuum models will now b
formulated: local, non-local, and strain-gradient.

a) Local continuum model
Proceeding as in Section 2.3 under conditions of unifo
strain, and postulating the equivalence of strain energy
unit cell of volumeV52) l due to all the spring constant

E5
1

2 (
r,r8

Fi~r,r8!Dui~r,r8!

5
1

2 (
r,r8

F i j
rr8Dui~r,r8!Duj~r,r8! (4.35)

to equal the strain energy of an effective continuum

Econtinuu jm5
1

2 EV
« i j Ci jkm«kmdV (4.36)

we determine an effective, local-type stiffness tensor

Ci jkm5Ci jkm
I 1Ci jkm

II (4.37)

where

Ci jkm
I 5

2

)
a I (

b51,2,3
ni

I ~b!nj
I ~b!nk

I ~b!nm
I ~b!

Ci jkm
II 5

6

)
a II (

b51,2,3
ni

II ~b!nj
II ~b!nk

II ~b!nm
II ~b! . (4.38)

The ni
I (b) andni

II (b) are given by Eq.~2.20!. The above ten-
sors are of the form~2.25!, so that
,

s
-
nd
h

Fig. 14 Two structures, I and II
resulting in a lattice with local
~nearest neighbor! and nonlocal
~second neighbor! interactions.
Note that the structure II consist
of three triangular networks hav
ing separate sets of nodes, a
that all these nodes coincide wit
the nodes of structure I.
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l I5m I5
3

4)
a I l II 5m I5

3

4)
a II (4.39)

b) Non-local continuum model
A non-local model should result in stresses at a point de
dent upon the deformation within the range of interacti
associated with the point. As a result, the more inhom
neous is the strain field, the closer is the non-local mod
grasping the actual strain state of the lattice. First, we
tribute the values of tensorsCi jkm

I andCi jkm
II at point r uni-

formly over the regions of interactions of structures I an
~Fig. 14!, and form a new tensorCi jkm(r,r8) such that

Ci jkm~r,r8!5Ci jkm
I ~r,r8!1Ci jkm

II ~r,r8!

Ci jkm
I ~r,r8!5

Ci jkm
I hI~r,r8!

AI

Ci jkm
II ~r,r8!5

Ci jkm
II hII ~r,r8!

AII (4.40)

Here AI5p(sI)2, AII 5p(sII )2 are the areas, whil
hI(r,r8) andhII (r,r8) are the characteristic functions of t
regions of interactions in the neighborhood ofr.

c) Strain-gradient continuum model
A strain-gradient model is similar to the non-local mode
that it resolves the local inhomogeneity of deformat
within the range of interactions associated with a continu
point. One begins here with a series expansion of the rel
displacement field involving two terms—linear a
quadratic—that is

Duj~r,r8!5« i j
r ~r j82r j !1 1

2g i jk
r ~r j82r j !~r k82r k! (4.41)

where

« i j
r 5u~ i , j !~r! g i jk

r 5«~ i , j ,k!~r! (4.42)

are gradients of the first and second orders, respective
the displacement field.

In view of Eq. ~4.43!, the elastic energy of the structu
~4.37! is now expressed as

E5
1

2 (
r,r8

F i j
rr8F« ik

r ~r k82r k!1
1

2
g ikm

r ~r k82r k!~r m8 2r m!G
1@« jm

r ~r m8 2r m!1 1
2g jmn

r ~r m8 2r m!~r n82r m!# . (4.43)

Noting the continuum form of energy

Econtinuum5
1

2 EV
~« i j Ci jkl «kl1g i jkCi jklmng lmn!dV (4.44)

one can identify

Ci jkl ~r,r8!5Ci jkl
I ~r,r8!1Ci jkl

II ~r,r8!

Ci jklmn~r,r8!5Ci jklmn
I ~r,r8!1Ci jklmn

II ~r,r8! (4.45)

where
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l to
dis-
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Ci jkl
I ~r,r8!5

2EIAI

)sI (
b51,2,3

ni
I ~b!nj

I ~b!nk
I ~b!nl

I ~b!

Ci jklmn
I ~r,r8!5

2EIAIsI

)
(

b51,2,3,
ni

I ~b!nj
I ~b!nk

I ~b!nl
I ~b!nm

I ~b!nn
I ~b!

(4.46)

with completely analogous formulas holding forCi jkl
II (r,r8)

and Ci jklmn
II (r,r8). Further considerations of these models,

especially in connection with the setup of boundary value
problems, the modeling of surface energy accounting for the
heterogeneity of material properties in the boundary layer of
the microstructure, and the determination of the internal
forces are given in@43#. The subject of higher order gradient
theories has received a lot of attention over the last decade,
eg, @44#.

