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Uncover the dependence structures between high-dimensional vectors

Image source: http://www.john.ranola.org/

One of the canonical statistical problems is to understand the dependence
structure between the variables of interest.
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Gaussian graphical model and its limitations

A common tool we use is called Gaussian graphical model.

Gaussian graphical model

Y = [Y1, ..., Yp]
iid∼ Np(0,Θ−1).

Yi |= Yj |Y[−i,−j] ⇔ Θi,j = 0⇔ No edge between (Yi, Yj).
Limitation: We can only model the dependences within response Y .
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What if we also have a set of covariates X?

Figure: Flickr Tag Network

Image source: http://scalar.usc.edu/works/querying-soc
ial-media-with-nodexl/media/SocialRelate dTagsNetworkonFlickr2deg.jpg
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What if we also have a set of covariates X?

Scenario
Gene expression data: one is interested in modeling genetic outcomes
given biomarkers.
Financial data (S&P 500): one is interested in modeling current asset
prices given historical prices in portfolio analysis.
Flickr data (MIRFlickr25k): one is interested in modeling scores of images
with their text annotations.
News data (RCV1-v2): one is interested in modeling the patterns of
Reuters newswire stories given categories (Topics, Industries and Region).
...

In these settings, we also care about the dependences between X and Y !
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Existing approaches can lead to inappropriate dependences

Can we use some existing remedies?
GGM on (X,Y).
Cons: computationally very expensive; large error.
GGM on Y only.
Multivariate regression for Y |X.

}
⇒ Inappropriate dependences.

Y (1) Y (2) Y (3) Y (4) Y (5)

X(1) X(2)

(a) True graph.

Y (1) Y (2) Y (3) Y (4) Y (5)

X(1) X(2)

(b) Graph of the dependence
structure based on B and Λ from
multivariate regression.

Y (1) Y (2) Y (3) Y (4) Y (5)

(c) Graph of the dependence
structure from the marginal
Gaussian graphical model on Y
only.
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Gaussian conditional random field

Model formulation
To address this setting, we propose to use the Gaussian conditional random
field model in the following manner:

p(Y | X,Λ,Θ) ∝ exp
{
−1

2Y
TΛY −XTΘY

}
, (1)

where Λ is a p× p positive definite and symmetric matrix and Θ ∈ Rq×p is a
matrix of dimension q × p.

Θij = 0 ⇐⇒ X(i) ⊥⊥ Y (j) | X−(i), Y −(j),

Λij = 0 ⇐⇒ Y (i) ⊥⊥ Y (j) | X,Y −(i,j),
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Literature review

Gaussian conditional random field (GCRF) model with `1 penalty has been
recently considered by several researchers
[Sohn and Kim, 2012, Yuan and Zhang, 2014, Wytock and Kolter, 2013].
Theoretical results on estimation accuracy have been established by
[Yuan and Zhang, 2014] in Frobenius norm and by
[Wytock and Kolter, 2013] in `∞ norm.
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Our contributions

We propose a Bayesian regularization method for the Gaussian conditional
random field estimation.
The optimal rate of convergence and sparsistent of our estimate is
established under mild conditions. Our theoretical results are stronger than
the ones on the Gaussian conditional random field with `1 penalty from
[Yuan and Zhang, 2014] and [Wytock and Kolter, 2013].
An efficient EM algorithm based on a second-order approximation method
is proposed for computation.
Our simulation studies and real application on asset return predictions
demonstrate that the proposed Bayesian regularization approach provides
a better performance compared to alternative methods.
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Bayesian regularization formulation

Prior specification
Our formulation is based on the following spike and slab Lasso prior
[George and McCulloch, 1993, Ročková and George, 2014, Ročková, 2016,
Ročková and George, 2016, Gan et al., 2018]:{

πSS(θ)|r = 1 ∼ DE(θ; v1)
πSS(θ)|r = 0 ∼ DE(θ; v0),

(2)

r ∼ Bern(η).

