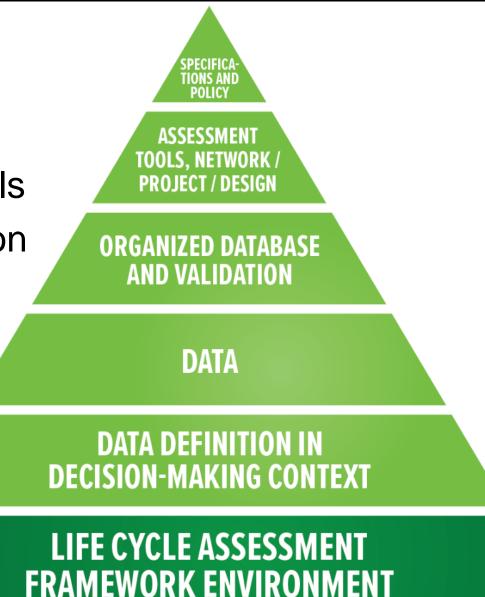
eLCAP and PaveM: California's Network and Project Level Quantification Tools

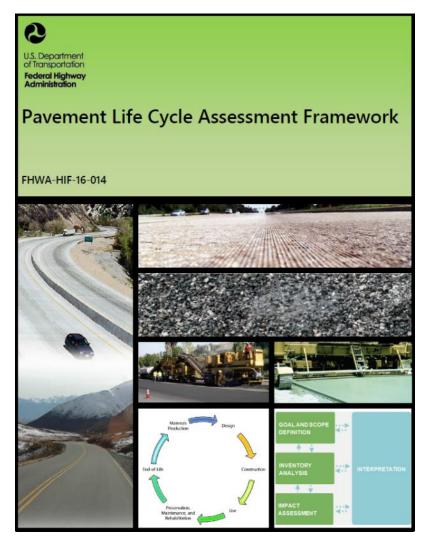
John Harvey University of California Pavement Research Center

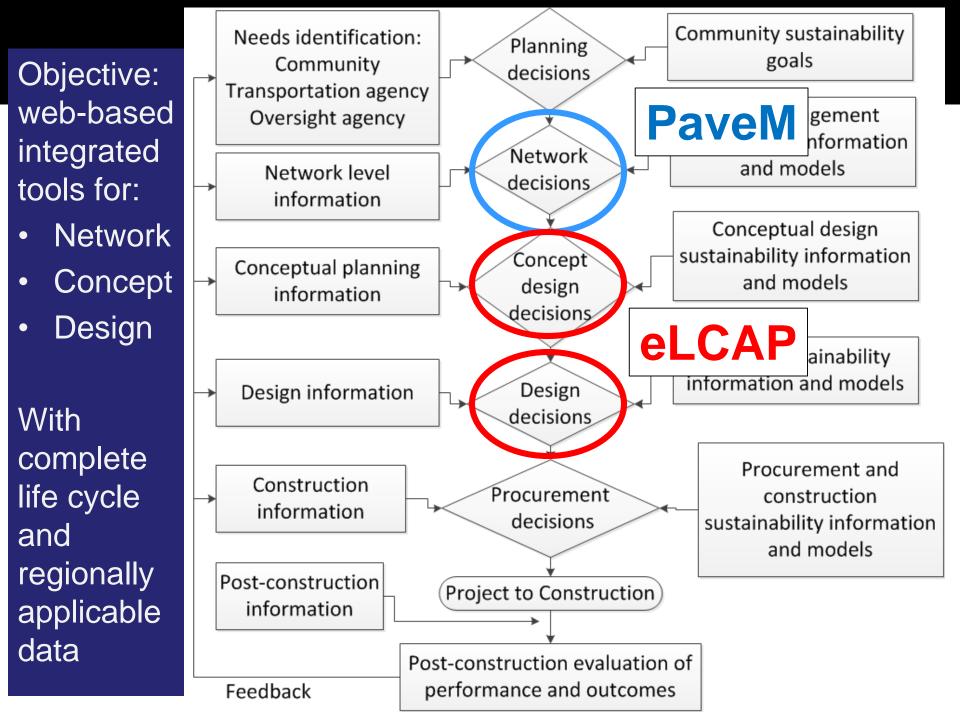
Pavement LCA 2017 Champaign, IL 12 April 2017



The need for pavement LCA tools

- Pavement LCA information awareness and knowledge growing; need to start doing
- Tools are available (examples)
 - Conceptual-level tool for GHG, national data (ICE)
 - Commercial interfaces to databases not specific to pavement (GaBi Envision)
 - Pavement tools with incomplete life cycles (Athena, Roadprint [web based])
 - Web based tools specific to another DOT (PLCA)
 - Strong regional inventory excel tool (Tollway)


Ready to produce pavement LCA tools?


