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INTRODUCTION 
  
Gaussian Graphical Model: 

Our goal is to estimate the high dimensional sparse 
inverse covariance matrix (precision matrix). 

Applications: 
1. Network Reconstruction 

2. Predictive Modeling  

Y ⇠ Np(0,⇥
�1)

ABSTRACT 
  
We consider a Bayesian framework for estimating a high-
dimensional sparse precision matrix, in which adaptive 
shrinkage and sparsity are induced by a mixture of 
Laplace priors. For fast and efficient computation, an EM 
algorithm is proposed to obtain the MAP estimate of the 
precision matrix and posterior probabilities on the edges 
of the underlying sparse structure. Besides discussing our 
formulation from the Bayesian standpoint, we investigate 
the MAP estimate from a penalized likelihood perspective 
that gives rise to a new non-convex penalty. Optimal error 
rates for estimation consistency along with selection 
consistency for sparse structure recovery are shown for 
the unique global optimizer under mild conditions. 
Through extensive simulation studies and real 
applications, we have demonstrated the fine performance 
of our method compared with the existing alternatives. 

MODEL FORMULATION 
Hierarchical Bayesian Model Formulation: 
Prior distributions on     satisfying             and                      :    

 Our target is to get the MAP estimate, or equivalently 
minimize the following objective function under 
constraints             and                     :    

THEORETICAL GUARANTEES 
Details are omitted due to the space limit. Please refer to 
our manuscript for details. 

Theorem 1. If                                        is strictly convex. 

Theorem 2[Estimation Error Bound]. 

 If           is upper bounded,    follows an exponential or 
polynomial tail distribution, with a proper tuning of          
and   , let sample size satisfies                      , where                                                             
M is some constant and                ,                     , then 
there exists a unique global minimizer with an 
estimation error                     in    norm.  

Exponential-Tail Distributions Examples: Gaussian, 
any bounded random variable (e.g., Bernoulli, 
multinomial) or any finite mixture of them. 

Theorem 3[Structure Recovery Consistency].              
If the minimal signal strength is larger than               for 
some large enough K, our model could recover the true 
structure (signal or noise) correctly with probability 
converging to 1.   

Highlights of the theorems:1:The incoherence condition 
for the results of Lasso methods are not required.
2:Very mild assumptions on the true precision matrix. 

COMPUTATION: AN EM ALGORITHM 
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SIMULATION RESULTS 
Models: 
1: AR(1) Model; 2: AR(2) Model;  
3: Circle Model; 4: Star Model; 5: Random Network 
Scenarios Considered: 
sample size n=100; variable size p=50,100,200; 
Evaluation Metrics: 
1. Structure Recovery Accuracy:  
MCC(Matthews correlation coefficient) 
2. Estimation Accuracy:  
L2 Distance between the truth and the estimation 
Experimental Results: 

123 

1. Our Bagus algorithm performs very well in structure 
recovery, although it could miss some signals 
sometimes. 

2. SPACE is the second best performing algorithm, which 
behaves similar to Bagus but sometimes selects more 
noise features.. 

3. Graphical Lasso and CLIME tend to select more noise 
features. 

PREDICT CALL ARRIVAL PATTERNS 
@A TELEPHONE CALL CENTER 
Dataset: Call arrival pattern of a telephone call center in 
a major U.S. northeastern financial organization. The 
data was collected every day in 2002 from 7 AM till 
midnight, except 6 days when the data collecting machine 
is out of order. 
Method: Models are trained on the first 205 days and 
the remaining 34 days are used for evaluation. In the 
testing set, the first 51 intervals are assumed observed 
and we predict the last 51 intervals, using:  

  

S&P 500 STOCK DATA 
Dataset: The closing prices of 452 stocks in S&P 500 
companies from 2003 to 2008 (1258 trading days). Stocks 
are categorized into 10 separate sectors, e.g. Information 
Technology, Financials, according to the industry the 
corresponding companies are in.  

The differences between the 
estimated and true structures 
(p=50, 50 replicates average) 

Red points: Select noise; 
Blue points: Miss signal
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Example:  
Conditional Gaussian Graphical Model  
(Matt Wytock, Zico Kolter ICML 2014)  

Prediction error(Absolute Forecast Error) at every interval in the test set.

Precision matrix estimated from different methods.
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Performance Measures for Each Cases;  
Our Bagus method always perform at the top , both in 

structure recovery and estimation.
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Goldman Sachs Group

M&T Bank Corp.

Morgan Stanley

PNC Financial Services

SunTrust Banks

Wells Fargo

Random Sampled 
150 Stocks Network

A snapshot of stocks detected as dependent 
with SunTrust Banks from our model.
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