Figure: An illustration of the spike and slab prior.
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We place the spike and slab Lasso prior on all the entries of Θ and the
upper triangular entries of Λ (due to symmetry), and place a Uniform prior
on the diagonal entries of Λ:

π(Θ,Λ) =
[∏
i,j

πSS(Θij)
]
×
[∏
i<j

πSS(Λij)
]
×
[∏

i

πUnif(Λii)
]
.

The support of the joint prior distribution is on the set
{(Θ,Λ) : Λ � 0, ‖Θ‖1 + ‖Λ‖1 ≤ R}, where Λ � 0 means that the matrix
Λ is restricted to be positive definite.

We estimate (Θ,Λ) using the posterior mode.
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MAP estimate

MAP estimate
Finding the MAP estimator of (Θ,Λ) is equivalent to solving the following
optimization problem

arg min
Λ�0,Θ,‖Θ‖1+||Λ||1≤R

L(Θ,Λ), (3)

where the negative log posterior can be written as

L(Θ,Λ) = −`(Θ,Λ) +
∑
i<j

penSS(Θij) +
∑
i,j

penSS(Λij), (4)

where `(·) is the log-likelihood function:

`(Θ,Λ) = n

2

(
log det(Λ)− tr(SyyΛ + 2SxyΘ + Λ−1ΘTSxxΘ)

)
, (5)
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The spike and slab Lasso penalty
The Bayesian induced penalty penSS(·) is a non-convex penalty that takes the
following form:

penSS(θ) = − log
(
η

2v1
e
− |θ|
v1 + 1− η

2v0
e
− |θ|
v0

)
. (6)
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Pros & Cons of Non-convex Penalties
Pros: lead to desired shrinkage and selection behavior.
Cons: could bring additional computation and theoretical challenges
because the objective function could be non-convex.

Our Findings
With our formulation, we found:

estimation error for all stationary points are bounded in Frobenius norm.
at least one stationary point is bounded in `∞ norm.

Figure Credit to: https://www.math.wustl.edu/ kuffner/WHOA-PSI-2/LohSlides.pdf

Presenter: Lingrui Gan



Introduction
Bayesian regularization formulation

Theoretical results
Computations

Numeric results

Table of Contents

1 Introduction
Gaussian graphical model (GGM) and its limitations
Gaussian conditional random field

2 Bayesian regularization formulation

3 Theoretical results

4 Computations

5 Numeric results

Presenter: Lingrui Gan



Introduction
Bayesian regularization formulation

Theoretical results
Computations

Numeric results

Assumption

Assumption 1: In our theoretical analysis, we assume that the covariate vector
X is from a random design with covariance matrix Σ0

xx and satisfies the
following s0-sparse restricted isometry property condition:

inf
(
uT Sxxu
uTΣ0

xxu
: u 6= 0, ||u||0 ≤ s0

)
≥ 0.5,

sup
(
uT Sxxu
uTΣ0

xxu
: u 6= 0, ||u||0 ≤ s0

)
≤ 1.5,

λmax[(Θ0)T SxxΘ0]
λmax[(Θ0)TΣ0

xxΘ0]
≤ 1.4.

The same assumption is used in [Yuan and Zhang, 2014] for analyzing
Gaussian conditional random field with the `1 penalty and is also frequently
used in compressed sensing. It is also well known [Candes and Tao, 2007] that
this condition holds with high probability when X is sub-Gaussian and n is
sufficiently large.
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Theorem (Rate of convergence for all stationary points)

Assume that Assumption 1 holds with s0 = |S0|+ d4(ρ2/ρ1)|S0|e and that X
is sub-Gaussian. If R ≤ k1

6C0

√
n

c0 log(p+q) and if the prior parameters satisfy{
3

4nv0
< k1,

24 max(C1, k1)
√

c0 log(p+q)
n

≤ λ
n
≤ C0

√
c0 log(p+q)

n
,

(7)

where C0 is some sufficiently large constant. Then for any stationary point Φ̂
of (3), when the sample size n ≥ 2c0 log(p+ q) for sufficiently large constant
c0 > 0, we have

||Φ̂− Φ0||1 ≤ c3|S0|

√
c0 log(p+ q)

n
, ||Φ̂− Φ0||F ≤ c4

√
c0|S0| log(p+ q)

n
,

with probability at least 1− c1 exp(−c2 log(pq)).
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Theorem (Sparsistency for all stationary points)

Under the conditions given in Theorem 1, for all the local minimizers Φ̂ of (3),
if ||Φ̂− Φ0||22 = Op(ηn) for a sequence ηn → 0 and if√

log(p+ q)/n+ ηn = O(λ/n), then with probability converging to 1, Φ̂ij = 0
for all (i, j) ∈ Sc0.

