

CAPITALIZING GREEN PAVEMENT A METHOD AND VALUATION

Xiaoyu Liu, David Choy (presenting), Qingbin Cui, Charles Schwartz Pavement Life-Cycle Assessment Symposium Champaign, IL; April 12-13

Presentation Overview

- 1. Problem
- 2. Big Ideas
- 3. Voluntary Carbon Markets
- 4. Pavement Performance Benchmark
- 5. Conclusion

Hot-mixed vs foamed asphalt (HMA vs FSB)

1/5: PROBLEM

HMA

HMA

90%

Paved roads in US, Canda, and Europe

Magnum 2006

HMA

90% 317

Paved roads in US, Canda, and Europe

Magnum 2006

Mt produced each year in the U.S.

NAPA 2015 (in metric)

HMA

Paved roads in US, Canda, and Europe

Magnum 2006

Mt produced each year in the U.S.

NAPA 2015 (in metric)

Other pollutants: $CO, NO_2, SO_2,$ various organic compounds

+4

Truit 2009

HMA

Paved roads in US, Canda, and Europe

Magnum 2006

Mt produced each year in the U.S.

NAPA 2015 (in metric)

Other pollutants: $CO, NO_2, SO_2,$ various organic compounds

44

Truit 2009

3X

More GHG/\$ spent than power and communication lines

Truit 2009

Hot Mix vs Foam Stabilized Base (FSB)

	HMA	FSB
Aggregate	Virgin & Recycled	100% Recycled
Cost	\$\$	\$
Mix temperature	High	Low (Ambient)
Hauling	More	Less
Use	High	Low
Thickness	Standard	A bit more

Interstate Highway Projects

Only eleven states use recycled materials on interstate highway projects

Image credit: Brian Diefenderfer, PhD, PE, Virginia Transportation Research Council (September 2016)

FSB Example: I-64 Highway: Restoration & Widening

Project

Estimated Impact

- \$190 million
- Reconstruction of 7.08 miles (3,000+ trucks/day)
- Addition of a 12ft shoulder

- 30 to 50% cost savings
- 50% less greenhouse gasses*
- Fixes deterioration causes, not just symptoms
- Faster than full reconstruction

Full Depth Reclamation (FDR)

Recycles materials on-site

- 1. Pulverize existing asphalt + underlying base (4 to 12 inches)
- 2. Treat reclaimed material with additives
- 3. Compact (drum or pneumatic tire roller)
- 4. Apply a surface layer

Image credit: Brian Diefenderfer, PhD, PE, Virginia Transportation Research Council (September 2016)

Cold Central Plant Recycling (CCPR)

Recycles materials in a central place

- In urban areas, central plants can stockpile RAP from contractors that have excess amounts
- Normally requires hauling/fuel
- Mobile mix plants reduce hauling

Image courtesy of Global Resource Recyclers Engineering (2017)

FSB Barriers and Drivers

Barriers

- Business as usual in the U.S.
- Unregulated CO₂ markets
- Equipment / re-tooling
- Training
- No consensus on use or structural performance

Drivers

- Low cost of recycled materials
- Environmental goodwill?
 - Q: WHAT GOES HERE?
- •

Voluntary Markets & App

2/5: THE BIG IDEAS

Two Ideas to Drive Adoption

- 1. Economic
- 2. Social

2. Social: App

Capitaliing Green Pavement April 13, 2017 Slide 17

This presentation

Two Ideas to Drive Adoption

1. Economic: Voluntary Carbon Market ∽

- LATER: ENCOURAGE FSB DESIGN W/ WEB-BASED CAD

PM.UMD.EDU

Baselines and Performance Benchmarks for

3/5: VOLUNTARY CARBON MARKETS

Voluntary Carbon Market Projects

- 1. Projects reduce CO₂ emissions
- 2. Standard organizations verify reductions and award carbon offset credits
- 3. Credits are sold at market prices

HOW DO ORGANIZATIONS VERIFY REDUCTIONS?

Voluntary Carbon Market Projects

Two ways to verify emission reductions:

- Project Baselines
- Performance Benchmarks

Baseline Method

Voluntary Market

Baseline Method

OFFSETS = "ADDITIONAL" REDUCTIONS WHO WILL BUY THEM?

PM.UMD.EDU

Voluntary Market

Baseline Method

PM.UMD.EDU

Baseline Method

Baseline Method

Many projects are different sizes but technically similar.

How can we capitalize on their similarities?

