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Introduction

Problem Statement:
iid _
Yl?"' 7Yn% NP(079 1)'

Denote S = %ZY,Yf as the sample covariance matrix of the
data, then the log-likelihood is given by

1(©) = log L(©) = g(log det(©) — tr($0)). (1)

o Our target is to estimate with respect to ©, the precision
matrix.
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Empirical Studies

Graphical Representation

Well-known Fact:

o Consider Undirected graph G=(V,E) with V is the vertex set
and E is the edge set

o Edge («,3) not exists < all 5|V \ (o, f) < ©np =0

Due to the relationship between precision matrix and graph, our
problem of interest is often called Gaussian Graphical Model.

Examples: gene network in biology and financial network.
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Financial Network[Gan and Liang, 2016]
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Problem Statement
Graphical Representation

To make this problem applicable under the high-dimensional
scenario, assumptions need to be made.

Sparsity Assumption

The sparsity assumption is the most common and practical useful
one [Dempster, 1972]. It assumes that the majority of the entries
are zero, while only a few entries in © are non-zero.
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Literature Review

Penalized Likelihood

Minimize the negative log-likelihood function with an element-wise
penalty on the off-diagonal entries of O, i.e.,

arg min - g (togdet(©) — tr(S6)) + A > pen(f;)|.
1<j

o The penalty function pen(6;;) is often taken to be L;
[Yuan and Lin, 2007, Banerjee et al., 2008,
Friedman et al., 2008],

o but SCAD is also been used [Fan et al., 2009].
o Asymptotic properties have been studied in
[Rothman et al., 2008, Lam and Fan, 2009]
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Literature Review

Regression

@ Sparse regression model is estimated separately in each
column of ©.
Implicitly, they are modeling with under the likelihood
IL P(Y[é,]|Y[—1,]), instead of P(Y).?
[Meinshausen and Biihimann, 2006, Peng et al., 2009]

“Denote Y = (Y1,---,Y,).

@ Other work: [Liu et al., 2009, Ravikumar et al., 2011]; CLIME
estimator[Cai et al., 2011];
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Literature Review

Bayesian Regularization

o Several Bayesian approaches have also been proposed
[Wang, 2012, Banerjee and Ghosal, 2015,
Gan and Liang, 2016].

o However, Bayesian methods are not in wide use in this fields,
because of the high computation cost of MCMC.

Presenter: Lingrui Gan



Table of Contents

O Model Specification

Presenter: Lingrui Gan



Spike and Slab Prior

Double Exponential Spike and Slab Prior

The cornerstone of our Bayesian formulation is the following spike
and slab prior on the off diagonal entries 6;; (i < j):

91']' ‘ Tij = 0 ~ DE(O,UQ).
Qij | T‘ij =1 ~ DE(O,’Ul).

where 0 < vg < vy and 75 for all 4,5, follows

rij ~ Bern(n).
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Penalized Likelihood Perspective

Bayesian Regularization Function

The "signal” indicator r;; can be treated as latent and integrate it
out, then we get the Bayesian regularization function:

pen (i) = —log/W(9ij|?”ij)7r(7"ij|77)d7’ij

Pen Func Pen Func Pen Func

Spike and Slab DE prior
o smw s o
Spike and Slab Normal pri
S & %
Lasso priol
a3a 88
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Y1, Y0 %N, (0,071,
6;; ~ nDE(0,v1) + (1 — n)DE(0,v9) ¢ < j
0i = 0ji
;i ~ Ex(7)
The full posterior distribution (0, R|Y1.n) is proportional to
(Y1l @) ( T (0iglrig)e(rig ) T (6il)) (2)
i<j i

where R,y is a matrix with binary entries r;;
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EM Algorithm

o We treated R as latent and derive an EM algorithm to obtain
a maximum a posterior (MAP) estimate of O in the M-step
and the posterior distribution of R in the E-step.

@ The updating scheme is in the similar fashion with
[Friedman et al., 2008], i.e. updating one column and one row
at a time.
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Algorithm 1 EM Algorithm

1: If n < p: Initialize W= sample covariance

matrix S
2: Else: Initialize W = S + diag(%,
3: Initialize ©=W "1
4: repeat
5 Update P with
log 22 = (log 2 +log 2 — 12l 4 Ll

6: for jin1l:pdo ’

-3

7 Move the j-th column and jth row
to the end (implicitly), namely ©;; =

O\ Oz = 9\11' b2 = 0

W«

8: Save WV =W, 0 =0
9: Update wap uSing ws: « su+ 27
10: Update Wi using
wiz = s12+ 7 Pia @ sign(012) + 75-(1 = Pi2) @ sign(012)

11: Update 012 using o, « —ues
12: Update 63 using o, « ubie
13: Update ©
14: If Q(O]0°%) < Q(e°8%):

w0 e+ a°
15: end for

16: until Converge
17: Return ©, P
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Our algorithm always ensures the symmetry and positive
definiteness of the precision matrix estimation outputted.

