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Data Challenges in Modern Applications

In modern applications in science and engineering:
Models are always with large size of parameters (high-dimensional models).
Examples: graphical models, deep learning models.

Figure: When model complexity is high, it is easy to get over-fitted.

How to avoid over-fitting?
Regularization.

Picture Source: https://www.quora.com/What-is-the-best-way-to-explain-the-bias-variance-trade-off-in-layman
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Regularization

Why Regularization?
With regularization, we

incorporate prior subject knowledge, e.g., structure, smoothness.
stabilize the estimates.

Prior desired property when we have a high-dimensional model:
Can we recover a low-dimensional structure within the high-dimensional
parameter space that can represent the data?
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High dimensional model estimation (sparse estimation) is challenging both
theoretically and algorithmically.

Optimal Behavior in High Dimensional Model Estimation:
1 Accuracy in estimation.
2 Fast computation.
3 Optimality of theoretical properties.

(Optimal rate of convergence in estimation error & Structure recovery)
4 Ability to quantify model uncertainty.

Ideally, we want to achieve all the optimal behaviors simultaneously.
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High dimensional model estimation (sparse estimation) is challenging both
theoretically and algorithmically.

Optimal Behavior in High Dimensional Model Estimation:
1 Accuracy in estimation.
2 Fast computation.
3 Optimality of theoretical properties.

(Optimal rate of convergence in estimation error & Structure recovery)
4 Ability to quantify model uncertainty.

Model uncertainty is particularly important in automated decision areas,such as
medical diagnosis and self-driving cars where the safety of AI mechanisms is
critical.
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Review on Regularization Approaches: Penalized Likelihood

Penalized Likelihood Framework
Let Z be samples drawn from a distribution, the regularization framework have
the following form:

θ̂λ︸︷︷︸
Estimate

∈ arg min
θ∈Ω

{
− log f(θ;Z)︸ ︷︷ ︸

Loss function

+ Rλ(θ)︸ ︷︷ ︸
Penalty function

}
Popular forms of Rλ(θ) include:

variable
LASO

SCAD

MCP

L0
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Review on Regularization Approaches: Bayesian Approaches

Bayesian Framework
Suppose θ follows a prior distribution π(θ) and data given on parameter θ is
generated from f(·):

θ ∼ π(·),

Data|θ ∼ f(·).

Goal: estimate θ through the posterior distribution θ|Data.

Pros: modeling is flexible; model uncertainty is naturally quantified;
parameter inference is flexible, e.g., from posterior mode (MAP
estimator), mean.
Cons: to explore the whole posterior distribution (through MCMC
methods), computation cost is high.
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Connection between Bayesian and Penalized Likelihood Perspective

Estimating the MAP estimate of θ is equivalent to minimizing the following
objective function :

argmin
θ

L(θ),

where

L(θ) =− log π(θ|Data)

=− log
(
f(Data|θ)π(θ)/

∫
f(Data|θ)π(θ)dθ

)
=− log f(θ;Data)− log π(θ) + log

∫
f(θ;Data)π(θ)dθ

∝− log f(θ;Data) + ( − log π(θ)︸ ︷︷ ︸
Bayesian-induced penalty

).
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Spike and Slab Prior: Uncover the Sparse Structure

Suppose the parameter θ = [θ1, ..., θp].

Spike and Slab Lasso Prior
The cornerstone of our Bayesian formulation for sparse estimation is the
following spike and slab prior on θi:{

θi | ri = 0 ∼ f1(·)⇐ spike part,
θi | ri = 1 ∼ f2(·)⇐ slab part.

where ri follows
ri ∼ Bern(η).
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Different forms of the spike and slab priors

The original spike and slab prior:
the spike part is a point mass and the slab part is a uniform distribution
[Mitchell and Beauchamp, 1988].
Spike and slab normal prior:
the spike and slab parts are all Gaussian distributions and variance for the
slab prior is larger [George and McCulloch, 1997, Ishwaran and Rao, 2005].
Spike and slab Lasso prior:
the spike and slab parts are all Laplace distributions and variance for the
slab prior is larger
[Ročková and George, 2014, Ročková, 2016, Ročková and George, 2016].

Figure: An illustration of spike and slab prior
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Bayesian Regularization Framework

Specification
Our model formulation is given by:

Data|θ iid∼ f(·).

θi ∼ ηLP(0, v1) + (1− η)LP(0, v0).