4.6 Plate-bending response

We can apply the same approach as that outlined so far for
the in-plane problems, to the determination of effective
plate-bending response of a periodic beam network. We
sketch the basic ideas in terms of a triangular lattice, within
the assumptions of a Kirchhoff~thin! plate model. To this
end, we must consider out-of-plane deformations of a trian-
gular geometry lattice, Fig. 15. The kinematics is, therefore,
described by three functions—one out-of-plane displacement
and two rotations~with respect to thex1 andx2 axes!

u~x> ! w1~x> ! .w2~x> ! (4.47)

which coincide with the actual displacement~u! and rota-
tions (w1 ,w2) at the lattice vertices. Within each triangular
pore these functions may be assumed to be linear. It follows
then that the strain and curvature fields are related to
u, w1 , w2 by

kkl5w l ,k gk5u,k1«klw l . (4.48)

Fig. 15 A perspective view of a triangular geometry lattice, show-
ing the relevant internal loads in a beam cross section
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With reference to Fig. 15, the mechanical~force-
displacement and moment-rotation! response laws of eac
beam are given as

M ~b!5C~b!k~b! M̃ ~b!5E~b!I ~b!k̃ ~b!

P~b!5
12E~b!I ~b!

s~b! g̃~b! (4.49)

whereA(b)5taw is a cross-sectional area of the beam;I (b)

5ta
3w/12 is a centroidal moment of inertia of the cros

sectional area of the beam with respect to an axis norm
the plane of the lattice;s(b)52l (b) is the full length of each
beam. The mechanical quantities are as follows:C(b) is a
torsional stiffness of the beam;E(b) is Young’s modulus of
the beam;M (b) is an in-plane twisting moment in the beam
M̃ (b) is an out-of-plane bending moment in the beam;P(b) is
a shear force in the beam;g̃ (b) is a beam shear deformatio
andk (b) is a beam’s curvature.

The strain energy of the unit cell is

Ucontinuum5
V

2
k̄ i j Ci jkl

e f f k̄kl1
V

2
ḡ iAi j

e f fḡ j (4.50)

which is consistent with the Hooke’s law

mkl5Ci jkl kkl pk5Aklg l . (4.51)

Heremkl is the tensor of moment-stresses,pk is the vector of
shear tractions.

Proceeding in a fashion analogous to the in-plane p
lems, Wozniak@30# found

Ci jkl
e f f 5 (

b51

6

ni
~b!nk

~b!~nj
~b!nl

~b!S~b!1nj
~b!nl

~b!S̃~b!!

Ai j
e f f5 (

b51

6

ni
~b!nj

~b!R~b! (4.52)

where

S~b!5
C~b!

s~b! S̃~b!5
E~b!I ~b!

s~b! R& ~b!5
12E~b!I ~b!

s̃~b!~s~b!!2 (4.53)

In the case of a triangular lattice made of identical bea
~E(b)5E, etc!, we find

Ci jkl 5d i j dklD1d ikd j l Y1d i l d jkV Ai j 5d i j B (4.54)

in which

D5V5 3
8~S2S̃! Y5 3

8~S13S̃! B5 3
2R&

S5
2C

s)
S̃5

2EI

s)
R& 5

24EI

s3)
. (4.55)

Same type of derivation may be conducted for a lattice
rectangular geometry.

4.7 Honeycomb lattice of Timoshenko beams

Recent years have seen a growing activity in mechanic
foams and porous media. Here, a generic model is prov
by a honeycomb lattice of beams. By analyzing the rhomb
shaped cell of Fig. 5a with hexagons of side lengths, Wang
s-
l to

;

;

ob-

ms

of
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ded
us-

and Stronge@45# derived a micropolar model with the energ
of unit cell in the form ~4.7!. In particular, the non-zero
members of stiffness tensorsCi jkm andDi j were found as

C11115C22225
s)

4wE F S s

wD 2

13G
C11225C22115

s)

4wE F12S s

wD 2G
C12125C21215

s)

4wE F3S s

wD 2

11G
C12215C21125

s)

4wE F12S s

wD 2G
D115D225

12)

E S s

wD 3

(4.56)

whereE[E(b). Clearly, this beam lattice results in an isotr
pic continuum, and we note~recall Appendix again! that its
effective Poisson’s ratio is about unity.

We refer the reader to@46# for continuum-type fracture
analyses of porous materials with hexagonal as well
square and triangular microgeometries.

