



Quantifying excess fuel consumption for pavement design and maintenance decisions

Mehdi Akbarian, Arghavan Louhghalam, Jeremy Gregory, Franz-Josef Ulm

Pavement LCA 2017 April 12, 2017

## **Key Drivers of Excess Fuel Consumption**

#### Surface condition:

- 1. Texture-induced PVI\*:
  - Mechanism: dissipation in tire
  - Parameters: vehicle type, pavement texture
- 2. Roughness-induced PVI\*:
  - Mechanism: dissipation in suspension
  - Parameters: vehicle type, pavement roughness.

## **Structural properties:**

- 3. Deflection/dissipation-induced PVI\*\*:
  - Mechanism: dissipation in pavement
  - Parameters: vehicle type, speed, pavement viscoelasticity, stiffness, thickness, temperature

\*\* Akbarian M., Moeini S.S., Ulm F-J, Nazzal M. 2012. Mechanistic Approach to Pavement-Vehicle Interaction and Its Impact on Life-Cycle Assessment. Transportation Research Record: Journal of the Transportation Research Board, No. 2306. Pages 171-179.









## **Deflection Induced PVI**

## **Roughness Induced PVI**

## **Probabilistic PVI Implementation**



#### We can quantify excess fuel consumption due to pavement-vehicle interaction

#### Probabilistic analysis provides useful estimates even with limited data

Surface and structure matter



## **Deflection Induced PVI**

## **Roughness Induced PVI**

## **Probabilistic PVI Implementation**



## **Deflection-induced PVI: empirical studies**



Main findings:

- Asphalt is more dissipative than concrete
- Highly influenced by vehicle load, speed, temperature.

Shortcomings:

- High variability in impact
- **Binary material view**
- No structure and mat.

**Deflection-Induced PVI Parameters:** Vehicle load & speed; pavement viscoelasticity, thickness, modulus, temperature



-



#### **Deflection-Induced PVI: Mechanistic Model**

 Dissipated energy due to pavement viscoelasticity results in slope under the wheel and must be compensated by the engine power to maintain a constant speed:

$$\boldsymbol{\delta E} = -P \frac{dw}{dX}$$

• Finding key parameters and invariants via dimensional analysis:



(Adapted from Flugge, 1975)

$$\boldsymbol{\Pi} = \frac{\boldsymbol{\delta E} \ell_s^2 b k}{P^2} \frac{c}{c_{cr}} = \mathcal{F} \left( \boldsymbol{\Pi}_1 = \frac{c}{c_{cr}}; \boldsymbol{\Pi}_2 = \frac{\tau c_{cr}}{\ell_s} \right) \quad \text{Winkler Length } \ell_s = \sqrt[4]{EI/k}$$
$$c_{cr} = \ell_s (k/m)^{1/2}$$

• Scaling relationship of deflection-induced PVI:

$$\delta E \propto (c\tau)^{-1} P^2 E^{-0.25} h^{-0.75} k^{-0.25}$$

MIT CSHub

*c*: Speed; τ: Relaxation time; *P*: Vehicle load; *E*: Top layer modulus; *h*: Top layer thickness; *k*: Subgrade modulus

#### **Recreating the deflection-induced PVI mechanism**





$$\delta E = -P \frac{dw}{dX} \ge 0$$

$$F_H = -P\frac{dw}{dX} \ge 0$$

 $\therefore \delta E \propto F_H$ 

#### **PVI Parameters:**

| Vehicle:                 |                                |                      |     |
|--------------------------|--------------------------------|----------------------|-----|
| $F_H$ : Horizontal Force | P: Wheel load                  | c: Vehicle speed     |     |
| Pavement:                |                                |                      | МІТ |
| $\tau$ : Relaxation time | <i>h</i> : Top layer thickness | E: Top layer modulus | CSH |
| k: Subgrade modulus      |                                |                      |     |





Equivalent to 180 miles of road testing with varying: P, c and  $\tau$ , E, h

#### **Photo-elasticity: asymmetry of the response**







#### **Experiments validate model behavior**



Mechanistic model scaling:

 $\delta E \propto (c\tau)^{-1} P^2 E^{-0.25} h^{-0.75} k^{-0.25}$ 

**Experimental validation:** 

 $\delta E \propto (c)^{-0.87} P^{2.02} h^{-0.63}$ 

c: vehicle speed; P: vehicle load; h: top layer thickness Slide 11



#### **PVI deflection implementation-ready model**

#### **Dimensionless dissipation (simulation):**

$$\boldsymbol{\Pi} = \frac{\boldsymbol{\delta E} \ell_s^2 b k}{P^2} \frac{c}{c_{cr}} = \mathcal{F} \left( \boldsymbol{\Pi}_1 = \frac{c}{c_{cr}}; \boldsymbol{\Pi}_2 = \frac{\tau c_{cr}}{\ell_s} \right)$$