- Want to answer questions
- Ready for initial tools
- Inventory information available, reviewed
- Sufficient data and models to start
- Data definitions ready
- FHWA framework

FHWA Pavement LCA Framework Document

- Published January 2016
- Downloadable on FHWA Sustainable Pavements website
- Guidance on uses, overall approach, methodology, system boundaries, and current knowledge gaps
- Specific to pavements
- Includes recommended guidelines for EPDs

Considerations for implementation

- Relevancy
 - Address relevant pavement decisions and questions, goals and scopes
 - Flexibility: ability to add new questions, materials, designs, practices, data
 - Regional and temporal relevant data and models
- Trustworthiness
 - Transparency of data, models, processes
 - Follow FHWA Pavement LCA and other appropriate guidelines
 - Critically reviewed inventories and approaches

Considerations for implementation

- Practicality
 - Studies can be completed:
 - In reasonable time
 - With available data
 - With reasonable training
 - User input interface able to:
 - Provide reasonable default data
 - Ability to take more detailed user-defined data, including from EPDs
 - Reporting
 - Targeted to decisions, documentation requirements
 - Easy-to-understand

Traffic Database for PaveM and eLCAP

Use same traffic data from Caltrans databases

Caltrans Truck Annually published, 3,400 stations CA highways

- Annual Average Daily Traffic (AADT)
- Daily Truck Count (2, 3, 4 and 5+ Axle Counts)
- 1 to 2 year time-lag

PeMS Traffic Real-time/time series DB, 17,600 stations

• Daily and hourly traffic flowrate, speed, lane distribution

TASAS-TSN*Continuous updates in Highway Log, pull as needed

• AADT of segment in Highway Log (Network definition)

Weigh-In-Motion

110 stations

 Axle weight and gross weight, axle spacing, vehicle classification, speed

* TASAS-TSN: Traffic Accident Surveillance and Analysis System – Transportation Systems Network

PaveM approach for network LCA

- Decision trees select Treatment or Do Nothing
- Calculate GHG over analysis period for Treatment and Do Nothing cases for each segment,
 - Simplified equations from eLCAP for GHG from materials, construction for each treatment (default thicknesses)
 - Simplified equations for GHG from vehicle interaction with roughness for each vehicle type x volume x length
- Prioritize segments for treatment on benefit/cost
 - Reduction of GHG vs Do Nothing is benefit
 - Select projects with greatest benefit/cost
- GHG reduction for network over analysis period is summed over selected treated segments

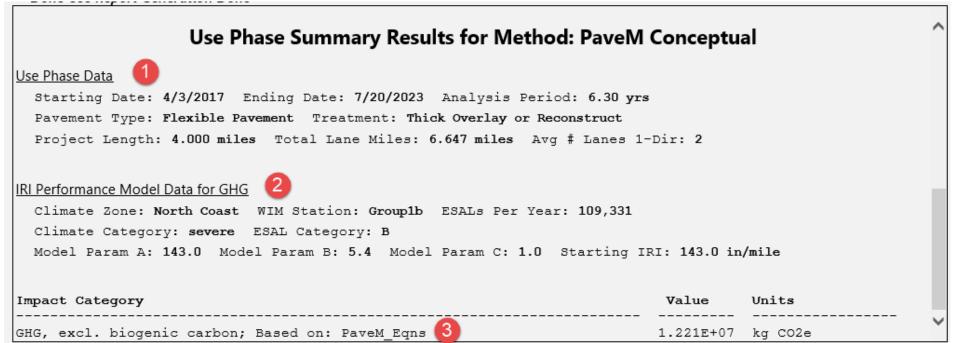
eLCAP approach for conceptual and design level LCA