Goal:
Maximum a posteriori (MAP) estimate of θ.

The posterior inclusion probability of ri|·.
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Bayesian Regularization Penalty
The “signal” indicator ri can be treated as latent and integrate it out, then we
get the Bayesian regularization function:

penSS(θi) = − log
∫
π(θi|ri)π(ri|η)dri

= − log
[(

η

2v1

)
e
− |θi|
v1 +

(1− η
2v0

)
e
− |θi|
v0

)]
,

which is a non-convex penalty.
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Pros & Cons of Non-convex Penalties
Pros: lead to desired shrinkage and selection behavior.
Cons: could bring additional computation and theoretical challenges
because the objective function could be non-convex.

Our Findings
If we constrain the parameter to be considered in a reasonable large space:

for Gaussian Graphical Model(discussed later), our optimization is strongly
convex with a unique optimal.
for Gaussian conditional random field, estimation error for all stationary
points are bounded.

Local Convexity

Right Figure Credit to: https://www.math.wustl.edu/˜kuffner/WHOA-PSI-2/LohSlides.pdf 14 / 62
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Efficient Computation
Utilizing the mixture distribution structure of the prior, we propose an
efficient EM algorithm that computes MAP estimate and posterior
probabilities simultaneously.
The computation cost is the same as computing the state-of-the-art Lasso
estimator for the same model.
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Gaussian Graphical Model

Problem Statement:

Y1, · · · , Yn
iid∼ Np(0,Θ−1).

Denote S = 1
n

∑
YiY

t
i as the sample covariance matrix of the data, then the

log-likelihood is given by

l(Θ) = logL(Θ) = n

2

(
log det(Θ)− tr(SΘ)

)
. (1)

Our target is to estimate Θ and also obtain an estimate of its support.
It is challenging particularly in high dimensional settings, e.g., when p > n,
the sample covariance matrix is even not invertible.
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Gaussian Graphical Model

A Well-known Fact:
Consider Undirected graph G=(V,E) with V is the vertex set and E is the
edge set.
When Y is multivariate Gaussian, no edge between (Y (i), Y (j))
⇔ Y (i) |= Y (j)|Y −(i,j) ⇔ θi,j = 0.a

aY (i) is the i-th entry in Y . Y = (Y (1), ..., Y (p)).
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To make this problem applicable under the high-dimensional scenario,
assumptions need to be made.

Sparsity Assumption
The sparsity assumption is the most common and practical useful one
[Dempster, 1972]. It assumes that the majority of the entries are zero, while
only a few entries in Θ are non-zero.
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Literature Review

Penalized Likelihood
Minimize the negative log-likelihood function with an element-wise penalty on
the off-diagonal entries of Θ, i.e.,

arg min
Θ

[
− n

2

(
log det(Θ)− tr(SΘ)

)
+ λ

∑
i<j

pen(θij)
]
.

The penalty function pen(θij) is often taken to be Lasso
[Yuan and Lin, 2007, Banerjee et al., 2008, Friedman et al., 2008],
SCAD, which is a non-convex penalty, has also been used
[Fan et al., 2009].
Theoretical results: estimation errors in Frobenius norm have been studied
in [Rothman et al., 2008, Lam and Fan, 2009]; support recovery and
estimation errors in `∞ norm have been studied in
[Ravikumar et al., 2011, Loh and Wainwright, 2014].
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Literature Review

Motivation for the Sparse Regression Framework

For 1 ≤ i ≤ p, Y (i) is expressed as Y (i) =
∑

j 6=i βijY
(j) + εi such that εi is

uncorrelated with Y −(i) if and only if βij = −(θij/θii). Moreover, for such
defined βij , var(εi) = (1/θii), cov(εi, εj) = θij/(θiiθjj).

Regression

In sparse regression framework, every Y (i) is regressed on the other
variables Y −(i) and the coefficients are estimated jointly in a sparse way.
Implicitly, they are modeling with under the likelihood

∏
i
P (Y (i)|Y −(i)),

instead of P (Y ).a [Meinshausen and Bühlmann, 2006, Peng et al., 2009]
aDenote Y = (Y (1), · · · , Y (p)).
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Literature Review

Other Work
CLIME estimator [Cai et al., 2011]:
Let Θ̂ be the solution set of the following optimization problem:

min ||Θ||1 subject to:
|SΘ− I| ≤ λ.

