Comparative Eco-Efficiency Analysis between Hot In-place Recycling and Milling-and-Filling

Ms. Ruijun Cao, Dr. Zhen Leng, Dr. Mark Shu-Chien Hsu Department of Civil and Environmental Engineering The Hong Kong Polytechnic University

Pavement Life-Cycle Assessment Symposium 2017

13 April 2017, Champaign, IL

Outline

Objective

To **quantify** and **visualize** advantages and disadvantages of two asphalt pavement rehabilitation techniques in terms of economy and environment by employing **Ecoefficiency analysis (EEA)**:

- Hot In-place Recycling (HIPR)
- Milling- and-Filling (**M&F**)

Eco-Efficiency Analysis (1/4)

Initially developed by a German chemicals company BASF

150 years

We create chemistry

Eco-Efficiency Analysis (2/4)

The general framework of Eco-efficiency Analysis

Step 2: Weighting WEIGHTING FACTORS [%] Risk Combine the normalized potential. values via a weighting 10% **Emissions** 20% scheme to form a total **Toxicity** index for the potential, 20% environmental impact categories. Energy **Raw material** consumption consumption. 25% 25%

Step 3: Eco-efficiency portfolio position The EI and the NF _c are used to calculate the portfolio position. (Kicherer et al., 2007)	$PP_{E,\alpha} = \frac{EI_{\alpha}}{(\Sigma EI)/j}$ $PP_{C,\alpha} = \frac{NF_{C,\alpha}}{(\Sigma NF_C)/j}$ Where, $PP_{E,} = \text{Environmental impact portfolio position for product } \alpha$ $PP_{C,} = \text{Cost impact portfolio position for product } \alpha$ $PP_{C,\alpha} = \text{Normalization factor for the costs of product } \alpha$ $NF_{C,\alpha} = \text{Normalization factor for the costs of product } \beta$ $j = \text{Number of products under consideration}$
---	---

Case Study (1/4) - Basic Information

Yingbin Avenue

Location

Xianyang, Shaanxi, China Rehabilitation Method: HIPR Time: 2015 Length: 3.8km

Case Study (1/4)-Basic Information

	HIPR (Real case)	M & F (Mock case)	
Construction	Wearing course: AC-10 30mm Base course: AC-25 50mm	Wearing course: AC-13 40mm Base course: AC-25 50mm	
Scheme	Before	After	
	Half Range Closure	Half Range Closure	
Reference	Construction Report from the Freetech Technology Ltd.	The Chinese Industry Recommendatory Standards: JTG-D50-2006 JTG-F40-2004 JTG/T B06-02-2007	
Service Life	15 years (Assumption)	15 years (Assumption)	

Case Study (2/4)-System Boundary

Case Study (3/4)-Data Acquisition

• Environmental Impact Data

Life Cycle Phase	Software	Function	Developer
Material	Simapro	Model the GHGs, energy and raw material used in	PRe
production phase	7.0	the material extraction phase	Consultants
Transportation	MOVES	Evaluate the GHGs and energy during the	US EPA
phase	2014a	transportation of material	
Construction	NONROAD	Provides emission factors for various ranges of	US EPA
phase		horsepower of different construction equipment.	
End-of-life phase		"Cut-off" allocation method	

Case Study (3/4)-Data Acquisition

Cost Data

Assumptions

AADT: 15000 Speed limit: 90km/h → 60km/h (work zone speed)

	Cost	Reference	Developer	
Agency	Construction cost	Contract &	Ministry of	
Cost	Energy consumption cost	[–] JTG/T b06-02-2007	Communications of PRC	
User cost	Traffic delay cost	Real Cost	FHWA	

Case Study (4/4)-Results

• Normalized numerical results

Normalized results		HIPR	M&F
	Emissions (20%)	0.72	1
Environmental	Energy consumption (25%)	1	0.93
Impacts	Raw material consumption (25%)	0.52	1
	Toxicity potential (20%)	1	1
	Risk potential (10%)	1	1
Overall environmental impact		0.84	1
Cost	Agency cost (50%)	0.71	1
Performance	User cost (50%)		0.99
Total Cost performance		0.95	1
PP _E		0.91	1.09
PP _c		0.97	1.03

Same service life:

15 years

- Reduce 28%
- 7% more
- Save 48%
- Reduce 16%
- Save 29%
- Almost same
- Reduce 5%

Case Study (4/4)-Results

• Graphical Results

It is clear to identify that the HIPR has the higher eco-efficiency than M&F for this case.

Service Life Sensitivity Analysis (2/3) **Emissions** Scenario A 0.5 Energy **Risk potential** consumption 0 **Toxicity** Raw material potential consumption -HIPR-A -M&F-A

Service Life Sensitivity Analysis (2/3) **Emissions** Scenario A 0.5 Energy **Risk potential Scenario B** consumption 0 Toxicity Raw material potential consumption -M&F-A -HIPR-A -HIPR-B -M&F-B

Service Life Sensitivity Analysis (2/3) **Emissions** Scenario A 0.5 Energy Scenario B **Risk potential** consumption 0 Scenario C Toxicity Raw material potential consumption

—HIPR-A —HIPR-B —HIPR-C —M&F-A —M&F-B —M&F-C

Conclusions

- In this project, the decreasing service life of HIPR witnesses its reduction of relative eco-efficiency compared with M&F techniques. For the presented case study, when the ratio of service life of two alternatives reaches 12/15 (HIPR/M&F), the M&F starts to show its advantages.
- EEA shows its high potential as an effective sustainability assessment tool for comparing asphalt pavement rehabilitation alternatives.
- Time period, region, system boundaries, transportation distance, crude source distribution, and treatment of refinery allocation will all affect the final eco-efficiency results. Therefore, further research is recommended on the sensitivity analysis about the effects of various factors to obtain more comprehensive results.

Thanks you!

ruijun.c.cao@connect.polyu.hk

