Quantifying excess fuel consumption for pavement design and maintenance decisions

Mehdi Akbarian, Arghavan Louhghalam, Jeremy Gregory, Franz-Josef Ulm

Pavement LCA 2017
April 12, 2017
Key Drivers of Excess Fuel Consumption

Surface condition:
1. Texture-induced PVI*:
 • Mechanism: dissipation in tire
 • Parameters: vehicle type, pavement texture

2. Roughness-induced PVI*:
 – Mechanism: dissipation in suspension
 – Parameters: vehicle type, pavement roughness.

Structural properties:
3. Deflection/dissipation-induced PVI**:
 – Mechanism: dissipation in pavement
 – Parameters: vehicle type, speed, pavement viscoelasticity, stiffness, thickness, temperature

Pavement-induced fuel consumption research

Deflection Induced PVI

Roughness Induced PVI

Probabilistic PVI Implementation
Key research findings

We can quantify excess fuel consumption due to pavement-vehicle interaction

Probabilistic analysis provides useful estimates even with limited data

Surface and structure matter
Pavement-induced fuel consumption research

Deflection Induced PVI

Roughness Induced PVI

Probabilistic PVI Implementation
Main findings:
- Asphalt is more dissipative than concrete
- Highly influenced by vehicle load, speed, temperature.

Shortcomings:
- High variability in impact
- Binary material view
- No structure and mat.

Deflection-Induced PVI Parameters:
Vehicle load & speed; pavement viscoelasticity, thickness, modulus, temperature
Deflection-Induced PVI: Mechanistic Model

- Dissipated energy due to pavement viscoelasticity results in slope under the wheel and must be compensated by the engine power to maintain a constant speed:

\[
\delta E = -P \frac{dw}{dX}
\]

- Finding key parameters and invariants via dimensional analysis:

\[
\Pi = \frac{\delta E \ell^2_s b k}{P^2} \frac{c}{c_{cr}} = \mathcal{F} \left(\Pi_1 = \frac{c}{c_{cr}} ; \Pi_2 = \frac{\tau c_{cr}}{\ell_s} \right)
\]

Winkler Length \(\ell_s = \sqrt[4]{EI/k} \)

\[c_{cr} = \ell_s (k/m)^{1/2}\]

- Scaling relationship of deflection-induced PVI:

\[
\delta E \propto (c\tau)^{-1} P^2 E^{-0.25} h^{-0.75} k^{-0.25}
\]

\(c\): Speed; \(\tau\): Relaxation time; \(P\): Vehicle load; \(E\): Top layer modulus; \(h\): Top layer thickness; \(k\): Subgrade modulus
Recreating the deflection-induced PVI mechanism

\[\delta E = -P \frac{dw}{dX} \geq 0 \]

\[F_H = -P \frac{dw}{dX} \geq 0 \]

\[\therefore \delta E \propto F_H \]

PVI Parameters:

Vehicle:
- \(F_H \): Horizontal Force
- \(P \): Wheel load
- \(c \): Vehicle speed

Pavement:
- \(\tau \): Relaxation time
- \(h \): Top layer thickness
- \(k \): Subgrade modulus
- \(E \): Top layer modulus
Equivalent to 180 miles of road testing with varying: P, c and τ, E, h
Photo-elasticity: asymmetry of the response

1: Analyzer
2: Quarter Wave-Plate
3: Wheel
4: Polarizer
5: Green Filter
6: Light Source
Experiments validate model behavior

Mechanistic model scaling: \[\delta E \propto (c \tau)^{-1} P^2 E^{-0.25} h^{-0.75} k^{-0.25} \]

Experimental validation: \[\delta E \propto (c)^{-0.87} P^{2.02} h^{-0.63} \]

\(c \): vehicle speed; \(P \): vehicle load; \(h \): top layer thickness
PVI deflection implementation-ready model

Dimensionless dissipation (simulation):

\[\Pi = \frac{\delta E \ell_s^2 b k}{P^2} \frac{c}{c_{cr}} = F \left(\Pi_1 = \frac{c}{c_{cr}}; \Pi_2 = \tau c_{cr} \ell_s \right) \]

