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Introduction

Problem Statement:

Y
1

, · · · , Yn
iid≥ Np(0, �

≠1

).

Denote S =

1

n

q
YiY

t
i as the sample covariance matrix of the

data, then the log-likelihood is given by

l(�) = log L(�) =

n

2

1
log det(�) ≠ tr(S�)

2
. (1)

Our target is to estimate with respect to �, the precision
matrix.
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Graphical Representation

Well-known Fact:
Consider Undirected graph G=(V,E) with V is the vertex set
and E is the edge set
Edge (–, —) not exists … – |= —|V \ (–, —) … �–,— = 0

Due to the relationship between precision matrix and graph, our
problem of interest is often called Gaussian Graphical Model.
Examples: gene network in biology and financial network.
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Financial Network[Gan and Liang, 2016]

150 Random Sample Network
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To make this problem applicable under the high-dimensional
scenario, assumptions need to be made.

Sparsity Assumption
The sparsity assumption is the most common and practical useful
one [Dempster, 1972]. It assumes that the majority of the entries
are zero, while only a few entries in � are non-zero.
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Literature Review

Penalized Likelihood
Minimize the negative log-likelihood function with an element-wise
penalty on the o�-diagonal entries of �, i.e.,

arg min

�

Ë
≠ n

2

1
log det(�) ≠ tr(S�)

2
+ ⁄

ÿ

i<j

pen(◊ij)

È
.

The penalty function pen(◊ij) is often taken to be L
1

[Yuan and Lin, 2007, Banerjee et al., 2008,
Friedman et al., 2008],
but SCAD is also been used [Fan et al., 2009].
Asymptotic properties have been studied in
[Rothman et al., 2008, Lam and Fan, 2009]
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Regression
Sparse regression model is estimated separately in each
column of �.
Implicitly, they are modeling with under the likelihoodr

i P (Y[i, ]|Y[≠i, ]), instead of P (Y).a
[Meinshausen and Bühlmann, 2006, Peng et al., 2009]

a

Denote Y = (Y1, · · · , Yn).

Other work: [Liu et al., 2009, Ravikumar et al., 2011]; CLIME
estimator[Cai et al., 2011];
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Bayesian Regularization
Several Bayesian approaches have also been proposed
[Wang, 2012, Banerjee and Ghosal, 2015,
Gan and Liang, 2016].
However, Bayesian methods are not in wide use in this fields,
because of the high computation cost of MCMC.
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Spike and Slab Prior

Double Exponential Spike and Slab Prior
The cornerstone of our Bayesian formulation is the following spike
and slab prior on the o� diagonal entries ◊ij (i < j):

I
◊ij | rij = 0 ≥ DE(0, v

0

).
◊ij | rij = 1 ≥ DE(0, v

1

).

where 0 Æ v
0

< v
1

and rij for all i,j, follows

rij ≥ Bern(÷).

Presenter: Lingrui Gan



Introduction

Model Specification

EM Algorithm

Asymptotic

Empirical Studies

Penalized Likelihood Perspective

Bayesian Regularization Function
The ”signal” indicator rij can be treated as latent and integrate it
out, then we get the Bayesian regularization function:

pen(◊ij) = ≠ log

⁄
fi(◊ij |rij)fi(rij |÷)drij
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Y
1

, · · · , Yn|� iid≥ Np(0, �

≠1

).

◊ij ≥ ÷DE(0, v
1

) + (1 ≠ ÷)DE(0, v
0

) i < j

◊ji = ◊ji

◊ii ≥ Ex(·)

The full posterior distribution fi(�, R|Y1:n) is proportional to

f(Y1:n|�)

1 Ÿ

i<j

fi(◊ij |rij)fi(rij |÷)

Ÿ

i

fi(◊ii|·)

2
(2)

where Rp◊p is a matrix with binary entries rij
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We treated R as latent and derive an EM algorithm to obtain
a maximum a posterior (MAP) estimate of � in the M-step
and the posterior distribution of R in the E-step.
The updating scheme is in the similar fashion with
[Friedman et al., 2008], i.e. updating one column and one row
at a time.
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Algorithm 1 EM Algorithm
1: If n < p: Initialize W= sample covariance

matrix S
2: Else: Initialize W = S + diag(

2·
n , ..., 2·

n )

3: Initialize �=W ≠1

4: repeat

5: Update P with
log

pij

1≠pij
=

1
log

v0
v1

+ log

÷
1≠÷ ≠ |◊ij |

v1
+

|◊ij |
v0

2

6: for j in 1 : p do

7: Move the j-th column and jth row
to the end (implicitly), namely �

11

=

�\j\j , ◊
12

= ◊\jj , ◊
22

= ◊jj

8: Save W 0

= W , �

0

= �

9: Update w
22

using w
22

Ω s
22

+

2

n·

10: Update W
12

using
w

12

Ω s
12

+

1

nv1
P

12

§ sign(◊
12

) +

1

nv0
(1 ≠ P

12

) § sign(◊
12

)