5 RIGIDITY OF NETWORKS

5.1 Structural topology and rigidity percolation

When considering a central force~or truss! system, a ques
tion of fundamental importance is whether such a structur
a sufficiently constrained system or not. In other words, i
an intrinsically rigid body? This is the subject matter of
field calledstructural topology. In the following, we provide
its basic concepts. Any central force network is a set of v
tices bars, or edges, and nodes~frictionless pivots!, or verti-
ces. We immediately have an edge setE, and a vertex setV,
so that the network is represented by a graphG(V,E). An
edge is an unordered pair of two vertices. Structural rigid
can be based on statics or on kinematics, and, as we sha
below, they are in a certain sense equivalent.

The statical approach involves, in the first place, the c
cept of an equilibrium load. A system of forces assigned
the nodes of a network is said to be anequilibrium load
if and only if ~iff! the sum of the assigned vectors is the z
vector, and the total moment of those vectors about any
point is zero. A network resolves an equilibrium loadiff there
is an assignment of tensions and compressions to all the
of E, such that the sum at each node is equal and opposi
its assigned load. A structure is said to be statically rigidiff it
resolves all equilibrium loads.

The kinematical approach involves the concept of an
finitesimal motion, which is an assignment of velocities to
the nodes ofV, such that the difference of velocities a
signed to the ends of any bar is perpendicular to the
itself. This means that the motion does not result in a
extension or compression of the bar. Every connected p
structure has at least three degrees of freedom~two transla-
tions and one rotation!, and this is called arigid motion. A
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structure is said to beinfinitesimally rigid iffall its infinitesi-
mal motions are rigid motions. These statical and kinem
cal pictures are connected by a theorem due to Crapo
Whiteley @47#: A structure is statically rigidiff it is infinitesi-
mally rigid.

A structure is said to beisostatic iff it is minimally rigid,
that is, when it is infinitesimally rigid. But, the removal
any bar introduces some infinitesimal motion. Clearly, in
isostatic structure all the bars are necessary to maintain
overall rigidity. In statics, this is called a statically determ
nate structure, as opposed to the indeterminate ones w
have more than a minimally sufficient number of bars for
global rigidity. It is a well known result that, in 2D, a dete
minate structure ofuVu nodes has edges numbering

uEu52uVu23 (5.1)

whereu u denotes the number of elements in a given set
an example, let us consider an incomplete triangular la
shown in Fig. 16. While it satisfies Eq.~5.1!, it is not at all
clear whether it is isostatic.

This example shows thatuEu52uVu23 is only a neces
sary, but not a sufficient condition for rigidity. The latter
provided by this theorem~eg,@48,49#!: A planar graph struc
ture is isostatic if and only if it has 2uVu23 bars, and for
every m, 2<m<uVu, no subset ofm nodes has more tha
2m23 bars connecting it. This, effectively, allows one
check whether the edges of the graph are not distrib
spatially in a uniform manner. If they are crowded loca
than the odds are that the structure is not isostatic.

The isostatic concept so far discussed falls in the cate
of generic rigidity, where only the topological information
a graph’s connectivity comes into picture. However, one m
also deal with the unexpected infinitesimal motions wh
say, two edges incident onto the same vertex lie on a stra
line. When dealing with very large systems—as encount
in condensed matter physics—we need to ask the ques
What critical fraction,pr , of edges ofE needs to be kept s
as to render the structure isostatic? We note that we w
have uE8u5pr uEu new edges of thus modified, or deplete
setuE8u. It follows immediately fromuE8u52uVu23 that we
would havepr52/3. This value is a simple estimate of t
so-calledrigidity percolation, a concept also useful in con
densed matter and biophysics, eg@50–52#. As shown in these
references, the actual critical point occurs at a little differ
value than 2/3; theoretical methods involved include ef

Fig. 16 A triangular lattice with 71 edges and 37 vertices; i
generically rigid.
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tive medium theories and spring network computations.
latter of these will be demonstrated later on the exampl
Delaunay networks.

Finally, it is important to keep in mind that the rigidit
percolation typically occurs above the connectivity perco
tion, ie, pr.pc . For example,pc for a triangular network
equals 1/3.

5.2 Rigidity of a graph of Poisson line field geometry

The Poisson line field@53# forms a classical model of a ce
lulose fiber network encountered in paper@54#. We now
identify the line segments~between any two consecutive in
tersections! to be edges ofE, and pivots to be vertices ofV.
Let us recall that the triple-fiber intersections occur w
probability zero for isotropic and anisotropic distributions
lines angles. Thus, we typically have vertices of connecti
4, ie, V4 .

