CALCULATION METHOD OF STOCKPILING AND USE PHASE IN ROAD LCA: CASE STUDY OF STEEL SLAG RECYCLING

O. YAZOGHLI-MARZOUK, M. DAUVERGNE, W. CHEBBI, A. JULLIEN

Oumaya YAZOGHLI-MARZOUK

Researcher at Transport Infrastructure Group

Cerema Centre - Est / Département Laboratoire d'Autun

Oumaya.marzouk@cerema.fr

NINE FIELDS OF OPERATION:

PLANNING, DEVELOPMENT AND EQUALITY OF REGIONS

TOWNS AND URBAIN STRATEGIES

ENERGY TRANSITION

AND CLIMATE CHANGE

MANAGEMENT OF NATURAL RESOURCES AND THE ENVIRONMENT

RISK PREVENTION

Ă

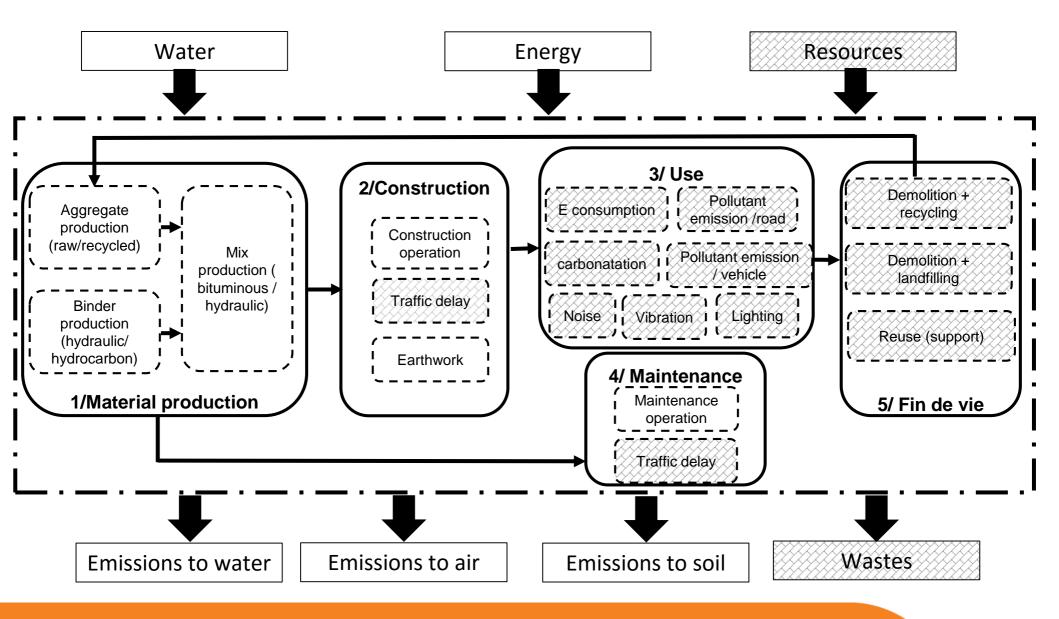
MOBILITY AND TRANSPORTATION

MANAGEMENT, OPTIMIZATION, MODERNIZATION AND DESIGN OF INFRASTRUCTURES

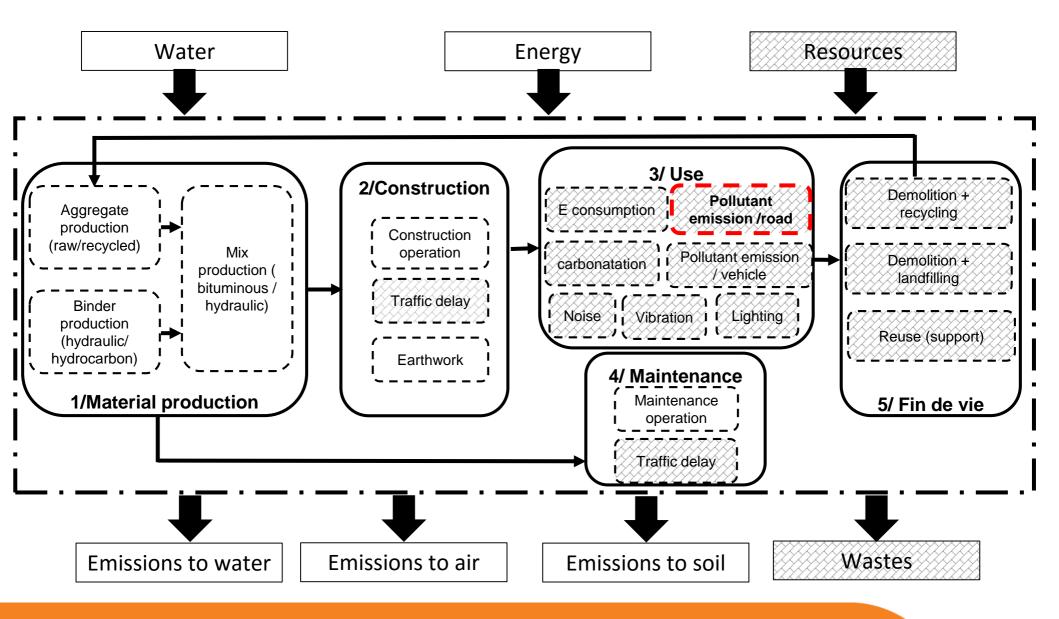
OUR ACTIVITIES

