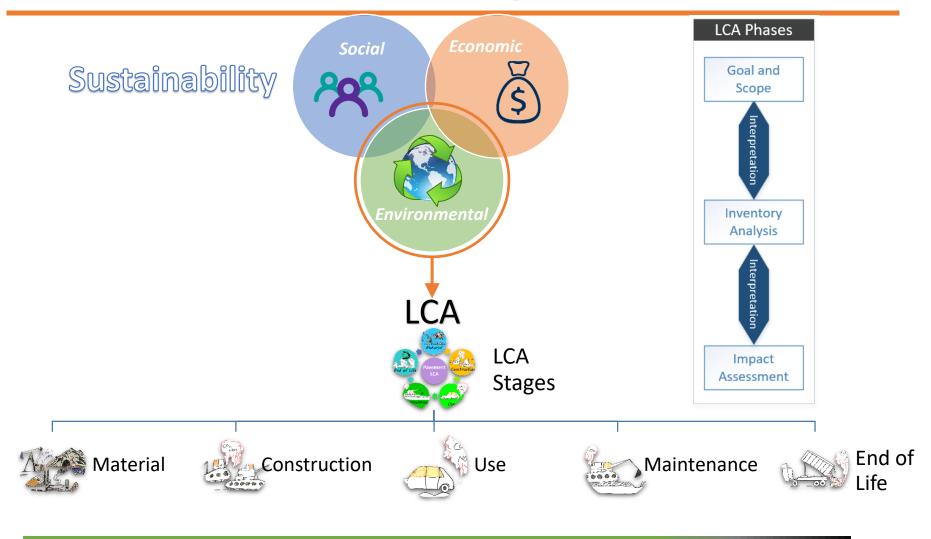


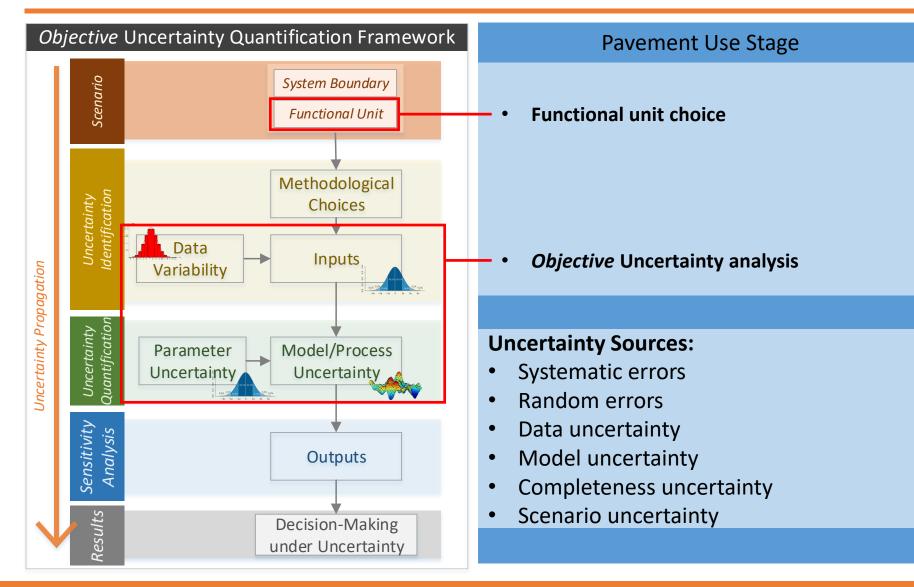
Functional Unit Choice for Comparative Pavement LCA Involving Use-Stage with Pavement Roughness Uncertainty Quantification (UQ)

Mojtaba Ziyadi, PhD Candidate Hasan Ozer, Research assistant professor Imad Al-Qadi, Professor

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign


"Where Excellence and Transportation Meet"

Other Stages


Sustainability & LCA

"Where Excellence and Transportation Meet"

Outline

Functional Unit (FU) Choice

- A unit of measurement of system components to which inputs and outputs of LCA are normalized
- FHWA reference doc: "particular length of pavement with a specified geometry that meets the acceptance criteria over a specified length of time."
- Common FUs used in the literature:
 - Physical
 - Lane-mile (LM)
 - Annualized
 - Lane-mile year (LMY)
 - Structural or performance-based
 - Performance-lane-length (PCR-lane-mile)

FU Choice in Comparative LCA

• FU for different design alternatives for a specific project/corridor/location.