Find matrix with the smallest `1 norm within a local neighborhood around the
inverse sample covariance matrix.
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Literature Review

Bayesian Methods
Several Bayesian approaches have also been proposed.
Prior specification:
Laplace priors [Wang, 2012]; G-Wishart priors [Carvalho and Scott, 2009,
Dobra et al., 2011, Wang and Li, 2012, Mohammadi et al., 2015]; Mixture
prior distributions that have a point-mass and a Laplace distribution
[Banerjee and Ghosal, 2015].
Pros: a natural way to quantify uncertainty.
Cons: slow in computation because of the high computational cost of
sampling methods.
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Our contributions

1 Propose a new approach for precision matrix estimation using the Bayesian
regularization framework.

2 With mild conditions, we show the optimal estimation error rate in the `∞
norm and selection consistency under both exponential and polynomial tail
distributions.

3 A fast EM algorithm which produces the MAP estimate of the precision
matrix and (approximate) posterior probabilities on all the edges is
proposed.
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Model Specification

Y1, · · · , Yn|Θ
iid∼ Np(0,Θ−1).

θij ∼ ηLP(0, v1) + (1− η)LP(0, v0) i < j

θji = θji

θii ∼ Ex(τ)

Our target is the MAP estimate of Θ and the posterior inclusion probability of
rij |·. We restrict the support of the parameter Θ in the posterior to satisfy
‖Θ‖2 ≤ B.

The multivariate Gaussian distribution is a “working” likelihood for our
inference. Performance is also guaranteed for the observations with
non-Gaussian distributions including those with polynomial tails or
exponential tails (more on this later).
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Penalized Likelihood Perspective

This is equivalent to minimizing the following objective function under the
constraint ‖Θ‖2 ≤ B and Θ � 0:

L(Θ) = − log π(Θ|Y1, · · · , Yn)

= n

2

(
tr(SΘ)− log det(Θ)

)
+
∑
i<j

penSS(θij) +
∑
i

pen1(θii)

where pen1(θ) = τ |θ|.

We call our method BAGUS, short for Bayesian Regularization for Graphical
Models with Unequal Shrinkage.
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Posterior Maximization and Local Convexity

Pros & Cons of Non-convex Penalties
Pros: lead to desired shrinkage and selection behavior.
Cons: could bring additional computation challenges and may have
multiple local optima as the objective function could be no longer convex .

Theorem (Local Convexity)

If B ≤ (2nv0) 1
2 , then minΘ�0,‖Θ‖2≤B L(Θ) is a strictly convex problem.

Even though the penalty is non-convex, we are dealing with convex
optimization and it results in a unique MAP estimate.
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Assumptions

(A1) λmax(Θ0) ≤ 1/k1 <∞ or equivalently 0 < k1 ≤ λmin(Σ0).

(A2) The minimal “signal” entry satisfies min
(i,j)∈Sg

|θ0
ij | ≥ K0

√
log p
n

, where

K0 > 0 is a sufficiently large constant not depending on n.
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Rate of Convergence

Assume condition (A1) holds. For any pre-defined constants C3 > 0, τ0 > 0,
when the exponential tail (C1) or the polynomial tail (C2) condition holds.
Assume that:
i) v0, v1, η, and τ satisfied certain conditions (shown in Appendix);

ii) the spectral norm B satisfies 1
k1

+ 2d(C1 +C3)MΓ0

√
log p
n

< B < (2nv0) 1
2 ,

iii) the sample size n satisfies
√
n ≥M

√
log p,

Theorem (Estimation Accuracy in Entrywise `∞ Norm)

Then, the MAP estimator Θ̃ satisfies

‖Θ̃−Θ0‖∞ ≤ 2(C1 + C3)MΓ0

√
log p
n

.

with probability greater than 1− δ1, where δ1 = 2p−τ0 when condition (C1)
holds, and δ1 = O(n−δ0/8 + p−τ0/2) when condition (C2) holds.
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Theorem (Selection Consistency)
Assume the same conditions in previous Theorem and condition (A2) with the
following restriction:

ε0 <
1

log p log
(
v1(1− η)
v0η

)
< (C4 − C3)

(
K0 − 2(C1 + C3)KΓ0

)
for some arbitrary small constant ε0 > 0. Then, for any T such that
0 < T < 1, we have

P
(
Ŝ0 = S0

)
→ 1.
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Comparison with Existing Results

Graphical Lasso [Ravikumar et al., 2011]:
Graphical Lasso assumes the relatively restrictive irrepresentable condition,
|||ΓScgSgΓ−1

SgSg
|||∞ ≤ 1− α.