- Innovation and Research
- · Methodology and assistance to contracting authorities
- · Knowledge and know-how capitalisation
- Knowledge dissemination
- Technical studies and territories observation
- · Standardisation and certification
- Engineering

Great interest in LCA applied to pavements...


Hundred of papers

Symposium and workshops



...but

...but

When alternative materials are used

 \Rightarrow Only primary and secondary production are considered in P LCA

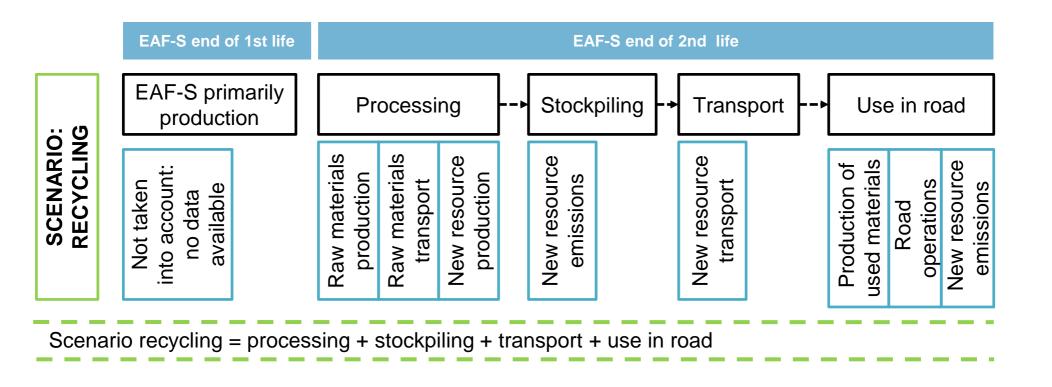
⇒Stockpiling impact =0
⇒ Use impact = 0

BUT Wastes release substances into water

Objective:

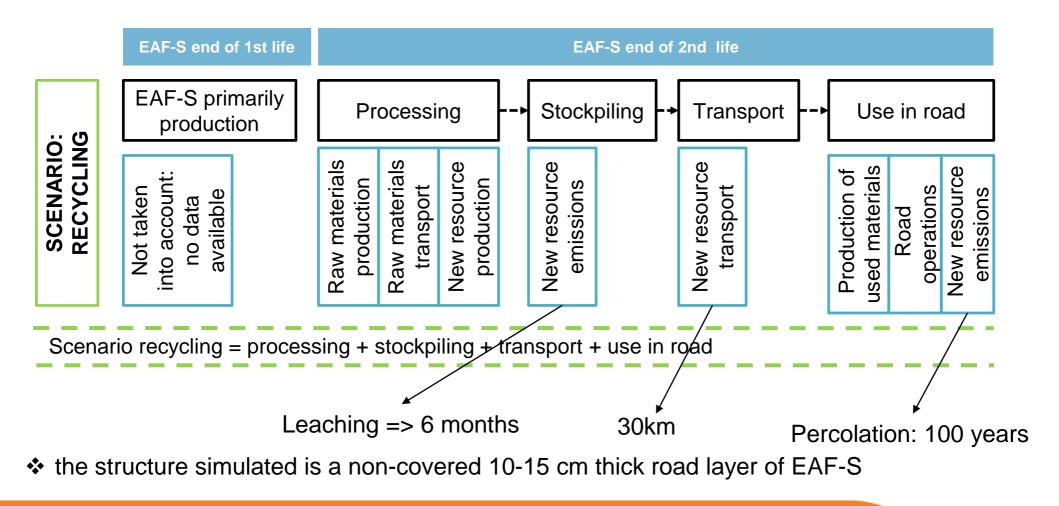
New approach of environmental impact assessment of recycling waste (EAF-S)