Example FU:

• 20 lane-mile of pavement section serving 40,000 traffic for 50 years.

FU Choice in Comparative LCA

- What to do for comparative LCA of <u>different</u> projects?
 - it is not straightforward for projects with different characteristic or design inputs.
 - This is the case of benchmarking studies where projects from past, for example, are compared to current designs
 - Example of Illinois Tollway pavement sustainability projects: Current projects to be evaluated against baseline projects from 1990s.
 - Not similar designs!

FU Choice in Comparative LCA

- Take previous FU as example:
 - 20 lane-mile of pavement section <u>serving</u> 40,000 traffic over 50 years.
 - This fails to describe differences among projects.
- Therefore, a new FU in terms of Vehicle-lengthtraveled was defined e.g. vehicle-miles-traveled
- If the use stage accounts for the performance, then no need to include it directly in the FU.
 - Assuming poor performing pavement will result in higher impacts

Example Application – widening projects

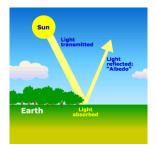
Toll Road	Year	Project Code	MP	Length (mi)	Analysis Period (yr)	AADT; % Truck	Description
Jane Addams Memorial I- 90/I-39/ US 51	2012- 2013	4077 A	49.7 to 53.6	3.9	62 yrs; 3 overlays	28,460 EB; 13.3%	Roadway widening (3 lanes 12-inch JPCP) and reconstruction
	2014	4133 B	24.9 to 33.5	8.6	62 yrs; 3 overlays	19,240 WB; 20.3%	Roadway widening (3 lanes 11.25-inch JPCP) and reconstruction
Tri-State I-94/I-294/ I- 80	2007- 2008	5228 C	15.84 to 13.24	2.6	62 yrs; 3 overlays	148,200 14.6%	Roadway widening and reconstruction (with 12-inch JPCP) from 3 to 4 lanes
Ronald Reagan Memorial I-88	1999	723 D	133.7 to 138.8	5.1	44 yrs; 2 overlays		Roadway widening and reconstruction to 3 (12-inch JPCP) lanes

Methodology

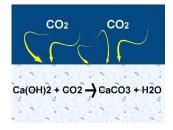
Material, Construction, Maintenance, and Endof-Life Stages

A life-cycle inventory database was developed combining operational or process activity data collected with processes available in commercial software and databases such as SimaPro and US-Ecoinvent.

(Yang et al., 2016; Kang et al., 2014)



Methodology


Use Stage

1. Albedo (Harvey, et al., 2016)

$$m_{CO2} = \sum_{n=1}^{N} 100 * (\alpha_{new}^{n} - \alpha_{ref}) * (f_{RF}) * A$$

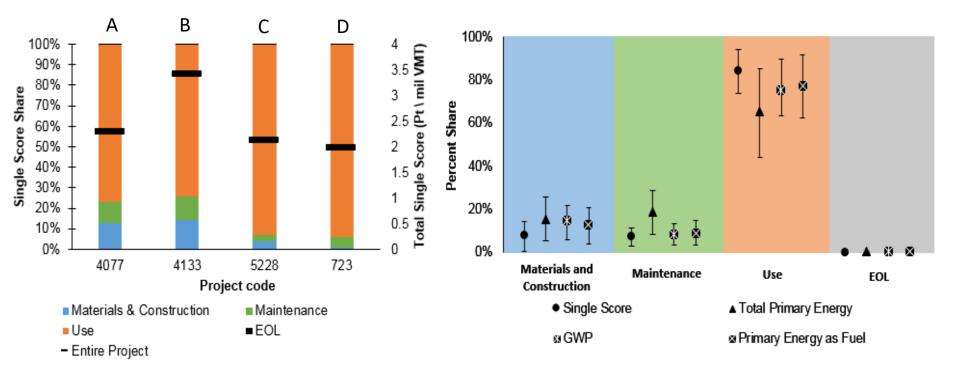
2. Carbonation (Lagerblad, 2005)