Winkler Length 
$$\ell_s = \sqrt[4]{EI/k}$$
  $c_{cr} = \ell_s (k/m)^{1/2}$ 



#### Dimensionless dissipation (simplified model fit):

$$\log_{10}(\boldsymbol{\Pi}) = \log_{10} \frac{\boldsymbol{\delta E} c \ell_s^2 b k}{P^2 c_{cr}} = \sum_{i=0}^{i=5} \sum_{j=0}^{j=3} p_{ij} \boldsymbol{\Pi}_1^i \times \log_{10}(\boldsymbol{\Pi}_2)^{j*}$$

Winkler Length 
$$\ell_s = \sqrt[4]{EI/k}$$
  $c_{cr} = \ell_s (k/m)^{1/2}$ 

\* Mechanistic Approach to Pavement-Vehicle Interaction and Its Impact in LCA - *Journal of the Transportation Research Board.* 2014.



## **Deflection Induced PVI**

## **Roughness Induced PVI**

## **Probabilistic PVI Implementation**



#### **Roughness-Induced PVI: Mechanistic Model**

 Dissipated energy in suspension due to roughness must be compensated by the engine power to maintain a constant speed:

$$E[\boldsymbol{\delta E}] = \frac{C_s E[\dot{z}^2]}{V} \quad ; \dot{z} = \frac{c}{\sqrt{2/\pi}} E[IRI]$$

• Finding key parameters and invariants via dimensional analysis

$$\boldsymbol{\Pi} = \frac{\boldsymbol{\delta}\boldsymbol{E}}{m_s \omega_s^{4-w} V^{w-2} c}$$
$$= F\left(\boldsymbol{\Pi}_1 = \frac{m_u}{m_s} = \gamma, \boldsymbol{\Pi}_2 = \frac{\omega_u}{\omega_s} = \beta, \boldsymbol{\Pi}_3 = \frac{C_s}{2\omega_s m_s} = \zeta\right)$$

 Scaling relationship of roughness-induced PVI:

#### $E[\delta E] \sim E[IRI]^2 V^{w-2}$





## Mechanistic roughness model calibrated with HDM-4

- Mechanistic Model:
  - Two parameter model: IRI and w
  - Quadratic relationship with IRI
  - Dynamic interaction

#### $E[\delta E] \sim E[IRI]^2 V^{w-2}$

- HDM-4:
  - One parameter model: IRI (w=2)
  - Linear relationship with IRI
  - Vehicle speed dependency

 $E[\delta E] \sim E[IRI]$ 

\*Zaabar, I., Chatti, K. 2010. Calibration of HDM-4 Models for Estimating the Effect of Pavement Roughness on Fuel Consumption for U.S. Conditions. Transportation Research Record: **Journal of the Transportation Research Board**, No. 2155. Pages 105-116.



## **Deflection Induced PVI**

## **Roughness Induced PVI**

## **Probabilistic PVI Implementation**



## **PVI Model Inputs and Uncertainties**

# Deflection-induced PVI

#### Input:

- 1: Top layer modulus
- 2: Top layer thickness
- **3**: Top layer relaxation time (AC/PCC)
- 4: Subgrade modulus
- 5: Vehicle load
- 6: Vehicle speed
- 7: Temperature

#### Roughness-induced PVI



- Input:
- **1**: IRI(t)
- **2**: Reference IRI<sub>0</sub>
- **3**: Vehicle type
- 4: Vehicle speed



## Probabilistic deflection model implementation with limited data

#### 1- Top layer modulus:

LTPP distributions for similar material and traffic condition.

**2- Top layer thickness:** LTPP distributions for similar material and traffic condition.

#### 3- Subgrade modulus:

LTPP distributions for similar regional condition.



#### **Monte Carlo Procedure:**



# Probabilistic PVI implementation with limited data







MJ-25







MJ-305



## Probabilistic roughness model implementation with MEPDG



#### **Probabilistic PVI implementation with MEPDG**

AZ case study: contributions of use phase components



#### **Identifying drivers of PVI uncertainty - MEPDG**

AZ case study: contributions of use phase components

#### **Contribution to variance for GWP**





# We can quantify excess fuel consumption due to pavement-vehicle interaction

# Probabilistic analysis provides useful estimates even with limited data

Surface and structure matter



#### MIT CONCRETE SUSTAINABILITY HUB

**CSHub** 

#### **Thank you**

#### akbarian@mit.edu

http://cshub.mit.edu/