

Estimating Sparse Precision Matrix with Bayesian Regularization

Lingrui Gan, Naveen N. Narisetty, Feng Liang

Department of Statistics University of Illinois at Urbana-Champaign

Problem Statement Graphical Representation Sparsity Assumption

Table of Contents

- Introduction
 - Problem Statement
 - Graphical Representation
 - Sparsity Assumption
- 2 Model Specification
- 3 EM Algorithm
- 4 Asymptotic
 - Rate of Convergence
 - Selection Consistency
- 6 Empirical Studies
 - Simulation Studies
 - Real Application

Problem Statement Graphical Representation Sparsity Assumption

Introduction

Problem Statement:

$$Y_1, \cdots, Y_n \stackrel{iid}{\sim} \mathsf{N}_p(0, \Theta^{-1}).$$

Denote $S = \frac{1}{n} \sum Y_i Y_i^t$ as the sample covariance matrix of the data, then the log-likelihood is given by

$$l(\Theta) = \log L(\Theta) = \frac{n}{2} \Big(\log \det(\Theta) - \operatorname{tr}(S\Theta) \Big).$$
(1)

 Our target is to estimate with respect to Θ, the precision matrix.

Problem Statement Graphical Representation Sparsity Assumption

Graphical Representation

Well-known Fact:

- Consider Undirected graph G=(V,E) with V is the vertex set and E is the edge set
- Edge (α, β) not exists $\Leftrightarrow \alpha \underline{\parallel} \beta | V \setminus (\alpha, \beta) \Leftrightarrow \Theta_{\alpha, \beta} = 0$

Due to the relationship between precision matrix and graph, our problem of interest is often called **Gaussian Graphical Model**.

Examples: gene network in biology and financial network.

Problem Statement Graphical Representation Sparsity Assumption

Financial Network[Gan and Liang, 2016]

Problem Statement Graphical Representation Sparsity Assumption

To make this problem applicable under the high-dimensional scenario, assumptions need to be made.

Sparsity Assumption

The sparsity assumption is the most common and practical useful one [Dempster, 1972]. It assumes that the majority of the entries are zero, while only a few entries in Θ are non-zero.

Problem Statement Graphical Representation Sparsity Assumption

Literature Review

Penalized Likelihood

Minimize the negative log-likelihood function with an element-wise penalty on the off-diagonal entries of $\Theta,$ i.e.,

$$\arg\min_{\Theta} \Big[-\frac{n}{2} \Big(\log \det(\Theta) - \operatorname{tr}(S\Theta) \Big) + \lambda \sum_{i < j} \operatorname{pen}(\theta_{ij}) \Big].$$

- The penalty function pen(θ_{ij}) is often taken to be L₁ [Yuan and Lin, 2007, Banerjee et al., 2008, Friedman et al., 2008],
- but SCAD is also been used [Fan et al., 2009].
- Asymptotic properties have been studied in [Rothman et al., 2008, Lam and Fan, 2009]

Problem Statement Graphical Representation Sparsity Assumption

Literature Review

Regression

Sparse regression model is estimated separately in each column of Θ.
 Implicitly, they are modeling with under the likelihood Π_i P(Y[i,]|Y[-i,]), instead of P(Y).^a

[Meinshausen and Bühlmann, 2006, Peng et al., 2009]

^aDenote $\mathbf{Y} = (Y_1, \cdots, Y_n).$

• Other work: [Liu et al., 2009, Ravikumar et al., 2011]; CLIME estimator[Cai et al., 2011];

Problem Statement Graphical Representation Sparsity Assumption

Literature Review

Bayesian Regularization

- Several Bayesian approaches have also been proposed [Wang, 2012, Banerjee and Ghosal, 2015, Gan and Liang, 2016].
- However, Bayesian methods are not in wide use in this fields, because of the high computation cost of MCMC.