Under the polynomial tail condition, the rate of convergence for Graphical

Lasso is Op
(√

pc

n

)
, slower than our rate Op

(√
log p
n

)
.

CLIME [Cai et al., 2011] :
CLIME assumes the boundedness of |||Θ0|||1, which is strictly stronger
than our condition on the largest eigenvalue.
Non-convex Penalties like SCAD, MCP [Loh and Wainwright, 2014] :
They require beta-min condition (minimal signal strength to be greater
than some threshold) for the results on estimation error.
Their results are only available for sub-Gaussian distributions.
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EM Algorithm

We treated rij as latent and derive an EM algorithm to obtain a
maximum a posterior (MAP) estimate of Θ in the M-step and the
posterior distribution of rij , denoted as pij , in the E-step.
E-step: compute the posterior distribution of rij .
M-step: optimize the following optimization problem:

argmin
Θ�0,||Θ||2≤B

(
L(Θ) +

∑
i,j

λ(θij)|θij |

)
, (2)

where λ(θij) = pij
v1

+ 1−pij
v0

.
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M-step

The updating scheme is in the fashion of updating one column and one
row at a time. Similar strategy has been used in [Friedman et al., 2008]
and [Mazumder and Hastie, 2012].
Without loss of generality, we describe the updating rule for the last
column of Θ while fixing the others.

We list the following equalities from WΘ = Ip which will be used in our
algorithm:[

W11 w12
· w22

]
=

Θ−1
11 + Θ−1

11 θ12θ
T
12Θ−1

11
θ22−θT12Θ−1

11 θ12
− Θ−1

11 θ12

θ22−θT12Θ−1
11 θ12

· 1
θ22−θT12Θ−1

11 θ12

 . (3)
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M-step

Given Θ11, we will update the last column (θ12, θ22). To do that, we set the
subgradient of Q with respect to (θ12, θ22) to zero.
First take the subgradient of Q with respect to θ22:

∂Q

∂θ22
= n

2
1

θ22 − θT12Θ−1
11 θ12

− n

2 (s22 + τ) = 0. (4)

Due to Equations (3) and (4), we have

w22 = 1
θ22 − θT12Θ−1

11 θ12
= s22 + 2

n
τ,

which leads to the following update for θ22:

θ22 ←
1
w22

+ θT12Θ−1
11 θ12. (5)
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M-step

Next take the subgradient of Q with respect to θ12:

∂Q

∂θ12
=n

2

( −2Θ−1
11 θ12

θ22 − θT12Θ−1
11 θ12

− 2s12

)
−
( 1
v1
p12 + 1

v0
(1− p12)

)
� sign(θ12)

=n(−Θ−1
11 θ12w22 − s12)−

( 1
v1
p12 + 1

v0
(1− p12)

)
� sign(θ12) = 0,

(6)

where � denotes element-wise multiplication. The second line of (6) is due to
the identities in (3).
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To update θ12, we solve the following stationary equation with coordinate
descent, under the constraint ‖Θ‖2 ≤ B:

ns12 + nw22Θ−1
11 θ12 +

( 1
v1
P12 + 1

v0
(1− P12)

)
� sign(θ12) = 0. (7)

Algorithm 1 Coordinate Descent for θ12

1: Initialize θ12 from the previous iteration as the starting point.
2: repeat
3: for j in 1 : (p− 1) do
4: Solve the following equation for θ12j :

ns12j+nw22Θ−1
11 j,\jθ12\j+nw22Θ−1

11 j,jθ12j+
[( 1
v1
P12+ 1

v0
(1−P12)

)
�sign(θ12)

]
j

= 0.

5: end for
6: until Converge or Max Iterations Reached.
7: If ‖Θ‖2 > B : Return θ12 from the previous iteration
8: Else: Return θ12
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Algorithm 2 BAGUS
1: Initialize W = Θ=I
2: repeat
3: Update P with each entry pij updated as log pij

1−pij
←
(

log v0
v1

+

log η
1−η −

|θ(t)
ij
|

v1
+
|θ(t)
ij
|

v0

)
.