Now, with reference to Fig. 17a, which shows a typica
realization of the Poisson line field, we see that there are
types of edges: those in direct contact with the square sh
window, and those entirely in the interior. Clearly, the squ
window is needed to prevent these boundary layer bo
from dangling, and this immediately renders the en

is

Fig. 17 Samples ofa! a planar Poisson line field andb! a finite
fiber field generated from~5.4! with a151 and all otherai ’s equal
zero. Test windows of sizeL3L are considered.c! Deformation of
a network of~b!, with 195 fibers at a preference in thex1-direction
at d52 with originally straight fibers, with fiber bending prese
subjected to axial straine1151%. d! The same network, with fibe
bending almost absent, subjected to axial straine1151%. All dis-
placements inc! and d! are magnified by a factor 8 for clarity
Figured! shows large, mechanism-type motions of the network
cluding those of some fibers which spring outside the original
main of the network.
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network a mechanism. However, one may argue that
boundary layer of dangling bonds is very thin relative to
whole field, and ask the question concerning the isos
condition for the graphG(V,E) representing the interior ne
work of edges not directly in contact with the square wind
boundary; these are shown in bold in Fig. 17a. Here we
observe that, while theV4 vertices occur in the interior o
this graph, its boundary involvesV2 and V3 vertices. Now,
since there are two vertices to every edge, we can calc
the total number of edges in the bold drawn graphG(V,E)
according to

uEu5uV2u1 3
2uV3u12uV4u (5.2)

Evidently, sinceV5V2øV3øV4 , the total number of al
the vertices is

uVu5uV2u1uV3u1uV4u (5.3)

so thatuEu,2uVu23. The system is not isostatic, it is unde
constrained~ie, a mechanism!. Given this observation, th
Poisson line field of axial force fiber segments~the so-called
Cox model@54#! is not a valid model of paper or any oth
solid material for that matter. The fact that the Cox mo
does give finite values for elastic moduli including the sh
modulus, is easily explained by the presence of fu
stretched fibers spanning the entire test window. The s
tion is analogous to a graph of a square lattice topolo
which, even though it is an obvious mechanism, will g
finite axial moduli in two directions if fully stretched an
subjected to kinematic boundary conditions.

In real networks, fibers have finite length, so their en
are loose. When fiber ends are removed to eliminate t
obvious mechanism motions, the number of vertices in
V2 andV3 increases. Consequently, Eq.~5.1! is even further
from being satisfied. In order to deal with finite fiber effec
Cox and others modified the basic model by a so-ca
shear-lag theory. However, the latter assumes single
segments to carry axial and shear forces only, which~see
Section 6!, is not a valid model of a solid element: fib
bending should also be included.

Paper exhibits finite stiffnesses in 2D as well as in 3D
the
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the latter case, condition~5.1! is replaced by an even mor
stringent one as more constraints are needed when de
with the additional degrees of freedom@49#.

5.3 Loss of rigidity in a fiber-beam network

Besides the foregoing structural topology consideratio
there is another fact which casts doubt on any fiber netw
model in which fiber segments are joined by pivots. Nam
any two cellulosic fibers have a finite contact area of hyd
gen bonding@55#, which would be sheared by hinge-typ
connections. While it is very difficult to assess experime
tally to what extent this region is deformable, our model w
treat it as somewhat deformable in the sense that bond
rigid, but have no dimension, and fiber segments are tre
as extensible beams from node to node of the graphG(V,E)
@56#. This modeling of mechanics of fiber networks is simi
to that of i! cement-coated wood strands composites@57#, ii !
highly porous materials@58#, andiii ! battery systems@59,60#.
In general, it is based on the following assumptions a
steps:

1! Generate a system of finite-length straight fibers such
shown in Fig. 17b according to specific geometric cha
acteristics: distribution of fiber lengths and widths, dist
bution of angular orientations of fiber chords, etc. T
fibers are laid in three dimensions on top of one anot
with a possible non-zero out-of-plane angle according
a Fourier series-type probability density function

p~u!5
1

p
~11a1 cos 2u1a2 cos 4u1...

1an cos 2nu1...! 0,u<p (5.4)
u is the angle a fiber makes with respect to thex-axis, and
it must be between zero andp.

2! Fibers are homogeneous, but each fiber may have di
ent dimensions and mechanical properties, all samp
from any prescribed statistical distribution.

3! Each fiber is a series of linear elastic 3D extensible
moshenko beam elements. Each of these is described
stiffness matrix written here in an abbreviated form set
in a corotational coordinate system@61#
F F
T

M y
a

Mz
a

M y
b

Mz
b

G53
EA

l
0 0 0 0 0

0
GJ

l
0 0 0 0

0 0 4a~ l 213g! 0 2a~ l 226g! 0

0 0 0 4b~ l 213h! 0 2b~ l 226h!

0 0 2a~ l 226h! 0 4a~ l 213g! 0

0 0 0 2b~ l 226h! 0 4a~ l 213g!

4 F
DL
Dux

uy
a

uz
a

uy
b

uz
b

G (5.5)
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where

g512
EIy

GA
h512

EIz

GA
a5

EIy

l ~12g1 l 2!
b5

EIz

l ~12h1 l 2!
.