EM Algorithm Asymptotic Empirical Studies

Table of Contents

Graphical Representation Sparsity Assumption Model Specification Rate of Convergence Selection Consistency Simulation Studies Real Application

EM Algorithm Asymptotic Empirical Studies

Spike and Slab Prior

Double Exponential Spike and Slab Prior

The cornerstone of our Bayesian formulation is the following spike and slab prior on the off diagonal entries θ_{ij} (i < j):

$$\begin{cases} \theta_{ij} \mid r_{ij} = 0 & \sim & \mathsf{DE}(0, v_0). \\ \theta_{ij} \mid r_{ij} = 1 & \sim & \mathsf{DE}(0, v_1). \end{cases}$$

where $0 \le v_0 < v_1$ and r_{ij} for all i, j, follows

 $r_{ij} \sim \mathsf{Bern}(\eta).$

EM Algorithm Asymptotic Empirical Studies

Penalized Likelihood Perspective

Bayesian Regularization Function

The "signal" indicator r_{ij} can be treated as latent and integrate it out, then we get the Bayesian regularization function:

$$\mathsf{pen}(\theta_{ij}) = -\log \int \pi(\theta_{ij}|r_{ij})\pi(r_{ij}|\eta)dr_{ij}$$

EM Algorithm Asymptotic Empirical Studies

Model Specification

$$\begin{split} Y_1, \cdots, Y_n | \Theta \overset{iid}{\sim} \mathsf{N}_p(0, \Theta^{-1}). \\ \theta_{ij} \sim \eta \mathsf{DE}(0, v_1) + (1 - \eta) \mathsf{DE}(0, v_0) \quad i < j \\ \theta_{ji} = \theta_{ji} \\ \theta_{ii} \sim \mathsf{Ex}(\tau) \end{split}$$

The full posterior distribution $\pi(\Theta, R | \mathbf{Y}_{1:n})$ is proportional to

$$f(\mathbf{Y}_{1:\mathbf{n}}|\Theta)\Big(\prod_{i< j} \pi(\theta_{ij}|r_{ij})\pi(r_{ij}|\eta)\prod_{i} \pi(\theta_{ii}|\tau)\Big)$$
(2)

where $R_{p \times p}$ is a matrix with binary entries r_{ij}

Introduction Model Specification

> Asymptotic Empirical Studies

Table of Contents

- Problem Statement
- Graphical Representation
- Sparsity Assumption
- Model Specification
- EM Algorithm
- 4 Asymptotic
 - Rate of Convergence
 - Selection Consistency
- 6 Empirical Studies
 - Simulation Studies
 - Real Application

Introduction Model Specification

> Asymptotic Empirical Studies

- We treated R as latent and derive an EM algorithm to obtain a maximum a posterior (MAP) estimate of Θ in the M-step and the posterior distribution of R in the E-step.
- The updating scheme is in the similar fashion with [Friedman et al., 2008], i.e. updating one column and one row at a time.

Introduction Model Specification

> Asymptotic Empirical Studies

Algorithm 1 EM Algorithm 1: If n < p: Initialize W = sample covariance matrix S 2: Else: Initialize $W = S + \text{diag}(\frac{2\tau}{n}, ..., \frac{2\tau}{n})$ 3: Initialize $\Theta = W^{-1}$ 4: repeat Update P with 5: $-\log \frac{p_{ij}}{1-n_i} = \left(\log \frac{n_i}{n_i} + \log \frac{\eta}{1-n} - \frac{|\theta_{ij}|}{n_i} + \frac{|\theta_{ij}|}{n_i}\right)$ for j in 1:p do 6: Move the *j*-th column and *j*th row 7. to the end (implicitly), namely $\Theta_{11} =$ $\Theta_{i \mid j}, \ \theta_{12} = \theta_{j}, \ \theta_{22} = \theta_{j}$ Save $W^{0} = W$, $\Theta^{0} = \Theta$ 8: Update w_{22} using $w_{22} \leftarrow s_{22} + \frac{2}{2}\tau$ 9: Update W_{12} using 10: $w_{12} \leftarrow s_{12} + \frac{1}{nm}P_{12} \odot sign(\theta_{12}) + \frac{1}{nm}(1 - P_{12}) \odot sign(\theta_{12})$ 11: Update θ_{12} using $\theta_{12} \leftarrow -\frac{\Theta_{11}W_{12}}{W_{12}}$ 12: Update θ_{22} using $\theta_{22} \leftarrow \frac{1-w_{12}^T\theta_{12}}{w_{12}}$ 13: Update Θ If $Q(\Theta|\Theta^0) < Q(\Theta^0|\Theta^0)$: $W \leftarrow$ 14: W^0 , $\Theta \leftarrow \Theta^0$ end for 15: 16: until Converge 17: Return Θ . P

Asymptotic Empirical Studies

Our algorithm always ensures the symmetry and positive definiteness of the precision matrix estimation outputted.