We present two scenarios making use of the inequalities
||Φ̂− Φ||2F /p ≤ ||Φ̂− Φ||22 ≤ ||Φ̂− Φ||2F , and provide a sufficient condition on
the sparsity level in each scenario to achieve sparsistency.

When ||Φ̂−Φ||22 = ||Φ̂−Φ||2F = Op
( |S0|

n
λ
)

, |S0| = O(1) (worst scenario).

When ||Φ̂− Φ||22 = ||Φ̂− Φ||2F /p = Op
( |S0|
np
λ
)

, |S0| = O(p).
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Theorem (Faster rate of convergence for a local optimum )
Assume that Assumption 1 holds with s0 = |S0|+ d4(ρ2/ρ1)|S0|e and that X
is sub-Gaussian. If (i) the prior hyper-parameters v0, v1, η satisfy: 1

nv1
< CL

√
c0 log(p+q)

n
, 1
nv0

> CR

√
c0 log(p+q)

n
,

v2
1(1−η)
v2

0η
≤ (p+ q)ε,

(8)

for some constants CR > CL and some sufficiently small ε > 0,
(ii) the matrix norm bound R satisfies |S0|r + ||Φ0||1 < R, and
(iii) the sample size n satisfies

√
n ≥M

√
c0 log(p+ q), where

M = max
{

2(2C1 + CL)cΓ0 max
{

3cΣ0d, 3708d2c2Γ0c
4
Σ0ρ2

}
,

2CL
nk1

, d
}
,

then for sufficiently large constant c0 > 0, there exists a local minimizer Φ̃ such
that

||Φ̃− Φ0||∞ < 2(2C1 + CL)cΓ0

√
c0 log(p+ q)

n
(9)

with probability at least 1− c1 exp(−c2 log(pq)).
Presenter: Lingrui Gan



Introduction
Bayesian regularization formulation

Theoretical results
Computations

Numeric results

Theorem (Sparsistency for the estimator)

For the estimator Φ̃ in Theorem 3, Φ̃ij = 0 for all (i, j) ∈ Sc0 with probability
converging to 1.
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Comparison with existing results

Gaussian conditional random field model with the `1 penalty: Under
mutual incoherence conditions, i.e., |||HSc0S0 (HS0S0 )−1|||∞ < 1,
[Wytock and Kolter, 2013] showed that the convergence rate in
element-wise `∞ norm for the Gaussian conditional random field model
with the Lasso penalty is of the same order as ours. Such a condition is
quite restrictive and often is too ideal to be true.

Consider a simple Markov chain Gaussian conditional random field model in
Figure 4(a), with

Λ0 =

[1 ρ 0
ρ 1 ρ
0 ρ 1

]
, Θ0 =

[
ρβ 0 0
0 ρβ 0
0 0 ρβ

]
.

(a) Visualization for the Markov chain
Gaussian conditional random field.
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(b) Mutual incoherence is violated as ρ
gets large.

Figure: Mutual incoherence condition for the chain graph.