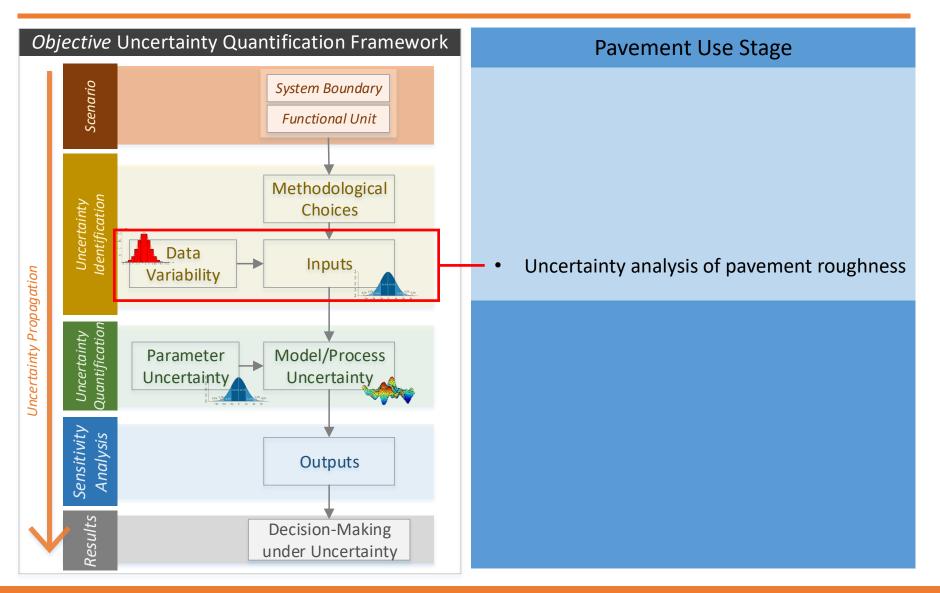
$$CO_2(kg) = k \times t^{0.5} \times c \times CaO \times r \times A \times M$$

Methodology

3. Rolling Resistance (RR)

Comparison of Use Stage for Different FU


	GWP (tonne-CO ₂ -eq)			
Output	Project Code			
	4077 A	4133 B	5228 C	723 D
Total (tonne-CO ₂ -eq.)	38,915	70,331	129,939	132,931
Total VMT (millions)	4,199	6,354	12,451	20,921
Lane-Mile (LM) (tonne-CO ₂ -eq. / lane-mile)	3,326	2,726	12,494	8,688
Lane-Mile Year (LMY) (tonne-CO ₂ -eq. / lane-mile-yr)	54	44	202	197
VMT (tonne-CO ₂ -eq. / million VMT)	9.3	11.1	10.4	6.4