We can compare different size projects with a rate – a *performance benchmark*: CO₂ / Project Factor

Project Baseline vs Performance Benchmark

Project Baseline vs Performance Benchmark

Project Baseline

Performance Benchmark

Calculate CO₂ emissions for *two* scenarios and their difference

Calculate CO_2 for *one* scenario, and compare it to a benchmark rate: CO_2 / project factor

Project Baseline vs Performance Benchmark

Project Baseline

Performance Benchmark

- For unique projects
- Not scalable
- Expensive to justify the business as usual case

- For similar projects
- Scalable
- Predefined business as usual case: CO₂ / project factor

4/5: PAVEMENT PERFORMANCE BENCHMARK

HMA Study

16 16

HMA Plants (Maryland)

Placement Projects (Maryland and Virginia)

HMA Emission Categories

Project Emissions

+

HMA Emission Categories

Category	Emissions (kg-CO ₂ e/t)	
Raw Materials	54	
Mix Plant	17	
Hauling	15	
Installation	64	

HMA Emission Distribution

HMA Performance Benchmark

Project Type	Hauling Distance (miles)	Benchmark (kg-CO ₂ e/t)
Parking Lot	≤ 40	121.9
Parking Lot	> 40	142.4
Road	Any	102.9

Structural Performance Adjustment

Traditional Project

Offset Project

Structural Performance Adjustment

Replacing HMA with an FSB layer and a small HMA surface layer yields an equal structural performace that is 2% heavier and 25% thicker.

Same Granular Base

Same Sub-Base

Traditional Project

Offset Project

FSB Emission Reductions

With the 2% structural performance adjustment:

HMA benchmark 121.9 kg-CO₂e/t:

Cold Central Plant Recycling (CPPR) 78.4 kg-CO₂e/t 36% Reduction

Cold In-Place Recycling (CIR) 23.3 kg-CO₂e/t 81% Reduction

CCPR Total Savings

material savings

+ offset savings

= total (\$/t-material)

CCPR Material Savings (Installed)

HMA	110		110
FSB	90		- 90 = 20
Savings	20	(\$/t-material)	

CCPR Offset Savings

HMA Benchmark121.9Adjusted FSB78.4Savings43.5 kg-CO2e/t-material

EMISSION SAVINGS 121.9 - (76.9 * 1.02) = 43.5

At a market rate of \$9.30 / 1,000 kg-CO₂e: cost 5AVINGS +3.5*9.3/1000 = 0.4 Savings: 0.4 (\$/t-material)

PM.UMD.EDU

CCPR Total Savings

material savings

+ offset savings

= total (\$/t-material)

CCPR Total Savings

\$20/t material savings

+ \$0.4/t offset savings

= \$20.4/t (\$/t material)

CCPR Contractor Profits

\$0.4 offset savings < \$20 material savings

CCPR Contractor Profits

\$0.4 offset savings < \$20 material savings

If a contractor

- 1. Purchases FSB at \$25/t (FOB, material only)
- 2. Sells it for a 10% profit margin (\$2.5)
- 3. Carbon offset savings (\$0.4/t) raise profits 16%

5/5: CONCLUSIONS

Conclusions

- Performance benchmarks developed in this study may be used with or without FSB
- FSB projects generate ~43.5 kg-CO₂e/t carbon offset credits

- Replacing HMA with FSB yields ~\$20.4/t in savings
- \$0.4/t in offset credits can increase contractor material profits (~16%)

What's Next

- Approve methods
- Launch app

Slide 51

My Projects Logout **Get Paid** It's like you just planted a small forest, and we want to reward you. **Payback Estimate** \$18,008 **Carbon Reduction** 15,591,377 lb CO₂ **Ready Projects** Another project \$32 for 28,003 lb CO₂ Interstate 64 \$17,976 for 15,563,375 lb CO₂ **Terms and Conditions** Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

Project Logout Areas **All Traffic - Greenified** 199,372.8 yd² ***** 2 in HMA (2893), SN 0.88 2.5 in HMA (2893), SN 1.1 6 in FSB (2901), SN 1.92 6 in Cement Treated Base (CTB), SN 1.2 New Layer / Thickness: 16.5 in Impact: 17,484 tons CO₂ Structural Number: 5.1 Green Mix: Yes

+

Design B Interstate 64 > Design B > Area One **Edit Layer 3** Summary SN 1.92 58.317 tons of mix 4,217 tons CO₂ Layer Position 3 Thickness 6 in Mix Plant to Job Site Distance 3.5 miles Mix **Materials**

QUESTIONS?

These didn't make my presentation, but might be helpful in answering your questions

BACK UP SLIDES

Non-Additionality

WHAT IF BASELINE PROJECT EMISSIONS DECREASE OR HAVE BEEN OVERESTIMATED?

Non-Additionality

HMA Greenhouse Gases and Air Pollutants

Carbon Dioxide (CO₂) Sulfur dioxide (SO₂) Nitrogen oxide (NO_x) Carbon monoxide (CO) Volatile organic compounds (VOC) Volatile hazardous air pollutant (HAP)