Presenter: Lingrui Gan



Introduction
Bayesian regularization formulation

Theoretical results
Computations

Numeric results

Table of Contents

1 Introduction
Gaussian graphical model (GGM) and its limitations
Gaussian conditional random field

2 Bayesian regularization formulation

3 Theoretical results

4 Computations

5 Numeric results

Presenter: Lingrui Gan



Introduction
Bayesian regularization formulation

Theoretical results
Computations

Numeric results

EM Algorithm

We treat rij as latent and derive an EM algorithm to obtain the MAP
estimator of Θ
E-step: compute the conditional posterior distribution of rij .
M-step: optimize the following optimization problem:

argmin
Λ�0,||Θ||1+||Λ||≤R

(
`(Θ,Λ) +

∑
i,j

λ(θij)|θij |+ +
∑
i,j

λ(Λij)|Λij |

)
, (10)

where λ(·) = pij
v1

+ 1−pij
v0

and pij is the expectation of rij from E-step.

Let Φ denotes
[

Λ
Θ

]
, we iteratively approximate `(Φ + ∆) with its

second-order Taylor expansion g(∆) on Φ, and then solve the following
optimization problem using coordinate descent for all the coordinates once:

∆̂ = arg max
∆

(
g(∆)−

∑
i,j

λ(Φij)|Φij + ∆ij |
)
. (11)
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Simulation studies

Simulation Set-up
1 We generate X from a zero-mean multivariate Gaussian distribution with

dense precision matrix Θ0
xx = 0.5(J + I), where J is the matrix of ones.

2 The precision matrix Λ0 is generated as a random graph similar to the
set-up of the random graph in [Peng et al., 2009].

We first generate the entries in the precision matrix following the
distribution of S ×B × U1, where (S + 1)/2 ∼ Bern(0.5), B ∼ Bern(0.1),
U1 ∼ Uniform(1, 2), and the three random variables are independent.
We then rescale the non-zero elements to assure positive definiteness of Λ.
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We consider the following forms of true Θ0:
1 Model 1 (Random Graph): Θ0 ∼ S ×B × U2, where S and B are random

variables as defined before, and independent of U2 ∼ Uniform(0.5, 1).
2 Model 2 (Banded Model 1): for i-th row of Θ0, (i− 1)/bq/pc+ 1-th

element is generated from S ×B × U2.
3 Model 3 (Banded Model 2): the i-th row of Θ0 is of probability 0.1 to be

non-zero and probability 0.9 to be all zero; when the i-th row of the Θ0 is
non-zero, its entries are generated with the distribution of S ×B × U2,
where (S + 1)/2 ∼ Bern(0.5), B ∼ Bern(0.1), and U2 ∼ Uniform(0.5, 1).
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Methods in Comparisons

1 Gaussian conditional random field model with Lasso regularization,
2 Graphical Lasso [Friedman et al., 2008] jointly for (X,Y ),
3 CAPME, a covariate adjusted Graphical model proposed by

[Cai et al., 2012].
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Simulation Studies

Figure: Estimates for Random Graph.
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Figure: Estimates for Banded Model 1.
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Figure: Estimates for Banded Model 2.
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Table: Random Graph

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.263(0.039) 10.606(0.735) 2.001(0.296) 0.375(0.013) 17.767(0.061) 4.922(0.181)
CAPME -0.025(0.001) 46.965(5.653) 2.442(0.125) -0.020(0.010) 51.674(5.724) 3.934(0.199)
GCRF 0.360(0.0181) 6.901(0.344) 1.446(0.036) 0.481(0.011) 11.709(0.360) 1.652(0.039)

BayesCRF 0.608(0.010) 6.012(0.149) 1.390(0.031) 0.711(0.006) 11.088(0.154) 1.560(0.041)
n = 100, q = 200, p = 50 n = 100, q = 500, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error
GLasso 0.337(0.007) 25.472(0.004) 8.180(0.154) 0.180(0.004) 38.747(0.004) 10.366(0.310)
CAPME -0.015(0.008) 21.532(0.544) 5.433(0.205) 0.000(0.008) 37.889(0.155) 10.086(0.329)
GCRF 0.411(0.008) 22.213(0.338) 3.142(0.071) 0.270(0.012) 38.963(0.018) 21.706(3.835)

BayesCRF 0.517(0.036) 21.075(0.242) 3.484(0.601) 0.186(0.008) 37.127(0.110) 7.142(1.341)