Range of Outputs

 For VMT as FU the following range of results were obtained

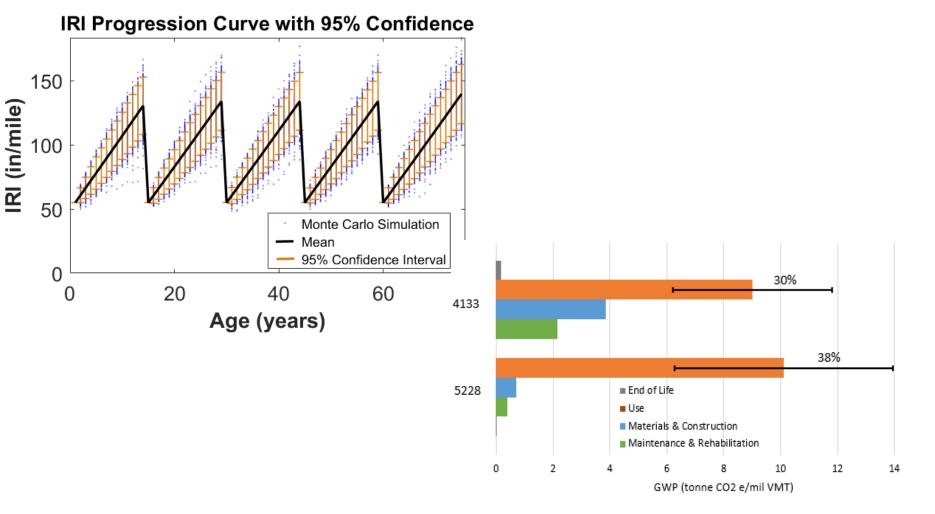
I

Uncertainty of Pavement Roughness

"Where Excellence and Transportation Meet"

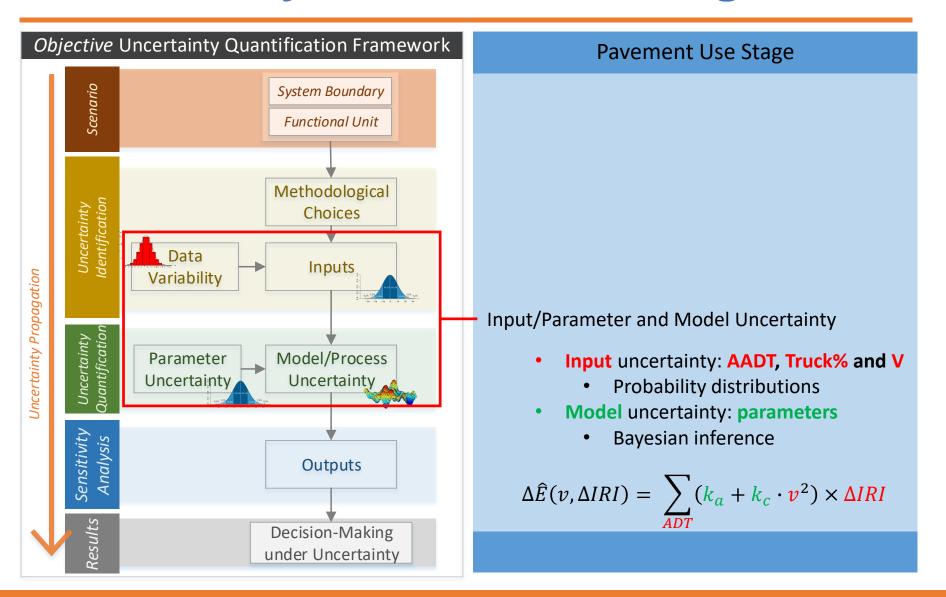
Uncertainty of Pavement Roughness

- IRI Progression and drop model developed
- Stochastic approach for IRI uncertainty by adding random noise


IRI progression model: $IRI_t = IRI_{t-1} + a * Thickness^b * ESALs^c + \varepsilon \sim N(0, \sigma^2)$