(5.6)
HereF andT are the axial force and the twisting mome
while M y

a , Mz
a , M y

b , andM y
b , are the bending momen

around they andz axes at thea andb ends, respectively
Also, DL, Dux , uy

a , uz
a , uy

b , anduz
b denote axial elon

gation, angle of twist, and four angles of rotation. Fina
l, A, J, I x , and I y are, respectively, the length, cros
sectional area, cross-sectional polar moment of ine
and the moments of inertia with respect to thex and y
axes.E andG are the Young’s modulus and shear mo
lus of a fiber

4! All the intersection points are identified so as to set u
connectivity matrix.

5! Equilibrium is found under kinematic boundary con
tions ui5 ē i j xj .

6! All six effective, in-plane stiffness coefficients are det
mined from the postulate of equivalence of strain ene
stored in a square-shaped window of finite thickness w
the strain energy of an equivalent, hypothetical c
tinuum.

The undeformed network, shown in Fig. 17b in its top
view, has the following parameters: window size: 434
30.1 mma151, and other coefficients in Eq.~5.4! are zero;
fiber length: 2 mm; fiber width : 0.04 mm; fiber height: 0.0
mm. As a result of a Boolean process of fiber placement~eg,
@62#!, we obtain: 195 fibers with an average of 4.8 bonds
fiber, the whole system having 859 nodes with six degree
freedom per node.

A state of deformation corresponding to axial straine11

58% is shown in Fig. 17c. The analyzed strain is actual
1%, and displacements are magnified for clarity. Comp
this deformed network to that in Fig. 17d, which shows the
same network of fibers subjected to the same strain but
the ratio of fiber flexural stiffness to fiber axial stiffness
duced by a factor of 1024. Note the following:
1! The sharp kinks we see in both figures are only the

fact of simple computer graphics—the micromechan
model assumes fibers deform into differentiable curv
Magnification creates the appearance of large displ
ments. Actually, an infinitesimal displacement assump
is used in the computational mechanics program.

2! The kinks are far more pronounced when fibers have
flexural stiffness. Portions of the network where co
nected fibers do not form triangular pores can gene
significant forces in response to deformation when fib
have high flexural stiffness, but they cannot do so w
fibers rely almost entirely on axial stiffness. These p
tions of the network are not stable in the sense of los
generic rigidity discussed earlier.

3! We do not study this rigid-floppy transition by turning,
anad hocfashion, all the connections into pivots. Rath
with the model taking into account all the displaceme
and rotations of nodes, we can study it as a continu
function of fiber slenderness; see also@63#. Note that this
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aspect is impossible to investigate with models based o
central-force potentials for single fiber segments@64#.
Our model, thus, fills the gap pointed out in@65# consist-
ing of a need to set up finite element models of 3D dis-
ordered fiber networks, yet avoids their simplistic map-
ping into electrical resistor networks of the same
topology.

4! The network of fiber-beams, together with a two-scale
geometric disorder, offers a possible explanation of the
special orthotropy of paper in which the shear modulus is
effectively invariant with respect to rotations@66#.

6 SPRING NETWORK MODELS:
DISORDERED TOPOLOGIES

6.1 Load transfer mechanisms in heterogeneous media

The spring network models are most natural when applied t
systems that have the same topology as the underlying la
tice. One instinctive example has been discussed in Sectio
4.5: a cellulose fiber network. Another one is offered by a
granular medium. Here, the principal method of computa-
tional mechanics analyses, dating back to@67#, is called the
discrete element~DE! model.

Let us here employ a graph representation of the plana
granular medium: a graphG(V,E), whereby vertices of the
setV signify grain centers and edges of the setE represent
the existing grain-grain interactions, Fig. 18~a!. We fix an
r -u polar coordinate system at a grain’s center. There ar
several types of the DE model that one may consider.
• Central interactions: the total energy is a sum total of cen

tral interactions of all the edges
U5Ucentral (6.1)
and this model is a generalization of the basic model o
Section 2.3.

• Central and angular interactions: the total energy is modi
fied to
U5Ucentral1Uangular (6.2)
and, this model is a generalization of what we saw in Sec
tion 2.4. Continuum mechanics tells us thateuu equals
]r 21uu/]u1ur /r . This shows that the angular changes
Df/f between two adjacent edgesV1-V2 and V1-V3 in
Fig. 18 correspond to]r 21uu/]u in the r -u polar coordi-
nate system fixed at a grain’s center. This term does no
show up in two other expressions fore rr and e ru . How-
ever, ur /r is due to a radial displacement, and soDf/f
does not exactly equaleuu , which leads us to call it a
uu-type strain. We adopt the so-called Kirkwood model to
account forDf/f in addition to the normal grain-grain
interactions. Thus, we introduce angular springs of con
stantka acting between the edgesV1-V2 andV1-V3 inci-
dent onto the nodeV1 , Fig. 18d; the edges remain straight
throughout deformation.