 \Rightarrow considering release of chemical substances from the waste to water


⇒ Ecotoxic Potential and Toxic Potential

For

⇒ Stockpiling phase⇒ Use phase

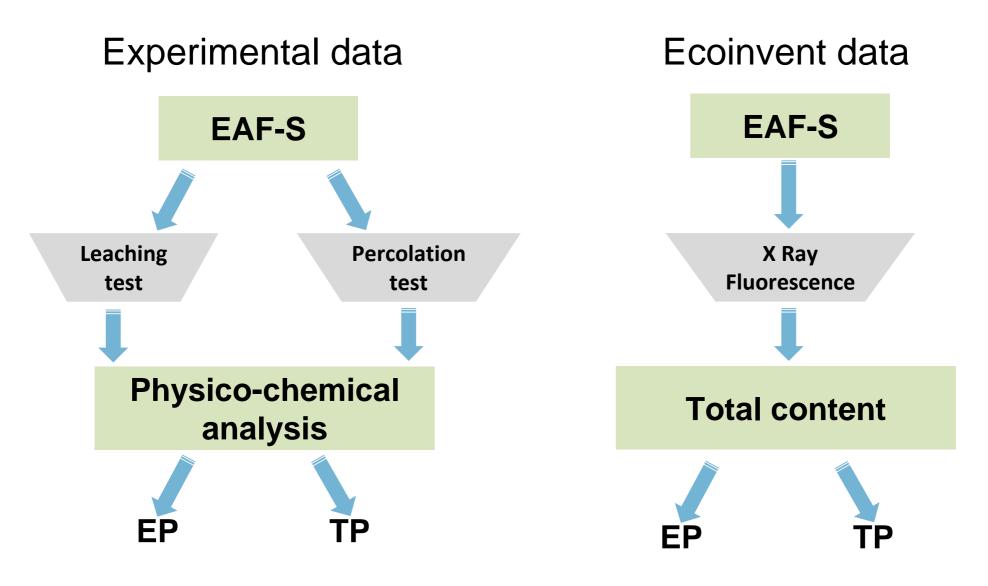


Method: The scenario and processes investigated in this study

Method: The scenario and processes investigated in this study

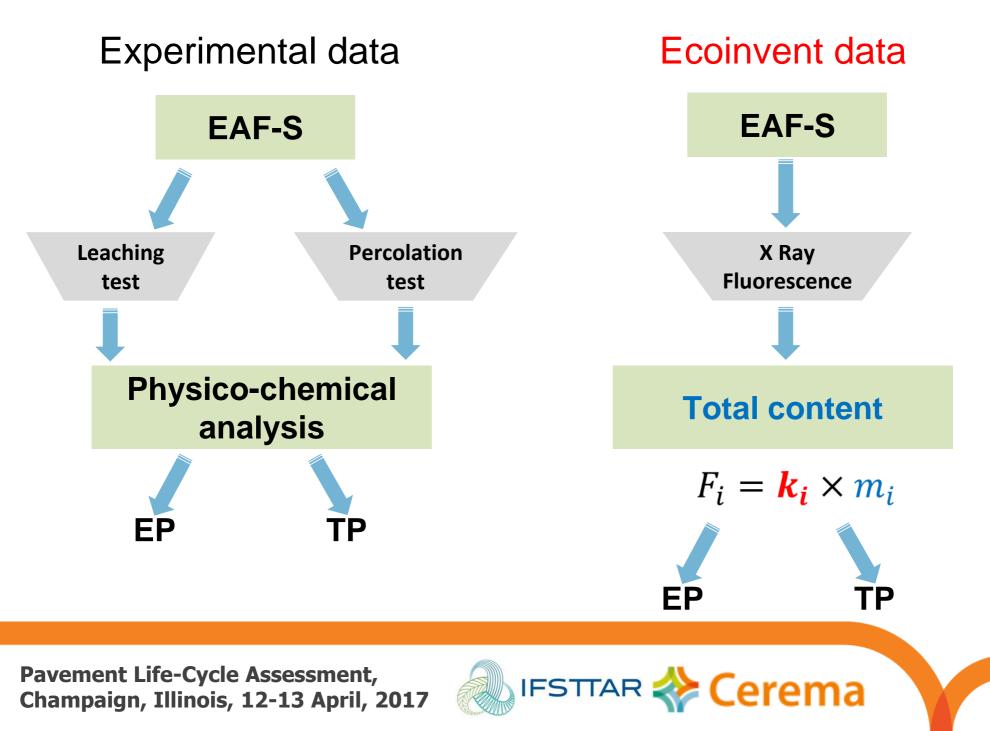
Method: calculation

The calculation of impact indicators, is described as:


Ind $j = \Sigma i \alpha i j \times C i j \times m i$

Ind j, indicator associated with impact category j; mi, mass of inventory flow i (kg); Cij, contribution coefficient of inventory flow i to impact category j; and αij: classification coefficient (from Goedkoop, 2001).