I

16

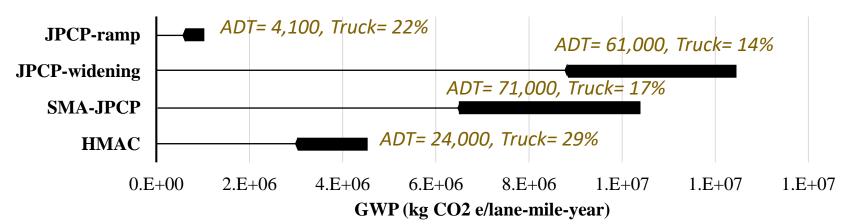

Uncertainty of Pavement Roughness

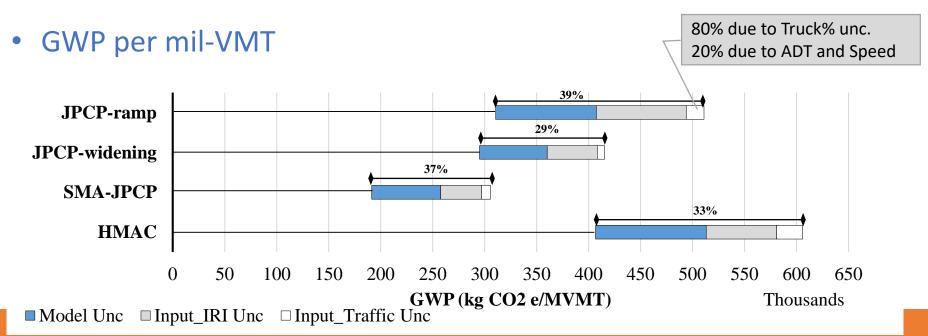
• IRI Progression with 95% confidence interval

"Where Excellence and Transportation Meet"

Uncertainty of Pavement Roughness

Projects


Toll Road	Milepos t	Year	Code		Analysis Period (yr)	AADT; % Truck	Description
Jane Addams Memorial I-90/I-39/ US 51	8.9 to 3.9	2008	I-08-5542 HMAC	5	75 yrs; 4 overlays	24,120 EB; 29.4% 1.47% Growth	Roadway (with 12 and 15- inch HMAC) of 3 lanes and bridge reconstruction. from Plaza 1 (SO Beloit) to IL RT 173 EB.
Tri-State I-94/I- 294/ I-80	17.3 to 30.1	2001 - 2002	RR-99-8101 SMA-JPCP	12.8	58 yrs; 4 overlays	70,864 NB, 17.1%, 0.92% G	Roadway partial resurfacing and rehabilitation (3-inch SMA overlay over 4 lanes JPCP)
Tri-State I-94/I- 294/ I-80	15.84 to 13.24	-	I-07-5228 JPCP- widening	2.6	62 yrs; 3 overlays	61,270 SB 13.8% 0.92% G	Roadway widening and reconstruction (with 12-inch JPCP) from 3 to 4 lanes
Tri-State I- 94/I-294/ I-84	7.5 to 7.8	2013 - 2014	I-12-4066 JPCP-ramp	1.2	62 yrs; 3 overlays	4,100 NB; 22.1% 0.92% G	A new highway interchange ramp (2 lanes 12-inch JPCP) construction at the junction of I-57 and I-294.



Use Stage - Roughness Uncertainty

• GWP per lane-mile year

Summary

- Functional unit choice as an important methodological choice
- Introduced Vehicle-length-traveled (e.g. VMT) as a <u>feasible</u> FU for benchmarking projects
- Importance of uncertainty quantification in LCA
- 30-40% variance in use stage results due to input/model uncertainties
- Expand the uncertainty analysis to other stages

Thank You!

Mojtaba Ziyadi

PhD Candidate Illinois Center for Transportation, University of Illinois at Urbana-Champaign ziyadi2@Illinois.edu

Study Assumptions

Parameter	Uncertain Quantity and Assumptions
Speed	 Speed distributions obtained from 2015 Traffic data report (CDM SMITH, 2015). Ramp section speed was assumed posted speed of 35 mph. Yearly average speed variation was not considered
Traffic Data	 Average daily traffic (ADT), and percent truck traffic collected from 2015 Traffic data report (CDM SMITH, 2015) for each section. % measured error in ADT reported as (ADT ~ N(μ,0.1μ/2)). 10% error in truck percentage. Truck composition according to WIM data from I-294 and I-94 sections (Years 2012 and 2014, Jan, Feb and Apr months): 90% large, 9% medium and 1% small truck. Truck classification and conversion between different systems can be found elsewhere (TRB, 2016?)
Truck Loading	
Truck Loading	 Sample WIM data from I-294 and I-94 sections. Years 2012 and 2014 Gaussian mixture model was generated from real WIM data for simulation.
Temperature	- 2010 Average monthly temperature data from Chicago O'hare weather station (https://www.ncdc.noaa.gov, accessed 2/2017)
IRI	 - Initial IRI values of 55 in/mile for asphalt and 60 in/mile for concrete sections. Averaged from historic Tollway data. - Section specific IRI progression curves adopted from literature (TRB, 2016) - Data variances were calculated from sections with similar pavement surface type throughout the network.
Material	 - 10% error in section surface area (Area ~ N(μ,0.1μ/2)) - Albedo of AC: [0.15 – 0.05], PCC = [0.4 – 0.2] (Yu et al., 2013, Kaloush et al., 2008) - RF = [-2.9 to -1.3] (Xu, et al., 2016)

