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Abstract—Due to process variation in nanoscale manufactur-
ing, there may be permanently missing connections in infor-
mation processing hardware. Due to timing errors in circuits,
there may be missed messages in intra-chip communications,
equivalent to transiently missing connections. In this work, we
investigate the performance of message-passing LDPC decoders
in the presence of missing connections. We prove concentration
and convergence theorems that validate the use of density evo-
lution performance analysis. Arbitrarily small error probability
is not possible under miswiring, but we find suitably defined
decoding thresholds for communication systems with binary era-
sure channels and peeling decoders, as well as binary symmetric
channels and Gallager A decoders. We see that decoding is robust
to missing connections, as decoding thresholds degrade smoothly.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are prevalent due
to their performance near the Shannon limit with message-
passing decoders having efficient implementation [1]. With the
end of CMOS scaling near, there is interest in nanoscale circuit
implementations of decoders, but this introduces concerns
that process variation in manufacturing may lead to intercon-
nect patterns different than designed [2]–[4], especially under
self-assembly [5], [6]. Yield on manufactured chips deemed
perfectly operational is small, leading to rather expensive
industrial waste [7], but changing the paradigm of circuit
functionality from perfection to some small probability α of
missing connections may eliminate much wastage. It is of
interest to characterize chips with permanently missing con-
nections so that suitable error tolerances may be determined.

Process variation in manufacturing also causes fluctuation
in device geometries which might prevent them from meeting
timing constraints [8]. Such timing errors lead to missed
messages in intra-chip communications, equivalent to tran-
siently missing connections. It is also of interest to characterize
decoders with transiently missing connections.

Most work in fault-tolerant computing assumes the circuit
is constructed correctly and is concerned only with faults in
computational elements; as Elias says in classical work [9],
“papers assume that the wiring diagram is correctly drawn
and correctly followed in construction, but that computation
proper is performed only by unreliable elements.” The only
work we are aware of in fault-tolerant computing theory that
(briefly) discusses wiring errors is the monograph of Winograd
and Cowan [10].
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We had previously extended the method of density evolution
to decoders with faults in the computational elements and
showed that it is possible to communicate with arbitrarily
small error probability with noisy Gaussian belief propagation
[11]. Asymptotic characterizations were also determined for
Gallager A [11] and Gallager B decoders with transient noise
[12], [13], and both permanent and transient noise [14].
General belief propagation, not necessarily in decoding, has
also been studied [15]. Rather than noise in computational
elements, here we analyze the performance of message-passing
decoders with missing wiring and show that decoding thresh-
olds are robust, in the sense of degrading smoothly. This is
true for both transiently and permanently missing connections
in message-passing decoding circuits.

The celebrated results of Richardson and Urbanke [16]
developed density evolution for analyzing message-passing
decoders for LDPC codes that are correctly wired. Here we
extend those results, so we can use the density evolution
technique to characterize symbol error rate Pe, measuring
the fraction of incorrectly decoded symbols at the end of
message-passing decoding, even when the decoder has miss-
ing connections. Traditionally [16], there are thresholds for
channel noise level ε below which Pe can be driven to 0
with increasing blocklength n. Unfortunately with missing
connections in message-passing decoders, Pe cannot be driven
to 0 in general. Thus, following [11], we let η be an upper
bound to the final error probability that can be achieved by
decoders with missing connections after many iterations ` and
give thresholds to ε, below which lim`→∞P

(`)
e < η under

density evolution.
Sec. II gives mathematical models of LDPC decoders with

both transiently and permanently missing connections and
develops concentration and convergence theorems that provide
validity to density evolution analysis of Pe. Secs. III and IV
analyze the peeling decoder on the binary erasure channel
(BEC) and the Gallager A decoder on binary symmetric
channel (BSC) using density evolution, characterizing Pe with
missing connections. Sec. V concludes the paper by outlining
directions for further investigation.