```
    ⇒ E (MJ),
    ⇒ GWP (kg Eq CO<sub>2</sub>),
    ⇒ EP (kg Eq 1,4 DCB), TP (kg Eq 1,4 DCB)
    http://ecorcem.ifsttar.fr, reference manual (Cerema, Ifsttar)
```



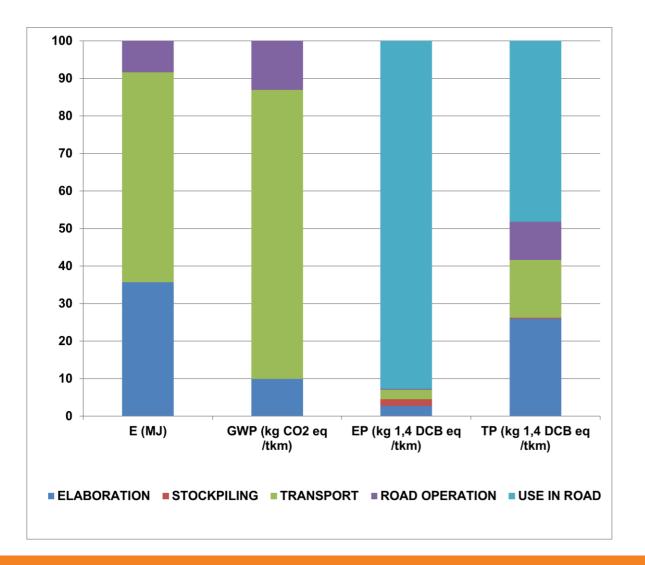
Method: 2 calculation methods for EP and TP

Method:

Material: Raw and processed EAF-S

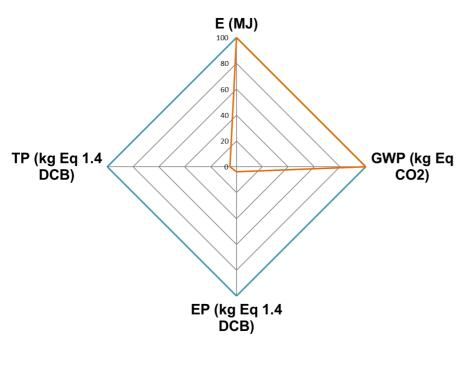
Chemical composition of raw EAF-S and processed EAF-S

Physical	properties	of raw EAF-S
----------	------------	--------------


Properties	EAF-S
Real bulk density (t/m ³)	2.5
Natural water content (Wnat%)	18
Blaine specific surface area (cm ² /g)	5790
Gap-grading analysis	0/1mm