4: for j in 1 : p do
5: Move the j-th column and j-th row to the end (implicitly), namely

Θ11 := Θ−j−j , θ12 := θ−jj , θ22 := θjj
6: Update w22 using w22 ← s22 + 2

n
τ

7: Update θ12 by solving (7) with Coordinate Descent for θ12.
8: Update θ22 using θ22 ← 1

w22
+ θT12Θ−1

11 θ12.
9: Update W using (3).

10: end for
11: until Converge
12: Return Θ, P
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Properties of the Algorithm

Our algorithm always ensures the symmetry and positive definiteness of the
precision matrix estimation outputted.

Theorem (Positive Definiteness & Symmetry)
The estimate of Θ is always guaranteed to be symmetric.
If Θ(0) > 0, i.e the initial estimate of precision matrix is positive definite,
then Θ(t) > 0, ∀t ≥ 1.

For well-known algorithms including Graphical Lasso [Friedman et al., 2008],
SPACE [Peng et al., 2009], CLIME [Cai et al., 2011], the positive definiteness
is not guaranteed [Mazumder and Hastie, 2012].
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Simulation Studies

1 Model 1: An star model with wii = 1 and w1,i = 1, wi,1 = 1/√p for
i 6= 1.

2 Model 2: An AR(2) model wii = 1, wi,i−1 = wi−1,i = 0.5 and
wi,i−2 = wi−2,i = 0.25.

3 Model 3: A circle model with wii = 2, wi,i−1 = wi−1,i = 1, and
w1,p = wp,1=0.9

4 Model 4: Random Edge Model.

For each model, three scenarios will be considered: Case 1: n = 100, p = 50;
Case 2: n = 100, p = 100; Case 3: n = 100, p = 200.

Metrics
Average Selection accuracy and L2 distance between the estimates and the
truths on 50 replications.
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True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the star
structure

True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the AR(2)
structure
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True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the circle
structure

True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the random
structure
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Figure: ROC Curves for different methods and different data generating models with
p = 50.
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Table: Model 1: Star

n = 100, p = 50
Fnorm Specificity Sensitivity MCC

GLasso 2.301(0.126) 0.687(0.015) 0.998(0.004) 0.339(0.011)
CLIME 3.387(0.401) 0.452(0.051) 0.971(0.023) 0.168(0.021)
SPACE 2.978(0.244) 0.972(0.039) 1.000(0.003) 0.824(0.163)
BAGUS 1.053(0.107) 1.000(0.000) 1.000(0.000) 1.000(0.000)

n = 100, p = 100
Fnorm Specificity Sensitivity MCC

GLasso 4.219(0.118) 0.715(0.007) 0.989(0.008) 0.260(0.005)
CLIME 4.818(0.449) 0.998(0.004) 0.336(0.000) 0.131(0.067)
SPACE 3.207(0.311) 0.987(0.022) 0.996(0.024) 0.842(0.162)
BAGUS 1.499(0.138) 1.000(0.000) 1.000(0.000) 1.000(0.000)

n = 100, p = 200
Fnorm Specificity Sensitivity MCC

GLasso 3.028(0.068) 0.947(0.003) 0.999(0.002) 0.389(0.009)
CLIME 5.595(0.528) 0.978(0.018) 0.000(0.000) -0.014(0.006)
SPACE 3.735(0.294) 0.985(0.007) 1.000(0.000) 0.656(0.138)
BAGUS 2.006(0.100) 1.000(0.000) 1.000(0.001) 1.000(0.001)
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Table: Model 2: AR(2)

n = 100, p = 50
Fnorm Specificity Sensitivity MCC

GLasso 3.361(0.240) 0.479(0.056) 0.981(0.015) 0.251(0.028)
CLIME 3.758(0.381) 0.822(0.054) 0.906(0.039) 0.472(0.053)
SPACE 5.903(0.070) 0.982(0.004) 0.608(0.038) 0.656(0.029)
BAGUS 3.671(0.291) 0.997(0.002) 0.551(0.032) 0.707(0.025)

n = 100, p = 100
Fnorm Specificity Sensitivity MCC

GLasso 8.130(0.035) 0.901(0.007) 0.745(0.028) 0.382(0.017)
CLIME 5.595(1.578) 0.837(0.075) 0.821(0.191) 0.371(0.085)
SPACE 9.819(0.083) 0.991(0.002) 0.566(0.025) 0.625(0.021)
BAGUS 5.330(0.369) 0.998(0.001) 0.549(0.018) 0.707(0.022)