(Symmetry)
The estimate of © is always guaranteed to be symmetric.

(Positive Definiteness)
If©©) > 0, i.e the initial estimate of precision matrix is positive

definite, ©®) > 0, Vt > 1.

For the existing algorithms, the positive definiteness of the
estimate usually doesn't hold [Mazumder and Hastie, 2012].
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Selection Consistency

Asymptotic

Theorem (Rate of Convergence)

Under the regularity conditions (A)-(B), if

[logp logp 010 <n /§p+s log log( ) - §p+8)10g sl

T =< n(\/ li) then there exists a local minimizer ©, which is
positive definite and symmetric, and it satisfies

16 — ©¢l% = Op{(p + s) logp/n}
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Rate of Convergence

Theorem (Selection Consistency)

Under the same conditions given in previous theorem and regularity
conditions on the signal strength® , for any constant C > 0, we

have .
P( max lo Y_ <« _C)=1 3
((iJ)fZSg S1- Dij ) (3

and o
P( min Io Y_>C)—=1 4
((i,j)ESg 1 — Dij ) @)

Consequently,

P(S,=8,) =1 (5)

“Denote Sy as the true signal set
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Real Application

Simulation Studies

O Model 1: An AR(1) model with w;; = 1, w; ;-1 = wi—1,; =

0.5

Q Model 2: An AR(Z) model Wi = ]., Wii—1 = Wi—1,4 = 0.5

and Wij—2 = Wj—2,; = 0.25.

© Model 3: A circle model with w; = 2, Wij—1 = Wi—15 = 1,
and wy p = wp,1=0.9

@ Model 4: Random Select Model.

For each model, three scenarios will be considered: Case 1:
n = 100, p = 50; Case 2: n = 200,p = 100; Case 3:
n = 100, p = 100.

Metrics

Average Selection accuracy and Ly distance between estimates and
truths on 50 replications.
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Real Application

Table: Modell AR(1)

n = 100,p = 50
Fnorm Specificity Sensitivity McCC
Glasso  2.058(0.080) 0.478(0.039) 1(0) 0.188(0.015)
SPACE  9.763(0.133)  0.908(0.007) 1(0) 0.533(0.015)
Bayes EM  2.143(0.401) 0.997(0.004) 0.998(0.007) 0.961(0.038)
Sample 17.743(2.147) NA NA NA d I 1
= 200,p = 100 oae
Fnorm Specificity Sensitivity MCC )
Glasso  2.421(0.073) 0.553(0.006) 1.000(0.000) 0.155(0.002) An AR(1) model with w;; = 1,
SPACE  13.919(0.080) 0.936(0.009) 1.000(0.000) 0.478(0.035) Wi j—1 = wi—1,; = 0.5
Bayes EM  3.716 (0.971) 0.998(0.003) 0.998(0.006) 0.951(0.055)
Sample 24.044(1.175) NA NA NA
7 =100,p = 100
Fnorm Specificity Sensitivity MCC
Glasso  3.012(0.081) 0.571(0.006) 1.000(0.000) 0.161(0.002)
SPACE  14.097(0.159) 0.940(0.010) 1.000(0.002) 0.491(0.037)
Bayes EM  2.916(0.309) 1.000(0.001) 1.000(0.001) 0.990(0.018)
Sample NA NA NA NA

Presenter: Lingrui Gan




Real Application

Table: Model2 AR(2)

n = 100,p = 50
Fnorm Specificity Sensitivity McCC
GLasso 3.361(0.240) 0.479(0.056) 0.981(0.015) 0.251(0.028)
SPACE  5.903(0.070)  0.982(0.004) 0.608(0.038) 0.656(0.029)

Bayes EM  3.256(0.276) 0.988(0.008) 0.644(0.070) 0.712(0.038)
Sample  17.882(2.144) NA NA NA odel 2
7= 200,p = 100

Fnorm Specificity Sensitivity MCC An AR(2) model w;; =1,
Glasso  4315(0.073)  0.559(0.007) 0.998(0.003) 0.219(0.003) WA = W = @5 o
SPACE  10.810(0.077) 0.991(0.001) 0.796(0.027) 0.784(0.019) 0 0
Bayes EM  3.185(0.215) 0.995(0.002) 0.867(0.020) 0.864(0.023)

wii—2 = wj—2; = 0.25.