Theorem

(Symmetry) The estimate of Θ is always guaranteed to be symmetric.

Theorem

(Positive Definiteness) If $\Theta^{(0)} > 0$, i.e the initial estimate of precision matrix is positive definite, $\Theta^{(t)} > 0$, $\forall t \ge 1$.

For the existing algorithms, the positive definiteness of the estimate usually doesn't hold [Mazumder and Hastie, 2012].

Introduction Model Specification EM Algorithm

Rate of Convergence Selection Consistency

Empirical Studies

Table of Contents

- Graphical Representation
- Sparsity Assumption
- 2 Model Specification
- 3 EM Algorithm
- 🕘 Asymptotic
 - Rate of Convergence
 - Selection Consistency
- 5 Empirical Studies
 - Simulation Studies
 - Real Application

Introduction Model Specification EM Algorithm

Rate of Convergence Selection Consistency

Empirical Studies

Asymptotic

Theorem (Rate of Convergence)

Under the regularity conditions (A)-(B), if

$$n\sqrt{\frac{\log p}{n}} \leq \frac{1}{v_0} \leq n\sqrt{\frac{(p+s)\log p}{sn}}$$
, $\log(\frac{v_1}{v_0}) \succeq \frac{(p+s)\log p}{\sqrt{s}}$ and
 $\tau \leq n(\sqrt{\frac{\log p}{n}})$, then there exists a local minimizer $\hat{\Theta}$, which is
positive definite and symmetric, and it satisfies

$$|\hat{\Theta} - \Theta_0\|_F^2 = O_p\{(p+s)\log p/n\}$$

Introduction Model Specification EM Algorithm

Rate of Convergence Selection Consistency

Empirical Studies

Theorem (Selection Consistency)

Under the same conditions given in previous theorem and regularity conditions on the signal strength^a, for any constant C > 0, we have

$$P(\max_{(i,j)\notin S_g}\log\frac{p_{ij}}{1-p_{ij}}<-C)\to 1$$
(3)

and

$$P(\min_{(i,j)\in S_g} \log \frac{p_{ij}}{1 - p_{ij}} > C) \to 1$$
(4)

Consequently,

$$P(\hat{S}_g = S_g) \to 1 \tag{5}$$

^aDenote S_g as the true signal set

Simulation Studies Real Application

Table of Contents

Introduction

- Problem Statement
- Graphical Representation
- Sparsity Assumption
- 2 Model Specification
- 3 EM Algorithm
- 4 Asymptotic
 - Rate of Convergence
 - Selection Consistency
- 5 Empirical Studies
 - Simulation Studies
 - Real Application

Simulation Studies Real Application

Simulation Studies

- **O** Model 1: An AR(1) model with $w_{ii} = 1$, $w_{i,i-1} = w_{i-1,i} = 0.5$
- **(a)** Model 2: An AR(2) model $w_{ii} = 1$, $w_{i,i-1} = w_{i-1,i} = 0.5$ and $w_{i,i-2} = w_{i-2,i} = 0.25$.
- **3** Model 3: A circle model with $w_{ii} = 2$, $w_{i,i-1} = w_{i-1,i} = 1$, and $w_{1,p} = w_{p,1} = 0.9$
- O Model 4: Random Select Model.

For each model, three scenarios will be considered: Case 1: n = 100, p = 50; Case 2: n = 200, p = 100; Case 3: n = 100, p = 100.

Metrics

Average Selection accuracy and L_2 distance between estimates and truths on 50 replications.

Simulation Studies Real Application

Table: Model1 AR(1)

n = 100, p = 50					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	2.058(0.080)	0.478(0.039)	1(0)	0.188(0.015)	
SPACE	9.763(0.133)	0.908(0.007)	1(0)	0.533(0.015)	
Bayes EM	2.143(0.401)	0.997(0.004)	0.998(0.007)	0.961(0.038)	
Sample	17.743(2.147)	NA	NA	NA	
n = 200, p = 100					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	2.421(0.073)	0.553(0.006)	1.000(0.000)	0.155(0.002)	
SPACE	13.919(0.080)	0.936(0.009)	1.000(0.000)	0.478(0.035)	
Bayes EM	3.716 (0.971)	0.998(0.003)	0.998(0.006)	0.951(0.055)	
Sample	24.044(1.175)	NA	NA	NA	
n = 100, p = 100					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	3.012(0.081)	0.571(0.006)	1.000(0.000)	0.161(0.002)	
SPACE	14.097(0.159)	0.940(0.010)	1.000(0.002)	0.491(0.037)	
Bayes EM	2.916(0.309)	1.000(0.001)	1.000(0.001)	0.990(0.018)	
Sample	NA	NA	NA	NA	