Table: Banded Model 1

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.330(0.022) 4.223(0.040) 1.279(0.032) 0.314(0.015) 5.316(0.035) 1.390(0.035)
CAPME -0.037(0.001) 30.346(2.709) 1.455(0.046) -0.036(0.012) 43.642(3.320) 1.696(0.046)
GCRF 0.130(0.020) 3.050(0.110) 1.250(0.028) 0.216(0.021) 3.595(0.194) 1.309(0.031)

BayesCRF 0.409(0.026) 2.498(0.094) 1.278(0.032) 0.452(0.024) 2.453(0.077) 1.335(0.031)
n = 100, q = 200, p = 50 n = 100, q = 500, p = 50

MCC Fnorm Test Error MCC Fnorm Test Error
GLasso 0.394(0.012) 9.118(0.015) 2.051(0.053) 0.304(0.046) 12.684(0.162) 2.777(0.187)
CAPME -0.033(0.010) 63.073(6.914) 2.294(0.069) 0.071(0.004) 13.735(1.546) 2.232(0.060)
GCRF 0.361(0.015) 5.369(0.228) 1.489(0.031) 0.412(0.011) 8.628(0.333) 1.665(0.041)

BayesCRF 0.606(0.015) 3.163(0.110) 1.431(0.032) 0.674(0.011) 6.297(0.143) 1.555(0.035)
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Table: Banded Model 2

n = 100, q = 50, p = 50 n = 100, q = 100, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.262(0.017) 3.763(0.047) 1.191(0.031) 0.278(0.015) 5.294(0.031) 1.342(0.030)
CAPME -0.037(0.000) 27.884(2.113) 1.362(0.044) -0.035(0.011) 43.030(3.666) 1.658(0.062)
GCRF 0.131(0.023) 3.827(0.136) 1.215(0.026) 0.164(0.023) 4.435(0.122) 1.260(0.027)
BayesCRF 0.322(0.026) 2.725(0.092) 1.238(0.031) 0.392(0.021) 2.873(0.106) 1.316(0.030)

n = 100, q = 200, p = 50 n = 100, q = 500, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error

GLasso 0.326(0.022) 8.489(0.182) 1.775(0.067) 0.255(0.005) 12.543(0.011) 2.577(0.072 )
CAPME -0.034( 0.010) 67.937(6.744) 2.066(0.086) 0.109(0.005) 12.534(0.905) 2.166(0.075)
GCRF 0.263(0.017) 6.468(0.119) 1.379(0.036) 0.383(0.012) 10.182(0.173) 1.666(0.042)
BayesCRF 0.476(0.016) 3.566(0.097) 1.386(0.030) 0.634(0.012) 6.372(0.142) 1.550(0.038)
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Real application: asset return predictions

Weekly price data of S&P 500 stocks for 265 consecutive weeks from
March 10, 2003 to March, 24, 2008 collected by [Pfaff, 2016].
We screen out all the stocks with extremely low or high marginal variance
and keep 67 stocks that vary modestly, i.e., stocks with a variance
between 25 and 40. All the stock prices are log transformed.
We apply all the methods on the first 212 days to estimate Φ and make
predictions on the remaining 53 days.

We want to uncover the insights on the dependency between the prices of
different stocks and between their previous prices, and make good predictions.
The average prediction errors are evaluated by:

Err = 1
49

265∑
t=213

||Yt − Ŷt||2.
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GCRF for Λ

Yt

Y
t

Glasso for Λ

Yt

Y
t

CAPME for Λ

Yt

Y
t

BayesCRF for Λ

Yt

Y
t

(a) Estimates for the precision matrix Λ for the asset return data.

(b) Estimates for Θ for the asset return data.

BayesCRF GCRF CAPME Glasso
0.910(0.384) 3.817(0.468) 1.443(0.442) 1.250(0.495)

Table: Average Prediction Error for Asset Return Prediction
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Conclusion

Propose a new approach for Gaussian conditional random field estimation
using Bayesian Regularization.

Both numerically and theoretically, the Bayesian regularization method we
proposed works very well.

Hope the success demonstrated in our work will motivate further interest
in using Bayesian Regularization.
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