• Central, shear and bending interactions: the total energy
U5Ucentral1Ushear1Umoment (6.3)
and, this model is a generalization of what we saw in Sec
tions 4.1 and 4.2, depending on the type of beam chosen
This is a typical DE model, which, of course, may be



t

t

s
r

r

tro-

n-
e-

i-

al

ts

Appl Mech Rev vol 55, no 1, January 2002 Ostoja-Starzewski: Lattice models in micromechanics 55
termed a locally inhomogeneous micropolar continuu
with inhomogeneity varying on the scale of grains; s
Section 6.2 below.

• Central, shear, bending, and angular interactions: the
energy is
One may argue that the three-point interaction should
introduced in the DE models so as to better represen
micromechanics, and to make, in accordance with F
18c, the strain
U5Ucentral1Ushear1Umoment1Uangular (6.4)
energy stored in a single Voronoi cell equal to Eq.~6.4!.
However, there exist successful DE models which acco
for normal and shear forces only@68,69#; this neglect of
the contact moment is justified by the fact that only sm
numerical errors are thus caused in problems of intere
granular materials. In the case of a regular, triangular a
of disks, this model is equivalent to a classical Born mo
of crystal lattices which is known to lack the rotation
invariance@70#.

6.2 Graph models of heterogeneous media

Let us pursue the planar graph representation of gran
media in some more detail, Satake@71,72#. First, we list in
Table 1 a correspondence between a system of rotund g
m,
ee

otal

be
the
ig.

unt

all
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ray
del
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ular

ains

and its graph model. Besides the vertex and edge sets in
duced earlier, we also have a loop setL.

With this geometric reference, we can set up an assig
ment of mechanical quantities—forces on the left and corr
sponding kinematic measures on the right—in Table 2.

The connectivity of the graph is described by the inc
dence matrixDne. Let us write down a total of 3uVu scalar
equilibrium equations, each one with respect to a typic
grain of radiusr n and volumeVn

Table 1.

assembly of grains graph index number of elemen

grain vertex v uVu
contacting point edge e uEu
void ~in 2D! loop l uLu

Table 2.

quantity notation
number of
elements notation quantity

body force Bv uVu uv grain displacement
body couple Nv uVu we grain rotation
contact force Fe uEu Due relative displacement
contact couple Me uEu Dwe relative rotation
rce,
s as
Fig. 18 a! A cluster of five grains showing the lines of interactions;b! a discrete element model showing the normal force, the shear fo
and the moment exerted by grains 2 and 3 each onto the grain 1;c! a most general model showing the same grain-grain interaction
before but augmented by an internal, angular spring constantka; andd! a simplified model adopted in this paper, showing only normal (kn)
and angular (ka) effects.
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DneF Fe

MeG1VnFBn

NnG50 (6.5)

where

D̃ne5F Dne 0

r nDnene3 DneG . (6.6)

Herene is the unit vector of edgee in the nonoriented graph
The operator~6.6! also plays a key role in the kinematics
all the edges

F Due

DweG52D̃enF un

wnG (6.7)

where

D̃en5FDen 2ne3r nDen

0 Den G . (6.8)

The kinematics is subject to 3uLu compatibility constraints
written for all the loops, where we make a reference
Satake’s work.

The above should be augmented by 3uEu constitutive
equations connecting the contact forceFe and contact mo
ment Me with the relative displacementDue and relative
rotation Dwe. Given 3 global equilibrium conditions, w
have a total of

3~ uVu211uEu1uLu!56uEu (6.9)

equations. Taking note of the Euler relationuVu2uEu1uLu
51, we see that this budget of equations agrees with the
of 6uEu unknowns-that is,Fe, Me, Due andDwe-defined on
edges of setE.

Finally, we note a formal analogy of~6.5! and~6.7! to the
equilibrium and strain-displacement equations of Coss
continua

DivFs

mG1F b
mG50 Fgk G5GradF u

wG . (6.10)

A similarity of compatibility relations for the graph and th
continuum descriptions has also been shown by Satake

6.3 Periodic graphs with topological disorder

Randomness may be introduced into periodic network
various ways. Figure 19 displays two basic possibilities:sub-

Fig. 19 Substitutionala! versus topological disorderb! of a hard-
core Delaunay network
.
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stitutional disorder andtopological disorder. The first of
these connotes a variability in properties per vertex~or
node!, while the second consists in a departure from the p
riodic topology and is therefore called atopological disorder.
There is also a third case, of much more interest in solid st
physics:geometric disorder, which involves the variability in
the geometry of a network’s structure—like uneven lengt
of various bonds—but preserving a topological period
structure@73#. The topological disorder is typically caused
by an incompatibility of crystal-like domains in a granula
material. The material may consist of equisized disks, whi
are organized into regular, periodic arrays, but the fact th
they happen to be differently oriented in space causes
irregular structure and network of domain boundaries.