n = 100, p = 200
Fnorm Specificity Sensitivity MCC

GLasso 11.728(0.045) 0.990(0.001) 0.478(0.017) 0.481(0.014)
CLIME 11.552(0.382) 0.989(0.004) 0.580(0.031) 0.539(0.028)
SPACE 13.696(0.079) 0.995(0.000) 0.518(0.018) 0.588(0.013)
BAGUS 8.214(0.548) 0.998(0.001) 0.543(0.015) 0.677(0.027)
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Table: Model 3: Circle

n = 100, p = 50
Fnorm Specificity Sensitivity MCC

GLasso 4.319(0.174) 0.492(0.064) 1.000(0.000) 0.196(0.024)
CLIME 5.785(0.440) 0.555(0.026) 1.000(0.000) 0.221(0.010)
SPACE 19.402(0.232) 0.930(0.006) 1.000(0.000) 0.595(0.019)
BAGUS 4.253(0.578) 0.993(0.004) 0.964(0.029) 0.903(0.049)

n = 100, p = 100
Fnorm Specificity Sensitivity MCC

GLasso 6.981(0.192) 0.647(0.005) 1.000(0.000) 0.189(0.002)
CLIME 19.282(2.802) 0.224(0.226) 0.995(0.015) 0.069(0.058)
SPACE 27.737(0.345) 0.975(0.010) 0.994(0.008) 0.674(0.062)
BAGUS 6.012(0.513) 0.996(0.002) 0.957(0.032) 0.895(0.055)

n = 100, p = 200
Fnorm Specificity Sensitivity MCC

GLasso 7.664(0.209) 0.752(0.003) 1.000(0.000) 0.172(0.001)
CLIME 33.009(0.535) 0.857(0.154) 0.769(0.167) 0.209(0.052)
SPACE 32.142(0.832) 0.981(0.012) 0.783(0.212) 0.485(0.129)
BAGUS 10.378(1.001) 0.995(0.001) 0.886(0.033) 0.752(0.028)
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Table: Model 4: Random Graph

n = 100, p = 50
Fnorm Specificity Sensitivity MCC

GLasso 7.017(0.256) 0.877(0.010) 0.766(0.039) 0.417(0.027)
CLIME 11.347(0.452) 0.971(0.012) 0.614(0.068) 0.572(0.042)
SPACE 12.278(0.183) 1.000(0.000) 0.073(0.031) 0.257(0.051)
BAGUS 5.811(0.357) 0.999(0.001) 0.443(0.032) 0.637(0.027)

n = 100, p = 100
Fnorm Specificity Sensitivity MCC

GLasso 11.851(0.900) 0.837(0.047) 0.720(0.049) 0.285(0.033)
CLIME 12.649(1.587) 0.735(0.153) 0.761(0.120) 0.243(0.123)
SPACE 17.706(0.203) 1.000(0.000) 0.068(0.015) 0.236(0.028)
BAGUS 8.754(0.366) 0.999(0.001) 0.400(0.022) 0.598(0.022)

n = 100, p = 200
Fnorm Specificity Sensitivity MCC

GLasso 15.054(0.356) 0.951(0.012) 0.633(0.029) 0.307(0.017)
CLIME 23.568(0.954) 0.993(0.004) 0.469(0.048) 0.492(0.038)
SPACE 24.997(0.213) 0.999(0.000) 0.090(0.014) 0.221(0.024)
BAGUS 13.096(0.522) 0.999(0.000) 0.382(0.050) 0.565(0.032)
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Telephone Call Center Arrival Data Prediction

Forecast the call arrival pattern from one call center in a major U.S.
northeastern financial organization.
The training set contains data for the first 205 days. The remaining 34
days are used for testing.
In the testing set, the first 51 intervals are assumed observed and we will
predict the last 51 intervals, using the following relationship:

f(Y2i|Y1i) =N(u2 −Θ−1
22 Θ21(Y1i − u1),Θ−1

22 )

Error Metric
To evaluate the prediction performance, we used the same criteria as
[Fan et al., 2009], the average absolute forecast error (AAFE):

AAFEt = 1
34

239∑
i=206

|ŷit − yit|

where ŷit and yit are the predicted and observed values.
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Telephone Call Center Arrival Data

From the results shown, our method has shown a significant improvement in
prediction accuracy when compared with existing methods.
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Figure: Prediction Error for the call center cata: AAFEt on Y axis and t on X axis.