Model 1

An AR(1) model with $w_{ii} = 1$, $w_{i,i-1} = w_{i-1,i} = 0.5$

Simulation Studies Real Application

Table: Model2 AR(2)

n = 100, p = 50					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	3.361(0.240)	0.479(0.056)	0.981(0.015)	0.251(0.028)	
SPACE	5.903(0.070)	0.982(0.004)	0.608(0.038)	0.656(0.029)	
Bayes EM	3.256(0.276)	0.988(0.008)	0.644(0.070)	0.712(0.038)	
Sample	17.882(2.144)	NA	NA	NA	
n = 200, p = 100					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	4.315(0.073)	0.559(0.007)	0.998(0.003)	0.219(0.003)	
SPACE	10.810(0.077)	0.991(0.001)	0.796(0.027)	0.784(0.019)	
Bayes EM	3.185(0.215)	0.995(0.002)	0.867(0.029)	0.864(0.023)	
Sample	24.273(1.269)	NA	NA	NA	
n = 100, p = 100					
	Fnorm	Specificity	Sensitivity	MCC	
GLasso	8.130(0.035)	0.901(0.007)	0.745(0.028)	0.382(0.017)	
SPACE	9.819(0.083)	0.991(0.002)	0.566(0.025)	0.625(0.021)	
Bayes EM	6.552(0.308)	0.998(0.004)	0.491(0.042)	0.663(0.024)	
Sample	NA	NA	NA	NA	

Model 2

 $\begin{array}{l} \text{An } AR(2) \mbox{ model } w_{ii} = 1, \\ w_{i,i-1} = w_{i-1,i} = 0.5 \mbox{ and } \\ w_{i,i-2} = w_{i-2,i} = 0.25. \end{array}$

Simulation Studies Real Application

Table: Model3 Circle Model

n = 100, p = 50						
	Fnorm	Specificity	Sensitivity	MCC		
GLasso	4.319(0.174)	0.492(0.064)	1.000(0.000)	0.196(0.024)		
SPACE	19.402(0.232)	0.930(0.006)	1.000(0.000)	0.595(0.019)		
Bayes EM	3.338(0.416)	0.979(0.008) 1.000(0.003)		0.812(0.053)		
Sample	35.509(4.291)	NA	NA	NA		
n = 200, p = 100						
	Fnorm	Specificity	Sensitivity	MCC		
GLasso	4.787(0.223)	0.515(0.020)	1.000(0.000)	0.145(0.006)		
SPACE	27.708(0.196)	0.971(0.009)	0.999(0.004)	0.645(0.066)		
Bayes EM	6.541(1.548)	0.981(0.005)	1.000(0.000)	0.717(0.047)		
Sample	48.105(2.354)	NA	NA	NA		
n = 100, p = 100						
	Fnorm	Specificity	Sensitivity	MCC		
GLasso	6.981(0.192)	0.647(0.005)	1.000(0.000)	0.189(0.002)		
SPACE	27.737(0.345)	0.975(0.010)	0.994(0.008)	0.674(0.062)		
Bayes EM	6.603(1.497)	0.975(0.008)	1.000(0.000)	0.673(0.064)		
Sample	NA	NA	NA	NA		

Model 3

A circle model with $w_{ii} = 2$, $w_{i,i-1} = w_{i-1,i} = 1$, and $w_{1,p} = w_{p,1} = 0.9$

