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Introduction

Problem Statement:

Y1, · · · , Yn
iid∼ Np(0,Θ−1).

Denote S = 1
n

∑
YiY

t
i as the sample covariance matrix of the data, then the

log-likelihood is given by

l(Θ) = logL(Θ) = n

2

(
log det(Θ)− tr(SΘ)

)
. (1)

Our target is to estimate Θ, the precision matrix.
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To make this problem applicable under the high-dimensional scenario,
assumptions need to be made.

Sparsity Assumption
The sparsity assumption is the most common and practical useful one
[Dempster, 1972]. It assumes that the majority of the entries are zero, while
only a few entries in Θ are non-zero.
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Gaussian Graphical Model

Well-known Fact:
Consider Undirected graph G=(V,E) with V is the vertex set and E is the
edge set
No edge between (Yi, Yj) ⇔ Yi |= Yj |Y[−i,−j] ⇔ Θi,j = 0
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Literature Review

Penalized Likelihood
Minimize the negative log-likelihood function with an element-wise penalty on
the off-diagonal entries of Θ, i.e.,

arg min
Θ

[
− n

2

(
log det(Θ)− tr(SΘ)

)
+ λ

∑
i<j

pen(θij)
]
.

The penalty function pen(θij) is often taken to be L1
[Yuan and Lin, 2007, Banerjee et al., 2008, Friedman et al., 2008],
but SCAD is also been used [Fan et al., 2009].
Asymptotic properties have been studied in
[Rothman et al., 2008, Lam and Fan, 2009, Ravikumar et al., 2011]
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Literature Review

Regression
Sparse regression model is estimated separately in each column of Θ.
Implicitly, they are modeling with under the likelihood

∏
i
P (Y[i, ]|Y[−i, ]),

instead of P (Y).a [Meinshausen and Bühlmann, 2006, Peng et al., 2009]
aDenote Y = (Y1, · · · , Yn).

Other work: CLIME estimator [Cai et al., 2011];
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Literature Review

Bayesian Regularization
Several Bayesian approaches have also been proposed
[Wang, 2012, Banerjee and Ghosal, 2015, Gan and Liang, 2016].
However, Bayesian methods are not in wide use in this fields, because of
the high computation cost of MCMC.
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Our contributions

1 Propose a new approach for precision matrix estimation, named BAGUS.
The adaptive shrinkage is due to the non-convex penalization from our
Bayesian formulation.

2 With very mild conditions, the optimal estimation error rate is

Op

(√
log p
n

)
in the entrywise maximum norm under both exponential

and polynomial tail distributions. Selection consistency is also proved.
3 A fast EM algorithm which produces the MAP estimate of the precision

matrix and (approximate) posterior probabilities on all edges is proposed.
The EM algorithm has computational complexity comparable to the
state-of-the-art GLasso algorithm.
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Spike and Slab Prior

Double Exponential Spike and Slab Prior
The cornerstone of our Bayesian formulation is the following spike and slab prior
[George and McCulloch, 1997, Ročková and George, 2014, Rocková, 2015] on
the off diagonal entries θij (i < j):{

θij | rij = 0 ∼ DE(0, v0).
θij | rij = 1 ∼ DE(0, v1).

where 0 ≤ v0 < v1 and rij for all i,j, follows

rij ∼ Bern(η).
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Model Specification
Under the constraint ‖Θ‖2 ≤ B:

Y1, · · · , Yn|Θ
iid∼ Np(0,Θ−1).

θij ∼ ηDE(0, v1) + (1− η)DE(0, v0) i < j

θji = θji

θii ∼ Ex(τ)

Our target is the MAP estimate of Θ and the posterior inclusion probability of
rij |·.
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Penalized Likelihood Perspective

This is equivalent to minimizing the following objective function under the
constraint ‖Θ‖2 ≤ B and Θ � 0:

L(Θ) = − log π(Θ|Y1, · · · , Yn)

= −`(Θ)−
∑
i<j

log π(θij |η)−
∑
i

log π(θii|τ) + Const.

= n

2

(
tr(SΘ)− log det(Θ)

)
+
∑
i<j

penSS(θij) +
∑
i

pen1(θii)

where pen1(θ) = τ |θ|.

Theorem

Local Convexity If B ≤ (2nv0) 1
2 , then minΘ�0,‖Θ‖2≤B L(Θ) is a strictly

convex problem.
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Bayesian Regularization Function
The ”signal” indicator rij can be treated as latent and integrate it out, then we
get the Bayesian regularization function:

penSS(θij) = − log
∫
π(θij |rij)π(rij |η)drij

= − log
[(

η

2v1

)
e
− |θ|
v1 +

(1− η
2v0

)
e
− |θ|
v0

)] (2)
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Assumption

(A1) λmax(Θ0) ≤ 1/k1 <∞ or equivalently 0 < k1 ≤ λmin(Σ0).