Sample 24.273(1.269) NA NA NA
n=100,p = 100
Fnorm Specificity Sensitivity MCC

Glasso  8.130(0.035)  0.901(0.007) 0.745(0.028) 0.382(0.017)
SPACE 9.819(0.083)  0.991(0.002) 0.566(0.025) 0.625(0.021)
Bayes EM  6.552(0.308) 0.998(0.004) 0.491(0.042) 0.663(0.024)
Sample NA NA NA NA
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Real Application

Table: Model3 Circle Model

n = 100,p = 50
Fnorm Specificity Sensitivity MCC
Glasso  4.319(0.174)  0.492(0.064) 1.000(0.000) 0.196(0.024)
SPACE  19.402(0.232) 0.930(0.006) 1.000(0.000) 0.595(0.019)

Bayes EM  3.338(0.416) 0.979(0.008) 1.000(0.003) 0.812(0.053)
Sample  35.509(4.291) NA NA NA odel 3
n=200,p = 100

Fnorm Specificity Sensitivity MCC A circle model with w;; = 2,
GLasso 4.787(0.223) 0.515(0.020) 1.000(0.000) 0.145(0.006) wy =w;_14=1,and
SPACE 27.708(0.196)  0.971(0.009) 0.999(0.004) 0.645(0.066) wl’p = wp, 1=09
Bayes EM  6.541(1.548)  0.981(0.005) 1.000(0.000) 0.717(0.047) ’ !
Sample 48.105(2.354) NA NA NA
n = 100,p = 100
Fnorm Specificity Sensitivity McCC

Glasso 6.981(0.192) 0.647(0.005) 1.000(0.000) 0.189(0.002)
SPACE 27.737(0.345)  0.975(0.010) 0.994(0.008) 0.674(0.062)
Bayes EM  6.603(1.497) 0.975(0.008) 1.000(0.000) 0.673(0.064)
Sample NA NA NA NA
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Real Application

Model 4

Random Select Model.

Table: Model4 Random Select Model Sheciicaliathelmedelecneratine
process is:
7 =100,p =50 o Set the diagonal entry to
Fnorm Specificity Sensitivity MCC be 1.
Glasso  7.017(0.256)  0.592(0.027) 0.839(0.042) 0.236(0.025) @ Randomly selected
SPACE  13519(0.573)  0.999(0.001) 0.179(0.059) 0.390(0.071) 1.5 X py, of the edges
Bayes EM  7.438(0.718)  0.987(0.007) 0.477(0.053) 0.563(0.048) o] et o B
Sample 17.232(1.971)  NA NA NA o
7= 200,p = 100 i
Fnorm Specificity Sensitivity MCC
Glasso  8.507(0.164)  0.722(0.007) 0.891(0.019) 0.259(0.007) (0-4,1] U [-1, —0.4].
SPACE  18.276(0.536)  0.999(0.000) 0.168(0.050) 0.371(0.059) © First sum the absolute
Bayes EM  7.816(0.397)  0.997(0.002) 0.498(0.039) 0.644(0.019) values of the off-diagonal
Sample  23.433(1.065)  NA NA NA entries, and then divide
= "S: 10?‘;: 1005 e Viaa each off-diagonal entry by
norm pecinicity ensitivity
Glasso  11.85(0.900)  0.837(0.047) 0.720(0.049) 0.285(0.033) A1l {7l i die st
SPACE  17.706(0.203)  1.000(0.000) 0.068(0.015) 0.236(0.028) @ Average this rescaled
Bayes EM  10.847(0.230) 0.999(0.000) 0.286(0.019) 0.498(0.023) matrix with its transpose
Sample  NA NA NA NA to ensure symmetry.

0 Multiple each entry by
02, which set to be 3
here.
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Simulation Studies

Telephone call center arrival data prediction

o Forecast the call arrival pattern from one call center in a
major U.S. northeastern financial organization.

o The training set contains data for the first 205 days. The
remaining 34 days are used for testing.

o In the testing set, the first 51 intervals are assumed observed
and we will predict the last 51 intervals, using the following
relationship:

F(Y2ilY15) =N(ug — 035 21 (Yii — u1), ©3;)

Error Metric

To evaluate the prediction performance, we used the same criteria
as [Fan et al., 2009], the average absolute forecast error (AAFE):
1 239
AAFE; = 31 > 1 —
i=206

where ¢;; and y;; are the predicted and observed values.
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Simulation Studies

Telephone call center arrival data

From the results shown, our method has shown a significant
improvement in prediction accuracy when compared with existing

methods.

colour
~— Glasso
— sample

~— sSlasso

Prediction Error

8
Interval

Figure: Prediction Error

Average Prediction Error
Sample Lasso Adaptive Lasso SCAD SS Lasso

Average AAFE  1.46 139 134 1.31 1.05

Presenter: Lingrui Gan




Simulation Studies

Summary

Q We propose a Bayesian model, using Spike and Slab Prior, for
Gaussian Graphical Model.

Q An EM algorithm is derived to achieve the fast computation.

@ Simultaneous estimation and selection consistency of our
method is proved.

@ Empirical Studies have shown promising results.
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