

Environmental Assessment and Economic Analysis of Porous Pavement at Sidewalk

Xiaodan Chen, Graduate Research Assistant Hao Wang, Ph.D., Assistant Professor Husam Najm, Ph.D., Associate Professor Rutgers, The State University of New Jersey

Outline

- Introduction
- Porous Mixtures
- LCA Framework and Results
- LCCA Results and Ongoing Work
- Conclusions

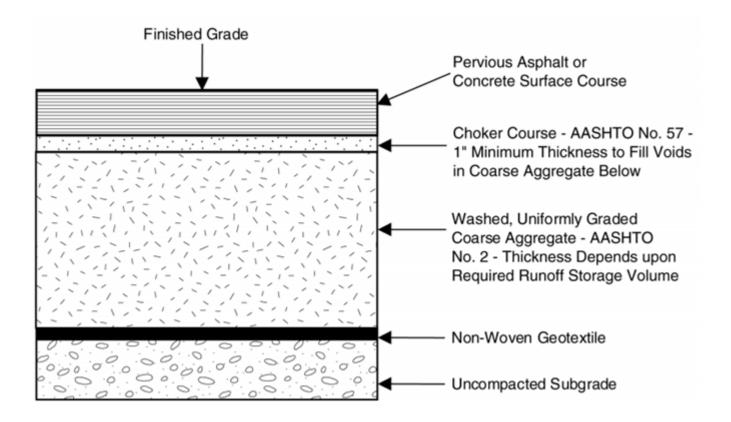
RUTGERS

Introduction

- Benefits of porous pavement
 - Reduce storm water system requirements and flooding risk
 - Reduce surface runoff and peak flows
 - Recharge ground water
 - Improve water quality by capturing pollutants
 - Potential reduction of heat island effects in urban areas
- Porous pavement surfaces could be asphalt, concrete or interlock pavers
- Porous pavement is mostly used for light-traffic applications, such as sidewalk, parking lot, residential street and driveway, highway shoulder or median

Limitations and Concerns

- Prone to clogging and reduction of infiltration rate
- Periodic maintenance with high pressure washing and vacuum sweep is required
- Subsurface drainage may be required in less permeable soils
- Special care is needed to avoid compacting underlying parent soils
- Raveling due to water and deicing salts (porous asphalt)
- Requirements on handling and placement due to relatively stiff consistency (porous concrete)


Objectives and Scopes

- Conduct environmental assessment of porous pavements as compared to conventional concrete for light traffic applications
- Conduct life-cycle cost analysis of different porous pavements
- Recommend porous concrete mix design based on engineering properties, life-cycle cost, and environmental impact that satisfy requirements of NJDOT

Porous Pavement Structure

Balance between structural adequacy and hydraulic performance

Rutgers

Hydraulic Design of Porous Pavement

- The design of the depth of reservoir layer underneath porous pavement surface depends on different storm events and the infiltration rate of soil which is the most hydraulically restrictive layer in porous pavement
- Follows New Jersey Storm Water Best Management Practices Manual by NJDEP

Underdrain needed (Stormwater Quality Design Storm 1.25 in/2-hr)									
Hydrologic Soil Group	general soil texture groups	Excellent Drainage	Good Drainage	Fair Drainage					
A	Sands								
A-B	Sandy and silty soils								
В	Loams	\checkmark							
C-D	Clayey soils	\checkmark	\checkmark						
D	Sodic clayey soils	\checkmark	\checkmark						

RUTGERS

Mixture Designs

Material (Ibs/cu.yd)	Conventional Concrete	Porous Concrete design 1	Porous Concrete design 2	Porous Asphalt	
Cement	405	635	465	N/A	
Slag	175	N/A	155	N/A	
Fine Agg./ Sand	1314	224	N/A	N/A	
Coarse Agg.	1850	2430	2500	N/A	
Water	283	209	165	N/A	
Asphalt	N/A	N/A	N/A	194	
Polymer	N/A	N/A	N/A	14	
Fine Agg.	N/A	N/A	N/A	761	
Coarse Agg.	N/A	N/A	N/A	2283	

LCA Framework

- Functional unit: one-mile sidewalk with four feet width
- System boundary: raw material and mixture production in initial construction and maintenance (reconstruction) stages within 40-year analysis period
 - Construction-related activities were not considered
- Life-cycle inventory data were compiled from literature and existing database
- Impact assessment: energy consumption and greenhouse gas (GHG) emission
 - Carbon Dioxide (CO₂), Methane (CH₄) and Nitrous Oxide (N₂O) were converted to CO₂ Eq. using GWP equivalency factors