II. MODEL AND PERFORMANCE ANALYSIS TOOLS

A. Ensemble of LDPC Codes and Channel

In this work we are concerned with the standard LDPC code
ensemble of (dv, dc)-regular codes of length n, which can be
defined by a bipartite Tanner graph with variable nodes of
degree dv and check nodes of degree dc. Later we also discuss
irregular codes, where the degree distribution of variable and



check nodes are denoted by functions λ(x) =
∑∞
d=2 λdx

d−1

and ρ(x) =
∑∞
d=2 ρdx

d−1. We consider this binary linear
code ensemble as over the alphabet {±1}. Although results
in this section are general, for convenience, let us think of the
communication channel as either BSC with output alphabet
{±1} or BEC with output alphabet {±1, “?”}.

B. Decoder and Missing Connections

The decoder operates by passing messages over the Tanner
graph of the code. For notational convenience, let us restrict
attention to decoders with messages in {±1, “?”}, but again
concentration and convergence results are general.

Now we introduce missing connections between the check-
node and variable-node modules. Connections may go missing
either permanently or transiently due to failures of intra-chip
communication. For a given decoder circuit, permanent failure
is modeled by removing each connection between variable and
check nodes with probability α independently from others,
before decoding starts. These connections are never active.
On the contrary, with transiently missing connections, each
connection is removed independently from others with prob-
ability α during each iteration of the decoding algorithm.
Our conversations with circuit designers suggest that when
an interconnect is broken in LDPC decoders, the measured
voltage at this open-ended wire is neither low nor high
in circuit signals; it is some undefined floating value that
may vary within a range. So, whenever there is a missing
connection between a variable node and a check node, we
assume that an erasure symbol “?” is exchanged.

C. Restriction to All-One Codeword

Under certain symmetry conditions of the code, the commu-
nication channel, and the message-passing decoder, the prob-
ability of error is independent of the transmitted codeword.
C1. Code Symmetry: Code is a binary linear code.
C2. Channel Symmetry: Channel is a binary memoryless

symmetric channel [17, Def. 4.3 and 4.8].
C3. Check Node Symmetry: If incoming messages of a

check node are multiplied by {bi ∈ {±1}}, then the
computed message is multiplied by

∏
i bi.

C4. Variable Node Symmetry: If the sign of each incoming
message is flipped, the sign of the computed message is
also flipped.

Proposition 1: Under conditions C1–C4, in the presence of
transiently or permanently missing connections, the probability
of error of a message passing decoder is independent of the
transmitted codeword.

Proof: It follows by mapping to 0 the erasure message
“?”, sent when a connection is missing. Thus the check-
to-variable and variable-to-check messages are the messages
computed at check node and variable node, respectively,
multiplied by either 1 (connection exists) or 0 (missing con-
nections). Thus, messages passed between check and variable
nodes satisfy the respective symmetry conditions [17, Def.
4.82]. Hence, the result follows by invoking [17, Lem. 4.92].

D. Concentration around Ensemble Average

We now show that the performance of LDPC codes decoded
with missing-connection decoders stays close to the expected
performance of the code ensemble for both transiently and
permanently missing connections. The approach follows [16]
and is based on constructing an exposure Martingale, obtaining
bounded difference constants, and using Azuma’s inequality.
Fix the number of decoding iterations at some finite ` and let Z
be the number of incorrect values held among all dvn variable
nodes at the end of `th iteration for a specific choice of code,
channel noise, and a decoder with missing connections. Let
E[Z] denote the expectation of Z.

Theorem 1 (Concentration Around Expected Value): There
exists a positive constant β = β(dv, dc, `) such that for any
ε > 0,

Pr[|Z − E[Z]| > ndvε/2] ≤ 2e−βε
2n.

Proof Sketch: Recall the Doob’s Martingale construction from
[16], and the bounded difference constants for exposing
channel noise realizations and the realized code connections,
together with Azuma’s inequality. The main difference here is
in the bounded differences due to the additional randomness
from missing connections.

For permanently missing connections, one can think of the
final connection graph being sampled from an ensemble of
irregular random graphs with binomial degree distribution with
average degrees (1−α)dc and (1−α)dv, bounded by maximum
degrees dc and dv. Hence, the result follows from the result
for correctly-wired irregular codes [16].

For transiently missing connections, the Martingale is con-
structed differently. Here instead of edges, for ` iterations,
we sequentially expose the realization of edges at different
iterations. Similar to [11] for transient noise, the Martingale
difference is bounded using the maximum number of edges
over which a message can propagate in ` iterations, using the
computation graph method. �

Note β will be smaller for transient than permanent mis-
wiring. The theorem extends directly to irregular LDPC codes.

