

Illinois Center for Transportation University of Illinois at Urbana Champaign

Development of Baseline Rolling Resistance for Tires

Jaime Hernandez, PhD, A.M.ASCE Imad L. Al-Qadi, PhD, PE, Dist.M.ASCE Hasan Ozer, PhD, A.M.ASCE Illinois Center for Transportation University of Illinois at Urbana-Champaign

"Where Excellence and Transportation Meet"

Outline

- Introduction
- Finite element model
- Numerical analysis matrix
- Rolling resistance approaches
- Effect of operating conditions on rolling resistance
- Regression analysis
- Tire's internal energy per components
 Summary

Vehicle Operating Costs¹

- License and insurance
- **Tire wear**
- Capital cost
- Oil consumption
- Repair and maintenance
- □ Fuel consumption

Fuel Consumption

HDM-4 fuel consumption model

Rolling Resistance (RR)

- Depending on conditions, 7-30% of fuel consumption is caused by rolling resistance
- Longitudinal reaction force: mechanical manifestation of RR
- Experimental and numerical approaches have been used to study rolling resistance
 - Most numerical approaches have some degree of simplification

Objective

 Study the effect of operating conditions (i.e. load, tire-inflation pressure, speed, and temperature) on rolling resistance caused by tire's deformation using finite element method

Finite Element Model

- Accurate geometry
- Incompressible Visco-hyperelastic rubber and linear elastic reinforcement
- Combination of Cartesian, cylindrical, and rebar elements

Sliding-velocity-dependent friction

Numerical Analysis Matrix

Covers normal operating conditions of truck tires

Load (kN)	Pressure (kPa)	Speed (km/h)	Temperature (°C)
26.6	552	8	25
35.5	690	65	45
44.4	758	115	65

Rolling Resistance Approaches

- □ *RR_e*: Rolling resistance from energy dissipation
- □ *RR_f*: Rolling resistance from reaction force

 $\Box \ C_{rr} = \frac{RR_f}{P} = h \frac{\delta b}{A_c} \quad \begin{array}{l} h: \text{ energy lost/total energy input} \\ C_{rr}: \text{ Coefficient of rolling resistance} \end{array}$

Operating Conditions and *RR*

a RR decreases with S (between 8 and 30%)

□ Effect of *P* is almost linear □ T changes slopes and decreased influence of load

Regression Analysis

$$RR = k \frac{S^{\alpha} P^{\beta}}{\sqrt{T}} (a + bV + cV^2)$$

k = 0.2740 $\alpha = -0.6392$ $\beta = 1.3618$ $a = 10.68 \times 10^{-3}$ $b = 26.23 \times 10^{-6}$ $c = -129.1 \times 10^{-9}$

Energy Per Tire Component

 Subtread and sidewall had the highest contribution

 High load and low pressure resulted into higher energy for sidewall

Load (kN)	Pressure (kPa)	Speed (km/h)	Temperature (°C)
<i>P</i> 1 =26.6	<i>S</i> 1 = 552	V1=8	<i>T</i> 1 =25
P2=35.5	<i>S</i> 2 =690	V2=65	<i>T</i> 2 = 45
<i>P</i> 3=44.4	<i>S</i> 3 = 758	V3=115	<i>T</i> 3 =65

Summary

- Visco-hyperelastic tire was modeled using finite element method to predict rolling resistance
- Temperature and load have significant effect on RR
- Existing equation (SAE J2425) to predict RR was modified to include temperature's effect
- Subtread and Sidewall's contribution to tire's internal energy is significant

Questions?

"Where Excellence and Transportation Meet"