Average Prediction Error
Sample GLasso Adaptive Lasso SCAD CLIME BAGUS

Average AAFE 1.46 1.38 1.34 1.31 1.14 1.00
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Figure: Sparsity structures estimated for different methods for the call center data

The estimated structure from BAGUS is the most sparse one.
Even with a sparse model, average prediction error for BAGUS is the
smallest.
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Conclusion

1 Propose a new approach for precision matrix estimation, named BAGUS,
with Bayesian Regularization.

2 Both numerically and theoretically, the Bayesian regularization method we
proposed works very well.
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Conclusion

We have observed promising results of Bayesian regularization in various
models we studies.
Hope its success demonstrated in our work will motivate further interest in
this direction.
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The following theorem gives estimation accuracy under the entrywise `∞ norm.
In particular, the following theorem implies that with an appropriate choice of

v0, v1, η and τ , we could achieve the Op
(√

log p
n

)
error rate for distributions

with an exponential or a polynomial tail.
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Notation

For a p× p matrix A = [aij ], we denote its spectral norm by
‖A‖2 = λmax(A), |||A|||∞ = max1≤j≤q

∑p

i=1 |aij |.
Let Θ0 = [θ0

ij ] and Σ0 = [σ0
ij ] denote the true precision matrix and

covariance matrix.
Let S0 = {(i, j) : θ0

ij 6= 0} denote the index set of all nonzero entries in
Θ0 and S0c is its complement.
Define MΣ0 =

∣∣∣∣∣∣Σ0
∣∣∣∣∣∣
∞

.

Define Γ = Θ−1 ⊗Θ−1 as the Hessian matrix of g := − log det(Θ). We
further denote MΓ0 =

∣∣∣∣∣∣∣∣∣Γ0−1
S0S0

∣∣∣∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣(Θ0 ⊗Θ0)S0S0

∣∣∣∣∣∣
∞

.

Define the column sparsity d = max
i=1,2,...,p

card{j : θ0
ij 6= 0} and the

off-diagonal sparsity s = card(S0)− p, where card denotes the cardinality
of the set in its argument.
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Assumptions

(A1) λmax(Θ0) ≤ 1/k1 <∞ or equivalently 0 < k1 ≤ λmin(Σ0).

(A2) The minimal “signal” entry satisfies min
(i,j)∈Sg

|θ0
ij | ≥ K0

√
log p
n

, where

K0 > 0 is a sufficiently large constant not depending on n.

Tail Conditions
(C1) Exponential tail condition: Suppose that there exists some 0 < η1 < 1/4

such that log p
n

< η1 and

EetY
(j)2
≤ K for all |t| ≤ η1, for all j = 1, . . . , p

where K is a bounded constant.
(C2) Polynomial tail condition: Suppose that for some γ, c1 > 0, p ≤ c1nγ , and

for some δ0 > 0,

E|Y (j)|4γ+4+δ0 ≤ K, for all j = 1, . . . , p.
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Theorem
(Estimation accuracy in entrywise `∞ norm)
Assume condition (A1) holds. For any pre-defined constants C3 > 0, τ0 > 0,
define C1 = η−1

1 (2 + τ0 + η−1
1 K2) when the exponential tail condition (C1)

holds, and C1 =
√

(θ0
max + 1)(4 + τ0) when the polynomial tail condition (C2)

holds. Assume that
i) the prior hyper-parameters v0, v1, η, and τ satisfy

1
nv1

= C3

√
log p
n

(1− ε1), 1
nv0

> C4

√
log p
n

v2
1(1−η)
v2

0η
≤ pε, and τ ≤ C3

n
2

√
log p
n

(8)

for some constants ε1 > 0, C4 > C3 and some sufficiently small ε,
ii) the spectral norm B satisfies 1

k1
+ 2d(C1 +C3)MΓ0

√
log p
n

< B < (2nv0) 1
2 ,

and
iii) the sample size n satisfies

√
n ≥M

√
log p,

where M = max
{

2d(C1 + C3)MΓ0 max
(

3MΣ0 , 3MΓ0MΣ0
3, 2
k2

1

)
, 2C3ε1

k2
1

}
.

Then, the MAP estimator Θ̃ satisfies

‖Θ̃−Θ0‖∞ ≤ 2(C1 + C3)MΓ0

√
log p
n

. (9)

with probability greater than 1− δ1, where δ1 = 2p−τ0 when condition (C1)
holds, and δ1 = O(n−δ0/8 + p−τ0/2) when condition (C2) holds.
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