Inventory Database for Material

- Asphalt: updated date from UIUC study; EIA PADD 1 (east coast) (Yang et al. 2016)
- Cement, crushed aggregate, sand or gravel: Portland Cement Association report (Marceau, et al. 2007)
- Polymer additive: European Bitumen Association report (Eurobitume, 2011)
- Slag cement: CTL report (Marceau and VanGeem, 2003)
- Hot-mix asphalt production: Plant energy and emission data from NCHRP 9-47A report (*Prowell et al., 2014*)
- Cement concrete production: Portland Cement Association report (Marceau, et al., 2006)

Indirect (Upstream) Energy and Emission

 In addition to energy and emissions of direct use of fuels and electricity, energy and emissions associated with the production of fuels and electricity are considered separately

$$UEE = \sum_{i=1}^{n} CE \cdot PE_i \cdot UEE_i$$

Where,

GERS

UEE = Upstream energy consumption (BTU/ton) or emission (g/ton);

CE = Combustion energy (MMBTU/ton);

 PF_i = Percent of the *i* th type of energy in the energy matrix;

 UEE_i = Upstream energy consumption (BTU/MMBTU) or emission (g/MMBTU) for the *i* th type of energy (calculated from GREET);

i = Type of energy including coal, diesel, gasoline, liquefied petroleum gas, natural gas, distillate oil, petroleum coke, residual oil, and electricity; and n = Total number of energy type.

RUTGERS

Energy Usage Profile

Process fuels	Asphalt	Cement	Sand	Crushed Stone	Slag Cement	Polymer	HMA plant	PCC plant
Coal	0.04%	56.58%	0	1.89%	0	9.75%	0	0
Diesel	0	0	0	0	0	0	0	0
Gasoline	1.05%	0.04%	3.41%	3.85%	0	0	0	0
LPG	0.51%	0.02%	0	0	0	0	0	0
Natural Gas	72.54%	0.85%	6.87%	11.63%	77.56%	53.9%	80%	39.3%
Distillate Fuel Oil	0.15%	3.45%	39.1%	42.40%	0.09%	36.35%	20%	26.2%
Petroleum Coke	18.39%	18.12%	0	0	0	0	0	0
Residual Oil	0.47%	0.09%	9.46%	7.11%	0	0	0	0
Nuclear Power	0	9.26%	0	0	0	0	0	0
Electricity	4.25%	11.58%	41.2%	33.1%	22.35%	0	0	34.5%

Comparison between Different Mixtures - Energy Consumption

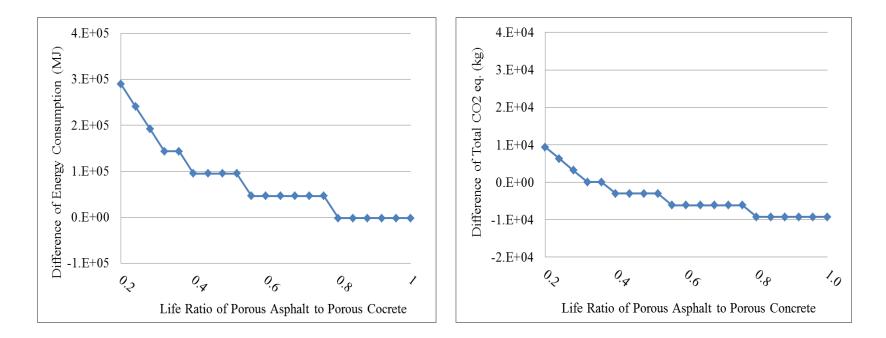
Energy Consumption (MJ/mile)	Porous Concrete (no slag)	Porous Concrete (slag)	Porous Asphalt	Conventional Concrete (slag)	
Surface	43535	34924	42569	31884	
Bedding	441	441	441	-	
Reservoir Layer	5469	5469	5469	-	
Drainage Pipes	-	-	-	17137* (include feedstock energy)	
Total	49446	40834	48480	49021	