(A2) The minimal “signal” entry satisfies min
(i,j)∈Sg

|θ0
ij | ≥ K0

√
log p
n

, where

K0 > 0 is a sufficiently large constant not depending on n.

Tail Conditions
(C1) Exponential tail condition: Suppose that there exists some 0 < η1 < 1/4

such that log p
n

< η1 and

EetY
(j)2
≤ K for all |t| ≤ η1, for all j = 1, . . . , p

where K is a bounded constant.
(C2) Polynomial tail condition: Suppose that for some γ, c1 > 0, p ≤ c1nγ , and

for some δ0 > 0,

E|Y (j)|4γ+4+δ0 ≤ K, for all j = 1, . . . , p.
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Rate of Convergence

Theorem (Estimation accuracy in entrywise `∞ norm)

Assume condition (A1) holds. For any pre-defined constants C3 > 0, τ0 > 0,
when the exponential tail (C1) or the polynomial tail (C2) condition holds.
Assume that:
i) the prior hyper-parameters v0, v1, η, and τ are properly tuned;

ii) the spectral norm B satisfies 1
k1

+ 2d(C1 + C3)KΓ0

√
log p
n

< B < (2nv0) 1
2 ,

iii) the sample size n satisfies
√
n ≥M

√
log p,

where M = max
{

2d(C1 + C3)KΓ0 max
(

3KΣ0 , 3KΓ0K0
Σ

3
, 2
k2

1

)
, 2C3ε1

k2
1

}
.

Then, the MAP estimator Θ̃ satisfies

‖Θ̃−Θ0‖∞ ≤ 2(C1 + C3)KΓ0

√
log p
n

.

with probability greater than 1− δ1, where δ1 = 2p−τ0 when condition (C1)
holds, and δ1 = O(n−δ0/8 + p−τ0/2) when condition (C2) holds.
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Theorem (Selection consistency)
Assume the same conditions in Theorem 2 and condition (A2) with the
following restriction:

ε0 <
1

log p log
(
v1(1− η)
v0η

)
< (C4 − C3)

(
K0 − 2(C1 + C3)KΓ0

)
for some arbitrary small constant ε0 > 0. Then, for any T such that
0 < T < 1, we have

P
(
Ŝg = Sg

)
→ 1.
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Comparison with Existing Results

Graphical Lasso [Ravikumar et al., 2011]:
The irrepresentable condition, |||ΓScgSgΓ−1

SgSg
|||∞ ≤ 1− α, is needed to

establish the rate of convergence in entrywise `∞ norm. Such an
assumption is quite restrictive, and is not needed for our results.
Under the polynomial tail condition, the rate of convergence for Graphical

Lasso is Op
(√

pc

n

)
, slower than our rate Op

(√
log p
n

)
.

CLIME [Cai et al., 2011] :
We assume boundedness of the largest eigenvalue of Θ0, which is strictly
weaker than the boundedness of |||Θ0|||∞ (the `∞/`∞ operator norm),
the assumption imposed for CLIME.
Non-convex Penalties like SCAD, MCP [Loh and Wainwright, 2014] :
Beta-min condition (minimal signal strength) is needed for the rate of
estimation accuracy established in [Loh and Wainwright, 2014]. In
addition, their results are only available for sub-Gaussian distributions.
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EM Algorithm

We treated R as latent and derive an EM algorithm to obtain a maximum
a posterior (MAP) estimate of Θ in the M-step and the posterior
distribution of R in the E-step.
The updating scheme is in the similar fashion with [Friedman et al., 2008],
i.e., updating one column and one row at a time. Without loss of
generality, we describe the updating rule for the last column of Θ while
fixing the others.

We list the following equalities from WΘ = Ip which will be used in our
algorithm:[

W11 w12
· w22

]
=

Θ−1
11 + Θ−1

11 θ12θ
T
12Θ−1

11
θ22−θT12Θ−1

11 θ12
− Θ−1

11 θ12

θ22−θT12Θ−1
11 θ12

· 1
θ22−θT12Θ−1

11 θ12

 . (3)
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M-step

Given Θ11, to update the last column (θ12, θ22), we set the subgradient of Q
with respect to (θ12, θ22) to zero. First take the subgradient of Q with respect
to θ22:

∂Q

∂θ22
= n

2
1

θ22 − θT12Θ−1
11 θ12

− n

2 (s22 + τ) = 0. (4)

Due to Equations (3) and (4), we have

w22 = 1
θ22 − θT12Θ−1

11 θ12
= s22 + 2

n
τ,

which leads to the following update for θ22:

θ22 ←
1
w22

+ θT12Θ−1
11 θ12. (5)
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M-step

Next take the subgradient of Q with respect to θ12:

∂Q

∂θ12
=n

2

( −2Θ−1
11 θ12

θ22 − θT12Θ−1
11 θ12

− 2s12

)
−
( 1
v1
p12 + 1

v0
(1− p12)

)
� sign(θ12)