As observed earlier in connection with the DE model, th
topological disorder leads to a locally inhomogeneous pol
or micropolar, continuum~depending on the type of vertex-
vertex interactions! with inhomogeneity varying on the scale
of grains. Such a continuum model contains a lot of info
mation, but, in the first place, one wants to establish t
effective, in the macroscopic sense, moduliCL

eff of the mate-
rial. For a non-polar~classical! continuum, these are ob-
tained from theperiodic boundary conditionson an L3L
squareB in 2D

ui~x>1L> !5ui~x> !1«> i j xj t i~x> !52t i~x>1L> !

;x>P]B. (6.11)

Here ē i j is the macroscopic strain,t i is the traction on the
boundary]B of B, and L> 5Le> i , with e> i being a unit base
vector. The periodicity means that the network topology
modified so as to repeat itself with some periodicityL in x1

and x2 directions, wherebyL is usually taken much larger
than the typical vertex-vertex spacing~or edge length!.

Let us now consider a disordered, planar, granular m
dium, whose microstructural connectivity is modeled by
Poisson-Delaunay planar tessellation graph; it is genera
from a realization of the Poisson point field inR2, eg, @58#.
Now, the periodic conditions~6.11! require that a periodic
network be set up, and this, in turn requires a periodic Po
son point field on theL3L square; topologically, this square
is a torus.

A typical realization B~v! of a periodic Poisson-Delaunay
network, numbering 200 vertices, is shown in Fig. 20. A s
of all such realizations$B(v);vPV%, whereV is a sample
space, forms a random mediumB; a singlev indicates one
realization of the Poisson point field and a chosen assig
ment of spring constants. In actual simulations, only
minute subset of the entire sample space can be investiga
but by the standard Monte Carlo and ergodicity argumen
this subset is representative of the whole system. Thus,
ready the response of a single network much larger than
grain size is sufficient to gain a good estimate ofCL

eff

([Ci jkl
eff ). The ensemble average of this tensor is isotropic f

a microstructure of space-homogeneous and isotropic sta
tics, but even one realization of the network should be clo
to isotropic.



t
t

t

o

o
c

i
s
e
a

n
u

c

n

3

d

2D
e

gy

xial
—one
pla-

n by
f

e sec-
s ratio

g

d

ces

Appl Mech Rev vol 55, no 1, January 2002 Ostoja-Starzewski: Lattice models in micromechanics 57
The procedure to calculate the effective modulik andmis
as follows: a given B~v! realization of the Delaunay ne
work, is subjected, separately, to two tests: a biaxial ex
sion ē115 ē22 and a shear deformationē1152 ē22. Actual
equilibrium state is found using a conjugate gradient meth
Next, by equating, in each test, the network’s energy to
of a 2D linear elastic equivalent continuum of areaV5L2

U5
V

2 Fk«̄ i i «̄ j j 12mS «̄ i j «̄ i j 2
1

2
«̄ i i «̄ j j D G (6.12)

the bulk and shear moduli, respectively, can be calcula
directly. Repeating this process in a Monte Carlo sense f
number of realizations~so as to remove the fluctuations!, the
network’s effective bulk and shear moduli are estimated.

In general, effective bulk and shear moduli display c
vex dependence on volume fraction that is characteristi
effective responses of many composite materials, eg@74#.
Additionally, we observe a softening of these moduli relat
to those corresponding to regular triangular networks-thi
caused by the topological disorder. More details on th
models, including a consideration of percolation in the c
of very high contrast two-phase systems is given in@75,76#.

Extensive studies of granular materials employing ki
matic rather than periodic boundary conditions and tr
large particle numbers, up to 50,000, were carried out
Rothenburg and co-workers, see@77–80#. Their solution
method was based on the already mentioned quasi-stati
merics of@67#, with focus being, among others, on: homo
enization and bounding via uniform strain or uniform stre
assumptions; circular versus elliptical particles; and statis
of geometrical quantities and contact displacements u
compressive and shearing loading.

APPENDIX: PLANAR CONTINUUM ELASTICITY

The constitutive relations of a linear elastic, isotropic
continuum are

«115
1

E3D
@s112n3D~s221s33!# «125

11n3D

E3D
s12

(A.1)

together with cyclic permutations 1→2→3, or, equivalently,

s i j 5l3D«kkd i j 12m3D« i j i , j ,k51,...,3. (A.2)

HereE3D , n3D , l3D andm3D stand for the conventional 3D
Young’s modulus, Poisson’s ratio, and Lame´ constants, all
the relations between these moduli being well known.