6

Scenario Description for	Performance (in	Traffic	Functional Unit Choice and		
Comparison	terms of IRI)		Consequences on Use-stage		
			Impact		
Alternative pavement trials	▲ IRI	^{Traffic} A=B	LM: A > B		
for the same traffic with		A-D	LMY: A > B		
same design lives.	В		VMT: A > B		
Different expected perfor-			Consistent results when analysis		
mance (poor performance	t 1		period is the same.		
for A) with same analysis	$AP_A = AP_B$	+			
period. Different designs with dif-			LM: B > A		
ferent design lives account-		▲Traffic _A B	LMI: $B > A$ LMY: most likely $B > A$		
ing for traffic volume dif-	IRI B		VMT: most likely $A = B$		
ferences.	A		<i>LM and LMY will penalize</i>		
Similar expected perfor-			longer living pavement. Results		
mance within the analysis		A	depend on change in AP and dif-		
period (shorter life for	AP _A AP _B		ferences in performance and		
pavement A).			traffic.		
Arbitrary selection from			LM: A > B		
network with different per-	▲ IRI	ATraffic /	LMY: $A > B$		
formance and traffic.		A /	VMT: most likely $A > B$		
Same or different design	В		- VMT will favor better perform-		
lives.		В	ing pavement B if traffic volume		
Assume A is the poor per-	t t	t	is not too low If traffic volume		
forming with higher traffic	$AP_A = AP_B$	+	is too low, indication of overde-		
and same analysis period.			sign.		
Arbitrary selection from			Total: can vary.		
network with different per-	▲ IRI	▲ Traffic /	LM: can vary.		
formance and traffic.		в	LMY: can vary.		
Same or different design	B		VMT: most likely $A > B$		
lives.			- VMT will favor better perform-		
Assume A is the poor per-	11/1//////////////////////////////////	A	ing pavement B.		
forming with different traf-	AP _A AP _B	A.P(A) :: A.P(B)	- Under higher traffic conditions		
fic.		xore filosii - xore filosii	LM and LMY may penalize		
			pavement B.		

T

AP = analysis period

LCA		GWP (tonne-CO ₂ -eq)			
LCA	Component	Project Code			
Stage		4077	4133	5228	723
	Roughness-Related Passenger Vehicle	25,144	35,950	93,047	114,648
	Roughness-Related Small Truck	624	1,483	2,577	2,018
	Roughness-Related Medium Truck	824	1,957	3,400	2,662
e	Roughness-Related Large Truck	2,988	7,095	12,325	9,651
Use-stage	Texture-Related Medium Truck	1,413	3,263	5,604	5,457
Jse-	Texture-Related Large Truck	2,738	6,324	10,860	10,576
	Albedo Mainline		6,943	1,111	-8,321
	Albedo Shoulders	2,087	7,423	1,056	-3,645
	Carbonation Mainline	-55	-111	-46	-116
	Carbonation Shoulders		0	0	0
	Total (tonne-CO ₂ -eq.)	38,915	70,331	129,939	132,931
	Total VMT (millions)	4,199	6,354	12,451	20,921
	Per Functional Unit of Lane-Mile				
	(LM)	3,326	2,726	12,494	8,688
	tonne-CO2-eq. / lane-mile				
Per	Per Functional Unit of Annualized Lane-Mile (LMY)		44	202	197
	tonne-CO ₂ -eq. / lane-mile-year				
Per	Per Functional Unit of Vehicles Mile Travelled (VMT) tonne-CO ₂ -eq. / million VMT		11.1	10.4	6.4