E. Convergence to the Cycle-Free Case

We now show that the average performance of an LDPC
code ensemble converges to an associated cycle-free tree
structure, unwrapping a computation tree as in [16].

For an edge whose connected neighborhood with depth 2`
is cycle-free, let q denote the expected number of incorrect
values held along this edge at the end of `th decoding iteration.
The expectation is taken over the choice of code, the messages
received from the channel, and the realization of the decoder
with missing wires. The theorems hold for both transiently
and permanently missing connections.

Theorem 2 (Convergence to Cycle-Free Case): There exists
a positive constant γ = γ(dv, dc, `) such that for any ε > 0
and n > 2γ

ε ,
|E[Z]− ndvq| < ndvε/2.

Proof: The proof is identical to [16, Theorem 2].



Note that the basic idea of the proof is to show the probability
of repeats in the computation tree goes to zero with increasing
graph girth. This further implies that the density evolution
equations we will obtain for transiently and permanently
missing connections will be identical. In particular, in density
evolution the state variable x`+1 is computed based on the
x` of nodes immediately below in the infinite tree. Each
connection in the tree is encountered only once, and in case of
permanent failure each connection is present with probability
1− α.

Theorem 3 (Concentration around Cycle-Free Case): There
exists positive constants β = β(dv, dc, `) and γ = γ(dv, dc, `)
such that for any ε > 0 and n > 2γ

ε ,

Pr[|Z − ndvq| > ndvε] ≤ 2e−βnε
2

.

Proof: Follows directly from Theorems 1 and 2.
This tree-ensemble concentration result holds for all message-
passing decoders with missing connections. In the sequel, we
consider the special cases of peeling and Gallager A decoders.

III. PEELING DECODER FOR BINARY ERASURE CHANNEL

Consider the peeling decoder for a BEC(ε), with alphabet
{±1, “?”}. The check node computation is a product of all
messages ±1 it receives from neighboring variable nodes if
none is “?”, otherwise “?”. The variable node computation
is to send any ±1 symbol received either from the other
check nodes or from the channel, otherwise send ?. When
the connection between two nodes is missing, the message
exchanged is equivalent to “?”, so peeling extends naturally
to decoders with missing connections. Note that this decoder
satisfies the symmetry conditions C1–C4, so we can use
density evolution for the all-one codeword.

First we see that even in the non-asymptotic regime, perfor-
mance degrades with missing connections. Noise or miswiring
enhancement observed elsewhere does not hold [18], [19].

Lemma 1: For any finite LDPC code and finite number
of decoding iterations, for both permanently and transiently
missing connections, P

(`)
e (g, ε, α) increases monotonically

with α for a given ε.
Proof follows by coupling arguments. We couple two

missing-connection processes for different α to get a sample
path dominance of connections. Then we note the fact that
since no erroneous message is transmitted in peeling decoders
with perfect connections, missing connections can only de-
grade the performance.

A similar coupling argument yields an ordering relationship
with respect to channel erasure probability ε for a given α.

A. Density Evolution

Recall a peeling decoder allows alphabet {±1, “?”}: it
only outputs either a correct or erasure symbol. Consider a
regular (dv, dc) LDPC code, BEC(ε) channel with parameter
ε, and each wire that can be disconnected with the node
independently with probability α in each decoding iteration.
Let x0, x1, . . . , x` denote the fraction of erasures existing in

the code at each decoding iteration. The original received
message from the channel is erased with probability ε, so

Pe
(0)(ε, α) = x0 = ε.

Let qin and qout be the probabilities a node receives/sends
an erasure, respectively. At a variable node, the probability
a given internal incident variable is erased is the probability
both the external incident variable is erased and all other dv−1
nodes are either disconnected or connected but erased.

qout = ε[α+ (1− α)qin]dv−1

At a check node, the probability a given incident variable
will not be erased is the probability that all (dc − 1) other
internal incident variables are not erased or disconnected. So
the probability that a message is erased is

qout = 1− [(1− qin)(1− α)]dc−1.