On the other hand, in 2D~or planar! elasticity, there is no
x3 direction and so«11, «22, «12 are the only strains an
s11, s22, s12 the only stresses. Thus, we have

«115
1

E
@s112ns22# «125

11n

E
s12 (A.3)

with cyclic permutation 1→2, or, equivalently,

« i j 5
11n

E Fs i j 2
n

11n
skkd i j G i , j ,k51,...,2. (A.4)
-
en-

od.
hat

ted
r a

n-
of

ve
is
se
se

e-
ly
by

nu-
g-
ss
tics
der

D

In these equations, we introduce a rule of writing the
moduli without any subscripts, so thatE andn stand for th
2D (or planar) Young’s modulusand2D Poisson’s ratio@16#;
some authors@81# use the term area moduli. Now, in analo
to ~A.2! above, we introduce the 2Dl and m moduli by
writing

s i j 5l«kkd i j 12m« i j (A.5)

and find the relations

E54m
l1m

l12m
n5

l

l12m
. (A.6)

Just like in the 3D elasticity, from three tests—unia
stress, hydrostatic stress, and simple shearing stress
can work out basic inequalities that hold between these
nar moduli

l12m.0 l1m.0 m.0 (A.7)

whereby we note that the planar shear modulus is give
the same formula in 2D as in 3D. Ifm obeys the third o
these inequalities, the first one is a consequence of th
ond and can be dropped. It is easy to see that, Poisson’
given by (A.6)2 assumes the value21, and, since

]n

]l
52

m

~l12m!2 .0 (A.8)

n increases monotonically on any vectorq parallel to thel
axis in thel, m-plane, tending towards 1 with21 increasin
distance from Q. Thus we note thatn ranges from21
through11, in contradistinction ton3D , which is bounde
by 21 and 1/2. Now, an inspection of~A.1!2 immediately

Fig. 20 A periodic Poisson-Delaunay network with 200 verti
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reveals that the planar shear modulus does not change, w
applying the concept of bulk modulus to relations~A.1!1 , we
infer the planar bulk modulusk, that is

k5
E

2~12n!
m5

E

2~11n!
. (A.9)

Two other very useful relations linking these tw
dimensional moduliE, n, k, andm can readily be inferred

4

E
5

1

k
1

1

m
n5

k2m

k1m
. (A.10)

Upon substitution of~A.5! into the balance laws i j , j50, we
find a planar Navier’s equation for the displacementui ~see
also,@45,46#!

mui , j j 1kuj , j i 50. (A.11)

We now examine the relation of planar elasticity to tw
well known special cases of 3D elasticity.

Plane strain

In that case, one requiresu350 in Eqs. ~A.1!–~A.2! along
with the independence of all the fields with respect to thex3

direction, so that«335«315«3250 and

«115
1

E3D
@~12n3D

2s112~n3D2n3D
2!s22

«125
11n3D

E3D
s12 (A.12)

again with the cyclic permutation 1→2. A comparison with
Eq. ~A.3! readily shows that the following relationships b
tween the 2D and the 3D moduli hold

1

E
5

11n3D
2

E3D

n

E
5

n3D1n3D
2

E3D

11n

E
5

11n3D

E3D
.

(A.13)

This is a mapping of two constants onto two constants,
that only two relations of the above three are independ
and it is easy to check that Eq.~A.13!3 is redundant. Of
particular interest is the relation between the plane st
Poisson’s ratio and the 3D Poisson’s ratio

n5
n3D

12n3D
. (A.14)

Clearly, the case ofn511 represents a planar incompres
ible material corresponding to the 3D incompressible ma
rial of n3D51/2.

Plane stress

In that case, one requiress335s315s3250 and the inde-
pendence of all the fields with respect to thex3 direction,
which leads to

«115
1

E
@s112ns22# «125

11n

E
s12 (A.15)
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with cyclic permutation 1→2. A comparison with Eq.~A.3!
readily shows that the following relationships between the
two-dimensional ~plane-stress! and the three-dimensional
moduli hold

1

E
5

1

E3D

n

E
5

n3D

E3D

11n

E
5

11n3D

E3D
(A.16)

The third of these relations is redundant, but the most impo
tant thing is that

E5E3D n5n3D m5m3D5
E

2~11n!
(A.17)

while the 2D bulk modulusk is

k5
E

2~12n!
(A.18)

Note that Eqs.~A.9!–~A.10! hold again.
Relations of planar isotropic elasticity shown here may b

generalized to orthotropic and general anisotropic material
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