11: Update ◊
12

using ◊
12

Ω ≠�11w12
w22

12: Update ◊
22

using ◊
22

Ω 1≠wT
12◊12

w22

13: Update �

14: If Q(�|�0

) Æ Q(�

0|�0

): W Ω
W 0, � Ω �

0

15: end for

16: until Converge
17: Return �, P
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Our algorithm always ensures the symmetry and positive
definiteness of the precision matrix estimation outputted.

Theorem
(Symmetry)

The estimate of � is always guaranteed to be symmetric.

Theorem
(Positive Definiteness)

If �

(0) > 0, i.e the initial estimate of precision matrix is positive

definite, �

(t) > 0, ’t Ø 1.

For the existing algorithms, the positive definiteness of the
estimate usually doesn’t hold [Mazumder and Hastie, 2012].
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Asymptotic

Theorem (Rate of Convergence)

Under the regularity conditions (A)-(B), if

n
Ò

log p
n ∞ 1

v0
∞ n

Ò
(p+s) log p

sn , log(

v1
v0

) ≤ (p+s) log pÔ
s

and

· ∞ n(

Ò
log p

n ), then there exists a local minimizer

ˆ

�, which is

positive definite and symmetric, and it satisfies

Îˆ

� ≠ �

0

Î2

F = Op{(p + s) log p/n}
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Theorem (Selection Consistency)
Under the same conditions given in previous theorem and regularity

conditions on the signal strength

a

, for any constant C > 0, we

have

P ( max

(i,j)/œSg

log

pij

1 ≠ pij
< ≠C) æ 1 (3)

and

P ( min

(i,j)œSg

log

pij

1 ≠ pij
> C) æ 1 (4)

Consequently,

P (

ˆSg = Sg) æ 1

(5)
a

Denote Sg as the true signal set
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Simulation Studies

1 Model 1: An AR(1) model with wii = 1, wi,i≠1

= wi≠1,i =
0.5

2 Model 2: An AR(2) model wii = 1, wi,i≠1

= wi≠1,i = 0.5
and wi,i≠2

= wi≠2,i = 0.25.
3 Model 3: A circle model with wii = 2, wi,i≠1

= wi≠1,i = 1,
and w

1,p = wp,1=0.9
4 Model 4: Random Select Model.

For each model, three scenarios will be considered: Case 1:
n = 100, p = 50; Case 2: n = 200, p = 100; Case 3:
n = 100, p = 100.

Metrics
Average Selection accuracy and L

2

distance between estimates and
truths on 50 replications.
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Table: Model1 AR(1)
n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 2.058(0.080) 0.478(0.039) 1(0) 0.188(0.015)
SPACE 9.763(0.133) 0.908(0.007) 1(0) 0.533(0.015)
Bayes EM 2.143(0.401) 0.997(0.004) 0.998(0.007) 0.961(0.038)

Sample 17.743(2.147) NA NA NA
n = 200, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 2.421(0.073) 0.553(0.006) 1.000(0.000) 0.155(0.002)
SPACE 13.919(0.080) 0.936(0.009) 1.000(0.000) 0.478(0.035)
Bayes EM 3.716 (0.971) 0.998(0.003) 0.998(0.006) 0.951(0.055)

Sample 24.044(1.175) NA NA NA
n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 3.012(0.081) 0.571(0.006) 1.000(0.000) 0.161(0.002)
SPACE 14.097(0.159) 0.940(0.010) 1.000(0.002) 0.491(0.037)
Bayes EM 2.916(0.309) 1.000(0.001) 1.000(0.001) 0.990(0.018)

Sample NA NA NA NA

Model 1
An AR(1) model with wii = 1,
wi,i≠1 = wi≠1,i = 0.5
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Table: Model2 AR(2)
n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 3.361(0.240) 0.479(0.056) 0.981(0.015) 0.251(0.028)
SPACE 5.903(0.070) 0.982(0.004) 0.608(0.038) 0.656(0.029)
Bayes EM 3.256(0.276) 0.988(0.008) 0.644(0.070) 0.712(0.038)

Sample 17.882(2.144) NA NA NA
n = 200, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 4.315(0.073) 0.559(0.007) 0.998(0.003) 0.219(0.003)
SPACE 10.810(0.077) 0.991(0.001) 0.796(0.027) 0.784(0.019)
Bayes EM 3.185(0.215) 0.995(0.002) 0.867(0.029) 0.864(0.023)