Simulation Studies Real Application

Table: Model4 Random Select Model

n = 100, p = 50					
Fnorm	Specificity	Sensitivity	MCC		
7.017(0.256)	0.592(0.027)	0.839(0.042)	0.236(0.025)		
13.519(0.573)	0.999(0.001)	0.179(0.059)	0.390(0.071)		
7.438(0.718)	0.987(0.007)	0.477(0.053)	0.563(0.048)		
17.232(1.971)	NA NA		NA		
n = 200, p = 100					
Fnorm	Specificity	Sensitivity	MCC		
8.597(0.164)	0.722(0.007)	0.891(0.019)	0.259(0.007)		
18.276(0.536)	0.999(0.000)	0.168(0.050)	0.371(0.059)		
7.816(0.397)	0.997(0.002)	0.498(0.039)	0.644(0.019)		
23.433(1.065)	NA NA		NA		
n = 100, p = 100					
Fnorm	Specificity	Sensitivity	MCC		
11.85(0.900)	0.837(0.047)	0.720(0.049)	0.285(0.033)		
17.706(0.203)	1.000(0.000)	0.068(0.015)	0.236(0.028)		
10.847(0.230)	0.999(0.000)	0.286(0.019)	0.498(0.023)		
NA	NA	NA	NA		
	Fnorm Fnorm 7.017(0.256) 13.519(0.573) 7.438(0.718) 17.232(1.971) Fnorm 8.597(0.164) 18.276(0.536) 7.816(0.397) 23.433(1.065) Fnorm 11.85(0.900) 17.706(0.203) 10.847(0.230) NA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Model 4

Random Select Model. Specifically, the model generating process is:

- Set the diagonal entry to be 1.
- 2 Randomly selected $1.5 \times p_n$ of the edges and set them to be random number uniform from

 $[0.4, 1] \cup [-1, -0.4].$

- First sum the absolute values of the off-diagonal entries, and then divide each off-diagonal entry by 1.1 fold of the sum
 - Average this rescaled matrix with its transpose to ensure symmetry.
- 5 Multiple each entry by σ^2 , which set to be 3 here.

Simulation Studies Real Application

Telephone call center arrival data prediction

- Forecast the call arrival pattern from one call center in a major U.S. northeastern financial organization.
- The training set contains data for the first 205 days. The remaining 34 days are used for testing.
- In the testing set, the first 51 intervals are assumed observed and we will predict the last 51 intervals, using the following relationship:

$$f(Y_{2i}|Y_{1i}) = \mathsf{N}(u_2 - \Theta_{22}^{-1}\Theta_{21}(Y_{1i} - u_1), \Theta_{22}^{-1})$$

Error Metric

To evaluate the prediction performance, we used the same criteria as [Fan et al., 2009], the average absolute forecast error (AAFE):

$$\mathsf{AAFE}_t = \frac{1}{34} \sum_{i=206}^{239} |\hat{y}_{it} - y_{it}|$$

where \hat{y}_{it} and y_{it} are the predicted and observed values.

Simulation Studies Real Application

Telephone call center arrival data

From the results shown, our method has shown a significant improvement in prediction accuracy when compared with existing methods.

Figure: Prediction Error

Average Prediction Error						
	Sample	Lasso	Adaptive Lasso	SCAD	SS Lasso	
Average AAFE	1.46	1.39	1.34	1.31	1.05	

Simulation Studies Real Application

- We propose a Bayesian model, using Spike and Slab Prior, for Gaussian Graphical Model.
- **2** An EM algorithm is derived to achieve the fast computation.
- Simultaneous estimation and selection consistency of our method is proved.
- Impirical Studies have shown promising results.

Simulation Studies Real Application

References I

Simulation Studies Real Application

References II

Gan, L. and Liang, F. (2016).

A bayesian em algorithm for graphical model selection.

Lam, C. and Fan, J. (2009).

Sparsistency and rates of convergence in large covariance matrix estimation. Annals of Statistics, 37(6B):4254.

Liu, H., Lafferty, J., and Wasserman, L. (2009).

The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. *Journal of Machine Learning Research*, 10(Oct):2295–2328.

Mazumder, R. and Hastie, T. (2012).

The graphical lasso: New insights and alternatives. *Electronic journal of statistics*, 6:2125.

Meinshausen, N. and Bühlmann, P. (2006).

High-dimensional graphs and variable selection with the lasso. *The Annals of Statistics*, pages 1436–1462.

Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009).

Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486):735–746.

Simulation Studies Real Application

References III

 Ravikumar, P., Wainwright, M. J., Raskutti, G., Yu, B., et al. (2011).
 High-dimensional covariance estimation by minimizing ?1-penalized log-determinant divergence. Electronic Journal of Statistics. 5:935–980.

Rothman, A. J., Bickel, P. J., Levina, E., Zhu, J., et al. (2008).

Sparse permutation invariant covariance estimation. *Electronic Journal of Statistics*, 2:494–515.

Wang, H. (2012).

Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis, 7(4):867–886.

Yuan, M. and Lin, Y. (2007).

Model selection and estimation in the gaussian graphical model. *Biometrika*, 94(1):19–35.