- Web based, US/SI units, multiple languages
- Cradle to laid or cradle to grave
- Follows FHWA framework (18 impacts, TRACI+)
- Functional unit definition
 - Conceptual: user defined configuration using general treatment type from PaveM, other considerations
 - Design: user defined pavement design, layers, materials
 - User selected traffic
 - State highway data from annually updated database for segments and post-mile
 - User defined for cities and counties

Impact calculation (18, TRACi+

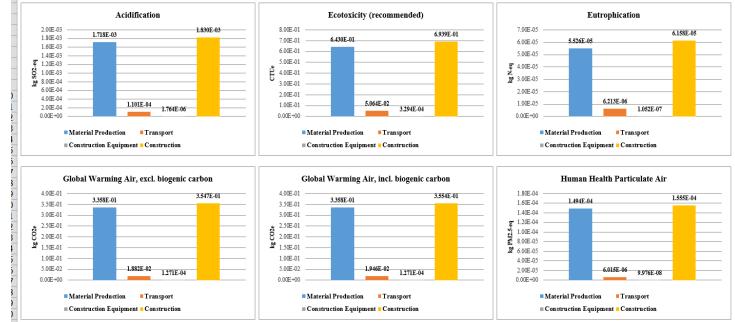
Selected Impact Categories and Inventories	Material Production	Material as Cons
Acidification	1.7178E-03	93
Ecotoxicity (recommended)	6.4297E-01	92
Eutrophication	5.5258E-05	89
Global Warming Air, excl. biogenic carbon	3.3580E-01	94
Global Warming Air, incl. biogenic carbon	3.3581E-01	94
Human Health Particulate Air	1.4940E-04	96
Human toxity, cancer (recommended)	2.2114E-10	97
Human toxity, non-cancer (recommended)	5.2534E-08	94
Ozone Depletion	1.1043E-09	99
Resources, Fossil fuels	5.5400E-01	93
Smog Air	2.4085E-02	88
Primary Energy Demand used as raw materials (Feedstock Energy)	2.4120E+00	10
Primary energy demand from ren. and non ren. resources (gross cal. value)	5.1562E+00	94
Primary energy demand from ren. and non ren. resources (net cal. value)	4.8278E+00	94
Primary energy from non renewable resources (gross cal. value)	5.0339E+00	94
Primary energy from non renewable resources (net cal. value)	4.7055E+00	94
Primary energy from renewable resources (gross cal. value)	1.2232E-01	10
Primary energy from renewable resources (net cal. value)	1.2232E-01	10

eLCAP approach for conceptual and design level LCA

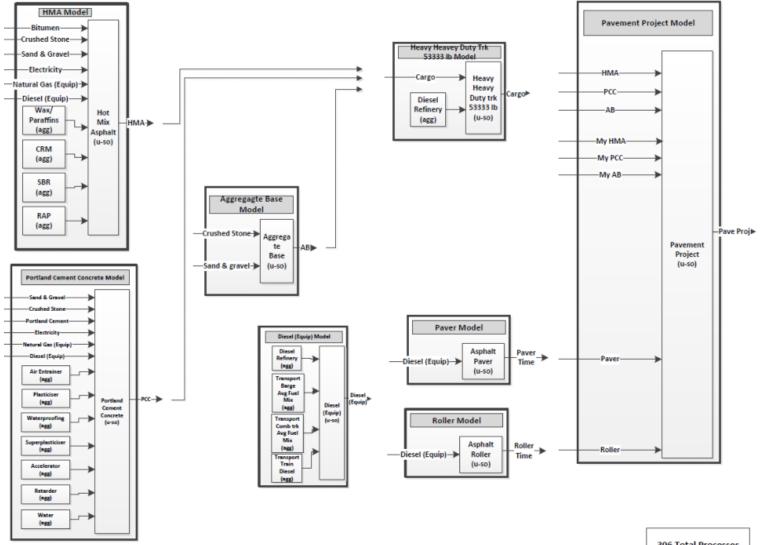

- Materials, transport, construction models
 - Models
 - Built by UCPRC using models, GaBi, other data for materials and construction processes
 - GaBi data updated annually and then kept constant (thinkstep agreement)
 - Default materials design for each type
 - User capability to adjust materials designs or input impacts from EPDs
 - User defined transport distances and modes
 - Construction equipment operation tied to material and quantity, default or user defined
- Repeat for subsequent M&R

eLCAP approach for conceptual and design level LCA

- Use stage
 - Excess fuel consumption from vehicle roughness interaction difference (Wang et al) vs "ideal" 40 in/mile
 - Uses PaveM IRI models
 - To be added soon:
 - Texture models vs ideal 0.5 mm MPD or MTD
 - Calibrated structural response models vs ideal no response, considering hourly traffic flow, speed and temperature across years
- EOL
 - Stops at reconstruction or land fill
 - If no real EOL, follows FHWA framework