Sample 24.273(1.269) NA NA NA
n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 8.130(0.035) 0.901(0.007) 0.745(0.028) 0.382(0.017)
SPACE 9.819(0.083) 0.991(0.002) 0.566(0.025) 0.625(0.021)
Bayes EM 6.552(0.308) 0.998(0.004) 0.491(0.042) 0.663(0.024)

Sample NA NA NA NA

Model 2
An AR(2) model wii = 1,
wi,i≠1 = wi≠1,i = 0.5 and
wi,i≠2 = wi≠2,i = 0.25.
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Table: Model3 Circle Model
n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 4.319(0.174) 0.492(0.064) 1.000(0.000) 0.196(0.024)
SPACE 19.402(0.232) 0.930(0.006) 1.000(0.000) 0.595(0.019)
Bayes EM 3.338(0.416) 0.979(0.008) 1.000(0.003) 0.812(0.053)

Sample 35.509(4.291) NA NA NA
n = 200, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 4.787(0.223) 0.515(0.020) 1.000(0.000) 0.145(0.006)
SPACE 27.708(0.196) 0.971(0.009) 0.999(0.004) 0.645(0.066)
Bayes EM 6.541(1.548) 0.981(0.005) 1.000(0.000) 0.717(0.047)

Sample 48.105(2.354) NA NA NA
n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 6.981(0.192) 0.647(0.005) 1.000(0.000) 0.189(0.002)
SPACE 27.737(0.345) 0.975(0.010) 0.994(0.008) 0.674(0.062)

Bayes EM 6.603(1.497) 0.975(0.008) 1.000(0.000) 0.673(0.064)

Sample NA NA NA NA

Model 3
A circle model with wii = 2,
wi,i≠1 = wi≠1,i = 1, and
w1,p = wp,1=0.9
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Table: Model4 Random Select Model
n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 7.017(0.256) 0.592(0.027) 0.839(0.042) 0.236(0.025)
SPACE 13.519(0.573) 0.999(0.001) 0.179(0.059) 0.390(0.071)
Bayes EM 7.438(0.718) 0.987(0.007) 0.477(0.053) 0.563(0.048)

Sample 17.232(1.971) NA NA NA
n = 200, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 8.597(0.164) 0.722(0.007) 0.891(0.019) 0.259(0.007)
SPACE 18.276(0.536) 0.999(0.000) 0.168(0.050) 0.371(0.059)
Bayes EM 7.816(0.397) 0.997(0.002) 0.498(0.039) 0.644(0.019)

Sample 23.433(1.065) NA NA NA
n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso 11.85(0.900) 0.837(0.047) 0.720(0.049) 0.285(0.033)
SPACE 17.706(0.203) 1.000(0.000) 0.068(0.015) 0.236(0.028)
Bayes EM 10.847(0.230) 0.999(0.000) 0.286(0.019) 0.498(0.023)

Sample NA NA NA NA

Model 4
Random Select Model.
Specifically, the model generating
process is:

1 Set the diagonal entry to
be 1.

2 Randomly selected
1.5 ◊ pn of the edges
and set them to be
random number uniform
from
[0.4, 1] fi [≠1, ≠0.4].

3 First sum the absolute
values of the o�-diagonal
entries, and then divide
each o�-diagonal entry by
1.1 fold of the sum

4 Average this rescaled
matrix with its transpose
to ensure symmetry.

5 Multiple each entry by
‡2, which set to be 3
here.
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Telephone call center arrival data prediction

Forecast the call arrival pattern from one call center in a
major U.S. northeastern financial organization.
The training set contains data for the first 205 days. The
remaining 34 days are used for testing.
In the testing set, the first 51 intervals are assumed observed
and we will predict the last 51 intervals, using the following
relationship:

f(Y
2i|Y1i) =N(u

2

≠ �

≠1

22

�

21

(Y
1i ≠ u

1

), �

≠1

22

)

Error Metric
To evaluate the prediction performance, we used the same criteria
as [Fan et al., 2009], the average absolute forecast error (AAFE):

AAFEt =

1

34

239ÿ

i=206

|ŷit ≠ yit|

where ŷit and yit are the predicted and observed values.
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Telephone call center arrival data

From the results shown, our method has shown a significant
improvement in prediction accuracy when compared with existing
methods.
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Figure: Prediction Error

Average Prediction Error
Sample Lasso Adaptive Lasso SCAD SS Lasso

Average AAFE 1.46 1.39 1.34 1.31 1.05
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Summary

1 We propose a Bayesian model, using Spike and Slab Prior, for
Gaussian Graphical Model.

2 An EM algorithm is derived to achieve the fast computation.
3 Simultaneous estimation and selection consistency of our

method is proved.
4 Empirical Studies have shown promising results.
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