Elements	Units	Raw EAF-S	Processed EAF-S
Silicon dioxide (SiO ₂)	% by weight	32.9	ND
Titanium dioxide (TiO ₂)	% by weight	0.4	ND
Aluminium oxide (Al ₂ O ₃)	% by weight	8.1	ND
Iron oxide (Fe ₂ O ₃)	% by weight	14.1	ND
Manganese oxide (MnO)	% by weight	1.5	ND
Magnesium oxide (MgO)	% by weight	3.9	ND
Calcium oxide (CaO)	% by weight	15.8	ND
Sodium oxide (Na ₂ O)	% by weight	0.2	ND
Potassium oxide (K ₂ O)	% by weight	0.8	ND
P_2O_5	% by weight	0.2	ND
Arsenic (As)	mg/kg	<100	42
Cobalt (Co)	mg/kg	275	0
Chromium (Cr)	mg/kg	18000	10706
Copper (Cu)	mg/kg	1040	208
Molybdenum (Mo)	mg/kg	589	502
Nickel (Ni)	mg/kg	1510	849
Vanadium (V)	mg/kg	426	228
Zinc (Zn)	mg/kg	399	205
Zircon (Zr)	mg/kg	1350	ND
ND: not determined			

ND: not determined


Results: Contribution of each life cycle phase of recycling EAF-S in road

 ⇒ Transport is the main contributor to E and GWP
 ⇒ Use phase is the main contributor to EP and TP
 ⇒ the contribution of Stockpiling phase is insignificant

Results: LCA calculation using Expr data vs. Eco invent data

-Ecoinvent Data -Exp Data

	Exp Data	Ecoinvent Da
E (MJ)	96,47	96,47
GWP (kg Eq CO2)	4,05	4,05
EP (kg Eq 1.4 DCB)	99,125	2697,225
TP (kg Eq 1.4 DCB)	3,0481	62,0781

⇒ EP, TP calculated
 with Ecoinvent data
 >> Expr data

Results: LCA calculation using Expr data vs. Eco invent data

transfer coef of As and Mo (100y) = 1
 Calculation with Ecoinvent data suppose that the total content is transferred

Total content Mo> As
 EP, TP seem to be driven by Mo content when calculated with Ecoinvent data

Results: LCA calculation using Expr data vs. Eco invent data

Results of processed EAF-S percolation test (L/S=10)

Elements	EAF-S after processing (kg/kg)
Arsenic (As)	8.63E-10
Baryum (Ba)	1.71E-05
Cadmium (Cd)	2.17E-11
Chromium (total)	4.30E-06
Copper (Cu)	2.45E-08
Molybdenum (Mo)	9.94E-06
Nickel (Ni)	ND
Lead (Pb)	3.19E-08
Antimony (Sb)	3.41E-07
Selenium (Se)	4.16E-08
Vanadium	ND
Zinc (Zn)	1.03E-08

- EAF-S Mo content =0.5E-03kg/kg
- \Rightarrow All Mo is not transferred!
- ⇒ Diffusion from its bearing phases (iron silicate and melilite) is very low in demineralized water (Chebbi et al. 2016)
- ⇒ Calculation using the Ecoinvent database appears to overestimate EP, TP

⇒But studies of EAF-S percolation in solutions, with pH values close to the field, should be made to confirm this observation.

Conclusions:

- On the basis of LCA study
- The impacts of the life cycle phases corresponding to stockpiling and use of EAF-S in a road layer are evaluated
- ⇒ We should take into account the use phase as EP and TP exhibit important impacts
- ⇒ Even if recycling this AM is possible regarding local regulation, water may leach chemical during the use phase by infiltration
- \Rightarrow Calculation using the Ecoinvent database appears to overestimate EP, TP
- ⇒ This result will be completed by other studies on different AM, as part of OFRIR database (http://ofrir.ifsttar.fr) where LCA is now its main objective

Thank you for your attention

O. YAZOGHLI-MARZOUK, M. DAUVERGNE, W. CHEBBI, A. JULLIEN

Oumaya.marzouk@cerema.fr

Session => TRANSPORT : Integrating Life Cycle Assessment and Sustainability Assessment into infrastructures design and management.

http://avnir.org/EN/Edition-2017-429.html

Cerema

National Centre For Studies and Expertise on Risks, Environment, Mobility, and Urban and Country planning