Comparison between Different Mixtures - GHG Emission

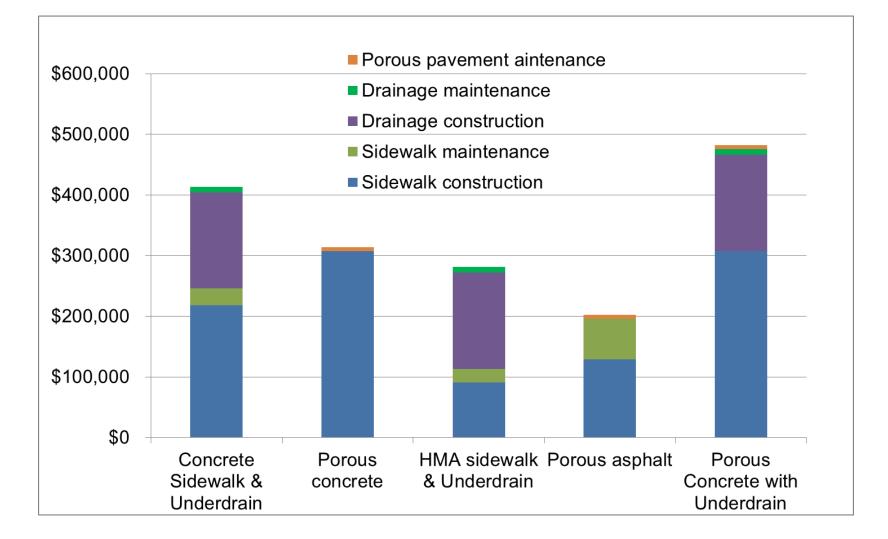
CO2 eq. Emission (kg/mile)	Porous Concrete (no slag)	Porous Concrete (slag)	Porous Asphalt	Conventional Concrete (slag)	
Surface	7456	5559	2839	5073	
Bedding	20	20	20	-	
Reservoir Layer	243	243	243	-	
Drainage Pipes	-	-	-	191	
Total	7719	5822	3102	5264	

Field Performance of Porous Pavement

- Failure reasons of porous pavement
 - Clogging may originate from pavement wear due to tire friction, erosion from adjacent areas, vegetation, or sand application during winter maintenance
 - Drawdown of asphalt during hot days
 - Freezing-thaw damage

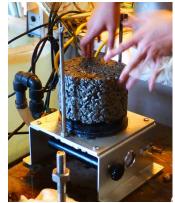

GERS

- In real practice, the lifespan is affected by construction procedure and maintenance frequency
 - Porous concrete: 20-30 years
 - Permeable asphalt: 15-20 years


RUTGERS

Comparison with Different Life Ratios

 The breakeven point of pavement life ratio between porous asphalt and porous concrete is around 0.8 (energy consumption) and 0.32 (CO₂ eq.) when the life of porous concrete (no slag) is assumed to be 25 years


Life-Cycle Cost Analysis

Laboratory Testing of Structural and Hydrological Properties of Porous Concrete

- Flexural Strength
- Splitting-Tensile Strength
- 7-Day and 28-Day Compressive Strengths
- Free Shrinkage
- 28-Day Elastic Modulus
- Freeze-Thaw Resistance
- Permeability

Mix Designs of Porous Concrete

Mix	Cement	3/8 Agg	1/4 Agg	Sand	Fly Ash	Slag	Water	W/CM Ratio	MRWR (SP)	HS	VMA	AE
PRC-1	635*	2430		224			209	0.33				
PRC-2												
(WELDON)	864	2430					236	0.27	1.9	1.9		0.8
PRC-3												
(CLAYTON)	600	2835					162	0.27	1.9	1.9		0.8
PRC-4	620	2700					168	0.27	1.9	1.9		0.8
PRC-5	620	2700					168	0.27	1.9	1.9	2	0.8
PRC-6	620	1380	1380				168	0.27	1.9	1.9		0.8
PRC-7	525	2500			95		168	0.27	1.9	1.9		0.8
PRC-8	465	2500				155	168	0.27	1.9	1.9		0.8
PRC-9 (Silvi)	500		2700				165	0.33	1.9	1.9		0.8
PRC-10 (gravel)	600	2700					180	0.3	1.9	1.9		0.8
PRC-11 (gravel)	600		2700				180	0.3	1.9	1.9		0.8

*in lb/yd^3

Highlighted mix designs were chosen for fabricating slabs

Field Slabs and Temperature Monitoring

Conclusions and Recommendations

 LCA results illustrate that mix designs of pavement surface course greatly influence comparison results between porous asphalt, porous concrete and conventional concrete

GERS

- The pavement life ratio can significantly affect comparison results between different pavement types due to the reconstruction activities
- LCCA results show that underdrain pipes for conventional sidewalk pavement have significant contribution
- The benefits of porous pavement on storm water management and urban heat island need to be considered in future LCA study

Thank You Questions ? Hao Wang hwang.cee@rutgers.edu