Winkler Length \(\ell_s = \sqrt[4]{EI/k} \) \(c_{cr} = \ell_s (k/m)^{1/2} \)

Dimensionless dissipation (simplified model fit):

\[\log_{10}(\Pi) = \log_{10} \frac{\delta E c \ell_s^2 b k}{P^2 c_{cr}} = \sum_{i=0}^{5} \sum_{j=0}^{3} p_{ij} \Pi_1^i \times \log_{10}(\Pi_2^j)^* \]

Winkler Length \(\ell_s = \sqrt[4]{EI/k} \) \(c_{cr} = \ell_s (k/m)^{1/2} \)

Pavement-induced fuel consumption research

- Deflection Induced PVI
- Roughness Induced PVI
- Probabilistic PVI Implementation
Roughness-Induced PVI: Mechanistic Model

- Dissipated energy in suspension due to roughness must be compensated by the engine power to maintain a constant speed:

\[E[\delta E] = \frac{C_s E[\dot{z}^2]}{V}; \dot{z} = \frac{c}{\sqrt{2/\pi}} E[IRI] \]

- Finding key parameters and invariants via dimensional analysis

\[\Pi = \frac{\delta E}{m_s \omega_s^4 - w V w^{-2} c} \]

\[= F \left(\Pi_1 = \frac{m_u}{m_s} = \gamma, \Pi_2 = \frac{\omega_u}{\omega_s} = \beta, \Pi_3 = \frac{C_s}{2 \omega_s m_s} = \zeta \right) \]

- Scaling relationship of roughness-induced PVI:

\[E[\delta E] \sim E[IRI]^2 V^{w-2} \]
Mechanistic roughness model calibrated with HDM-4

- **Mechanistic Model:**
 - Two parameter model: IRI and w
 - Quadratic relationship with IRI
 - Dynamic interaction

\[E[\delta E] \sim E[IRI]^2 V^{-2} \]

- **HDM-4:**
 - One parameter model: IRI ($w=2$)
 - Linear relationship with IRI
 - Vehicle speed dependency

\[E[\delta E] \sim E[IRI] \]

Pavement-induced fuel consumption research

Deflection Induced PVI

Roughness Induced PVI

Probabilistic PVI Implementation
PVI Model Inputs and Uncertainties

Deflection-induced PVI

Input:
1: Top layer modulus
2: Top layer thickness
3: Top layer relaxation time (AC/PCC)
4: Subgrade modulus
5: Vehicle load
6: Vehicle speed
7: Temperature

Roughness-induced PVI

Input:
1: IRI(t)
2: Reference IRI₀
3: Vehicle type
4: Vehicle speed
Probabilistic deflection model implementation with limited data

1- Top layer modulus: LTPP distributions for similar material and traffic condition.

2- Top layer thickness: LTPP distributions for similar material and traffic condition.

3- Subgrade modulus: LTPP distributions for similar regional condition.

Monte Carlo Procedure:

- LTPP Distributions
- Sample Data
 - Calculate Fuel Consumption per PM of Section
- PVI Deflection Fuel Consumption
Probabilistic PVI implementation with limited data
Probabilistic roughness model implementation with MEPDG
Probabilistic PVI implementation with MEPDG
AZ case study: contributions of use phase components

Fuel consumption dominates use phase

- Carbonation
- Lighting
- Fuel loss: IRI
- Fuel loss: deflection
- Albedo

GWP (Mg CO2e/ml)

AC PCC AC PCC AC PCC AC PCC

- 95th
- median
- 25th
Identifying drivers of PVI uncertainty - MEPDG
AZ case study: contributions of use phase components

Contribution to variance for GWP
Key research findings

We can quantify excess fuel consumption due to pavement-vehicle interaction.

Probabilistic analysis provides useful estimates even with limited data.

Surface and structure matter.
Thank you

akbarian@mit.edu

http://cshub.mit.edu/