=n(−Θ−1
11 θ12w22 − s12)−

( 1
v1
p12 + 1

v0
(1− p12)

)
� sign(θ12) = 0,

(6)

where A�B denotes the element-wise multiplication of two matrices. Here the
second line of (6) is due to the identities in (3). To update θ12, we then solve
the following stationary equation for θ12 with coordinate descent, under the
constraint ‖Θ‖2 ≤ B:

ns12 + nw22Θ−1
11 θ12 +

( 1
v1
P12 + 1

v0
(1− P12)

)
� sign(θ12) = 0. (7)
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Algorithm 1 BAGUS
1: Initialize W = Θ=I
2: repeat
3: Update P with each entry pij updated as log pij

1−pij
←
(

log v0
v1

+

log η
1−η −

|θ(t)
ij
|

v1
+
|θ(t)
ij
|

v0

)
.

4: for j in 1 : p do
5: Move the j-th column and j-th row to the end (implicitly), namely

Θ11 := Θ−j−j , θ12 := θ−jj , θ22 := θjj
6: Update w22 using w22 ← s22 + 2

n
τ

7: Update θ12 by solving (7) with Coordinate Descent for θ12.
8: Update θ22 using θ22 ← 1

w22
+ θT12Θ−1

11 θ12.
9: Update W using (3)

10: end for
11: until Converge
12: Return Θ, P

Algorithm 2 Coordinate Descent for θ12

1: Initialize θ12 from the previous iteration as the starting point.
2: repeat
3: for j in 1 : (p− 1) do
4: Solve the following equation for θ12j :

ns12j+nw22Θ−1
11 j,\jθ12\j+nw22Θ−1

11 j,jθ12j+
[( 1
v1
P12+ 1

v0
(1−P12)

)
�sign(θ12)

]
j

= 0.

5: end for
6: until Converge or Max Iterations Reached.
7: If ‖Θ‖2 > B : Return θ12 from the previous iteration
8: Else: Return θ12
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Our algorithm always ensures the symmetry and positive definiteness of the
precision matrix estimation outputted.

Theorem (Positive Definiteness & Symmetry)
The estimate of Θ is always guaranteed to be symmetric.
If Θ(0) > 0, i.e the initial estimate of precision matrix is positive definite,
Θ(t) > 0, ∀t ≥ 1.

For the existing algorithms, the positive definiteness of the estimate usually
doesn’t hold [Mazumder and Hastie, 2012].
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Simulation Studies

1 Model 1: An AR(1) model with wii = 1, wi,i−1 = wi−1,i = 0.5
2 Model 2: An AR(2) model wii = 1, wi,i−1 = wi−1,i = 0.5 and
wi,i−2 = wi−2,i = 0.25.

3 Model 3: A circle model with wii = 2, wi,i−1 = wi−1,i = 1, and
w1,p = wp,1=0.9

4 Model 4: Random Select Model.

For each model, three scenarios will be considered: Case 1: n = 100, p = 50;
Case 2: n = 100, p = 100; Case 3: n = 100, p = 100.

Metrics
Average Selection accuracy and L2 distance between estimates and truths on
50 replications.

Presenter: Lingrui Gan



Introduction
Model Specification
Theoretical Results

EM Algorithm
Empirical Studies

Simulation Studies
Real Application

True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the star
structure

True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the AR(2)
structure
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True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the circle
structure

True Graph Glasso CLIME SPACE BAGUS

Figure: Average of the estimated precision matrices for the model with the random
structure
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Telephone call center arrival data prediction

Forecast the call arrival pattern from one call center in a major U.S.
northeastern financial organization.
The training set contains data for the first 205 days. The remaining 34
days are used for testing.
In the testing set, the first 51 intervals are assumed observed and we will
predict the last 51 intervals, using the following relationship:

f(Y2i|Y1i) =N(u2 −Θ−1
22 Θ21(Y1i − u1),Θ−1

22 )

Error Metric
To evaluate the prediction performance, we used the same criteria as
[Fan et al., 2009], the average absolute forecast error (AAFE):

AAFEt = 1
34

239∑
i=206

|ŷit − yit|

where ŷit and yit are the predicted and observed values.
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Telephone call center arrival data

From the results shown, our method has shown a significant improvement in
prediction accuracy when compared with existing methods.
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Figure: Prediction Error

Average Prediction Error
Sample GLasso Adaptive Lasso SCAD CLIME BAGUS

Average AAFE 1.46 1.38 1.34 1.31 1.14 1.00

Presenter: Lingrui Gan



Introduction
Model Specification
Theoretical Results

EM Algorithm
Empirical Studies

Simulation Studies
Real Application

Summary

1 We propose a Bayesian model, using Spike and Slab Prior, for Gaussian
Graphical Model.

2 An EM algorithm is derived to achieve the fast computation.
3 Simultaneous estimation and selection consistency of our method is

proved.
4 Empirical Studies have shown promising results.
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