IRI models

- Simple IRI models used in PaveM and eLCAP
 - Continuous models from PMS data
 - Simplified: Average_IRI (inches/mile) = a+b*Age^c
 a, b, c depend on treatment, ESAL/yr, climate category
 - Future:
 - Use continuous models for design level eLCAP



Reporting

- Impacts can be broken down by:
 - Each impact category
 - Life cycle stage
 - Elements (material types, material components, construction, transport) within stage
- Tables, bar charts and pie charts

Documentation of all data, models and assumptions, necessary for critical review

306 Total Processes


Critical review

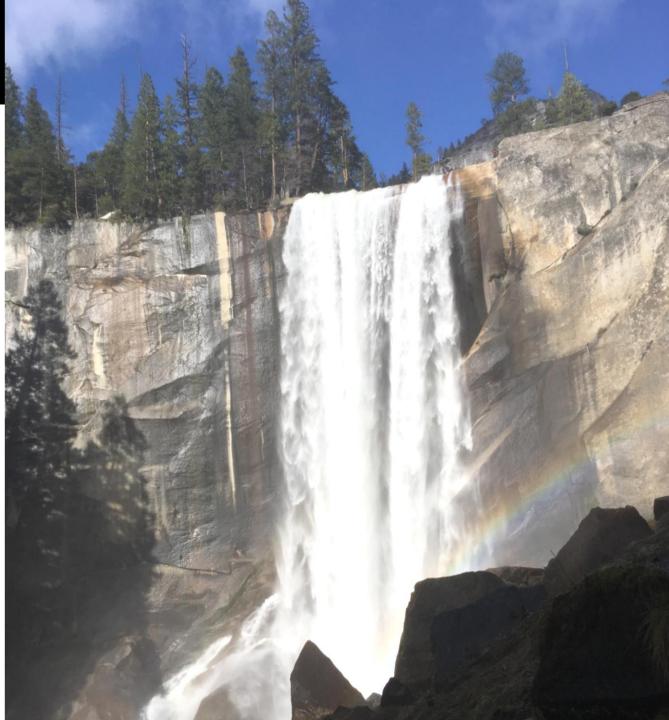
- Initial eLCAP main inventory for materials and construction data reviewed by outside critical review team in 2016
 - Benchmarked against other data
 - Review of data quality assessment
- Annual updates to eLCAP LCI and processes will be similarly critically reviewed by independent outside team

Advances with these tools

- Builds on progress of other tools
- Integration between network-, conceptual- and design-level LCA
 - Data, models
 - Assumptions, impacts, reporting
- Integration with LCCA
 - Traffic data, performance models, treatments
- Web-based, complete life cycle, flexibility of data, critical review

Future developments

- Future developments in next year
 - Continuous IRI models for design use
 - Excess fuel use from structural response and texture
 - Tie materials to item codes, expanded use of EPDs
 - Better construction work zone traffic impacts model
 - Post-construction evaluation tied to pay items
- Annual updates
 - LCI data from GaBi to update impacts
 - Update models for new materials and processes
- Tri-annual updates
 - Performance models in PaveM, eLCAP, RealCost-CA


Thoughts on future development of tools

- Training, support, transparency, trustworthiness
- Keeping tools practical within time, data availability, cost constraints of users
- Use of EPDs, regional data, better models for everything, licensing of proprietary data
- Customized user interfaces and data
- Platforms
 - Web-based for more complex tools
 - Updates are easy
 - Python for simpler tools
 - Avoids problems with VB updating, good interfaces
 - Example is LBNL heat island LCA tool

Questions

Team: Jon Lea Arash Saboori Jeremy Lea Changmo Kim Ali Butt Maryam Ostovar

> Thanks to Caltrans and other sponsors