Let fDE(x`, ε, α) = x`+1 be the recursive update function for
the fraction of errors between two consecutive iterations:

ε
[
α+ (1− α)

(
1− [(1− x`)(1− α)]dc−1

)]dv−1
,

or for irregular codes:

ελ (α+ (1− α) (1− ρ[(1− x`)(1− α)])) .

It is clear that fDE(ε, x, α) is non-decreasing in each of its
arguments, given the other two. Thus, a monotonicity result
similar to [17, Lem. 3.54] holds here. This in turn implies a
convergence result for x` similar to [17, Lem. 3.56]. For a
given α and ε, x` converges to the nearest fixed point, x =
fDE(ε, x, α).

Lemma 2: For any irregular code ensemble C∞(λ, ρ), there
exists a δ > 0, such that the probability of error P (∞)

e satisfies
P

(∞)
e − δ > ελ(1− (1− α)ρ(1− α)) > 0 with probability 1.

Proof: Since x` is monotonic, if x0 ≤ x1 then for any
`, x`+1 ≥ x` ≥ x`−1. Now, for x0 = 0, by substituting this
value in fDE ,

x1 = fDE(0, ε, α) = ελ(1− (1− α)ρ(1− α)) > 0 = x0.

This implies that lim`→∞ x` ≥ fDE(0, ε, α), for x0 = 0. But,
as x` converges to the fixed point nearest to x0, this implies
there is no fixed point in (0, fDE(0, ε, α)) for any α > 0.

B. Detailed Characterization

Now we use our density evolution equation to study final
error probability of decoders with missing connections. Clearly
for a peeling decoder, when ε = 0, the error probability stays
at 0 regardless of the quality of the decoder. When α = 0,
we recover the traditional decoding threshold [16]. Thus we
consider the system when ε > 0 and α > 0. Since it is
impossible to drive error probability to 0, we use a weaker
notation called the η-threshold [11], where small value η
limits the final decoding error probability Pe. This threshold
is defined to be:

ε∗(η, α) = sup{ε ∈ [0, 0.5]| lim
`→∞

P (`)
e < η}. (1)



Fig. 1. Final symbol error rate of decoding a C∞(3, 6) LDPC code under
peeling decoding algorithm with various missing connection probability α
over BEC(ε).

Fig. 2. Channel threshold of decoding a C∞(3, 6) LDPC code under peeling
decoding algorithm over BEC(ε) for different given final error η-thresholds.

The fixed points can be found by solving for the real
solutions to the following polynomial equation:

x− ε
[
α+ (1− α)

(
1− [(1− x)(1− α)]dc−1

)]dv−1
= 0.

Figs. 1 and 2 demonstrate a threshold phenomenon and show
that decoding is robust to missing connections. Results can
also be used to cast a performance equivalence between
resources to improve channel noise and decoder fidelity.

IV. GALLAGER A FOR BINARY SYMMETRIC CHANNEL

Consider a modification of the Gallager A decoder for a
BSC(ε), using an extended alphabet {±1, “?”}. For correctly
wired decoders, the check node computation is the XOR of
incoming variable-to-check messages, to enforce the parity
constraints of the code. When one of the symbols in the parity
is an unknown “?”, that parity check is no longer informative
since any bit of a binary linear code is equally likely to be ±1.
So, for decoders with missing connections we make a natural
adaptation: a message from check node c to variable node v is
“?” if any of the incoming messages from neighboring variable

nodes of c are “?”, otherwise it is the usual XOR. For variable-
to-check messages, a variable node v sends to c its received bit
yv from the channel if all other check node messages are not
−yv, otherwise it sends −yv. We make a natural adaptation:
send yv if all of the other unerased check node messages
are not −yv, otherwise send −yv. This modification of the
Gallager A algorithm satisfies symmetry conditions C1–C4.

Unlike in the peeling decoder for BEC, messages between
Gallager A nodes may be erroneous. So, for a sample path
realization of channel and missing connections, it may happen
that a missing connection prevents propagation of erroneous
messages. Hence, it is not apparent there is a stochastic dom-
inance result like Lem. 1 between two different probabilities
of missing connections.

A. Density Evolution
Assuming the all-one codeword is sent, we find x`+1, the

probability for a variable node to compute −1 at iteration
(` + 1), in terms of x`. First, note that a variable node in
the Gallager A adaptation never computes “?”, even though it
may receive (due to missing connections or check-node com-
putation “?”) or send “?” (only due to missing connections).
The probability of a check node computation being −1 is the
probability all (dc−1) variable nodes are connected and send
odd number of −1, denoted by p−1:

p−1 = (1− α)dc−1 (1− (1− 2x`)
dc−1)

2
,

Similarly, the probability of a check node computation being
+1 is the probability all (dc−1) variable nodes are connected
and send even number of −1, denoted by p+1:

p+1 = (1− α)dc−1 (1 + (1− 2x`)
dc−1)

2
,

where the results follow using [1, Sec. 4.3].
The probability of a check-to-variable message being “?”

is denoted by p0 = 1− p+1 − p−1 = 1− (1− α)dc−1.
Also, consider a binomial random variable V ∼ B(dv −

1, 1 − α) with probability density function pV (v) capturing
the number of check nodes connected to a variable node.

Now at iteration (` + 1), the fraction of incorrect values
held at a variable node is the sum of the probability of two
events. The first event is that the message received from the
channel is correct while none of the incoming messages from
the connected check nodes is correct, but not all of them are
“?” or only one says different while others are “?”, to break
the tie when there is degree-one node. The second event is
that the message received from the channel is wrong while at
least two of the incoming messages from the connected check
nodes are wrong, or all of them are “?”.

The probability of the first event is:

EV
[
(1− ε)[Pr{no connected check nodes sends 1}
− Pr{all V connected check nodes send “?”}
− Pr{one check node sends − 1 while others send “?”}]

]
=

dv−1∑
v=1

pV (v)(1− ε)[(p−1 + p0)
v − pv0 − p−1p0v−1].



Fig. 3. η-thresholds for decoding a C∞(3, 6) regular LDPC code with α-
missing wire Gallager A decoding algorithm over BSC(ε).

The probability of the second event is:

EV
[
ε[Pr{at least one connected check nodes sends − 1}

+ Pr{all V connected check nodes send “?”}]
]

=

dv−1∑
v=0

pV (v)ε[1− (p+1 + p0)
v + pv0].

Let x`+1 = fDE(x`, ε, α), and take the expectation of V to
get:

fDE =εαdv−1 +

dv−1∑
v=1

(
dv − 1

v

)
(1− α)vα(dv−1−v)

[
(1− ε)

[(p−1 + p0)
v − pv0 − p−1p0v−1] + ε[1− (p+1 + p0)

v + pv0]

]
.

It can be seen that fDE is monotonic in x for a given set of α
and ε. Hence, by the same arguments as for peeling decoders,
for any initial 0 ≤ ε = x0 ≤ 0.5, x` converges to the nearest
fixed point of the density evolution equation. Also, note form
the update equation that for ε, α > 0, x` = 0, f(x`, ε, α) > 0.
This implies a result similar to Lem. 2 here.

B. Detailed Characterization

We carried out analysis to find η-thresholds for communica-
tion under the Gallager A decoding with missing connections.
The result is in Fig. 3; recall for a (3, 6) regular LDPC code
with a perfect Gallager A decoder, the threshold is roughly
0.039 [16]. Note that Pe can be driven to a small number
even with the presence of missing wires. Decoding is robust
to missing connections, though less than the peeling decoder
over BEC.

V. CONCLUSION

This work analyzes message-passing decoders with both
transient and permanent missing connections in hardware,
deriving density evolution equations to characterize error
probability in peeling decoders for BEC and Gallager A
decoders for BSC. Although Pe cannot be driven to 0 in the
presence of missing connections, it can be suppressed to a
small value. That is, η-reliable communication is possible with
faulty decoders with missing connections. In a sense, even

when the encoder and decoder speak different languages, the
result is not catastrophic.

Future work involves considering not just decoders with
missing connections, but also miswired and noisy decoders.
One may also design new decoder architectures to ensure
reliable communication even with miswiring; for example,
horizontal connections, a crucial structure in the cortex con-
tributing to the filling in of the missing parts in visual images
[20, Ch. 8.33], can be added to decoder designs.
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