Athena Sustainable Materials Institute

www.athenasmi.org

Concrete Pavement LCA & LCCA A Manitoba Case Study

Assessing potential life cycle strategies

Jamie Meil, Research Principal Athena Sustainable Materials Institute

PLCA Symposium, Champaign IL

April 2017

Authors and Overview

Contributing-authors:

Alauddin Ahammed (Manitoba Infrastructure) Mehdi Akbarian (MIT Post Doc) Sherry Sullivan (Cement Association of Canada) Chris Goemans & Grant Finlayson (Athena)

- Evaluated base case PCC roadway design and 10 scenarios
 - LCA via Athena's Pavement LCA software
 - Materials, Construction, M&R and Use phase LC effects
 - LCCA via spreadsheet model
 - Agency and User cost (PVI pavement vehicle interaction)

Objectives

- Complete retrospective analysis of past practice
 - MI recently changed PCC design specs, what's been achieved
- What are the cost implications of greening MI's PCC roadway designs?
- Investigate what else can be done to improve the LC environmental, cost and performance of MI's PCC roadways

Case Study: Project Description

- Manitoba PTH 75 pavement re-constructed in 2015
 - Northbound side of four lane divided highway
 - Total length = 11.02 km
 - Traffic data: AADT = 3,900 (1-way), heavy vehicles (trucks) 650/day, annual traffic growth = 2%
- Prior pavement = 100 mm AC, 200 mm PCC and 125 mm granular base
 - Pre-construction: Mill existing AC and rubblize existing PCC
- Construction: 100 mm granular base and 255 mm PCC
 - Diamond grind the new PCC (5 mm loss)
 - AC (100 mm) and gravel surfaced shoulders

Roadway Cross Section (not to scale)

* Mill and remove existing 100 mm bituminous and replace with 100 mm GBC

Manitoba PCC Pavement Life Cycle Strategy

Item	Activity	Quantity	Year
1	New or Re-Construction	100%	0
2	Concrete Partial Depth Repairs	2% Surface Area	15
3	Concrete Partial Depth Repairs	5% Surface Area	25
4	Concrete Full Depth Repairs	10% Surface Area	25
5	Diamond Grinding	100% Surface Area	25
6	Concrete Partial Depth Repairs	5% Surface Area	40
7	Concrete Full Depth Repairs	15% Surface Area	40
8	Diamond Grinding	100% Surface Area	40
9	Salvage Value	5 Years of Service Life (1/3 of Items 7 plus 8)	50

Base Case & Alternative Scenarios

Case #	Case Description	Analysis Rationale
Base	355 kg cementitious, 15% fly ash, 0% slag, 276 tonnes steel and regular M & R	Impacts of past practice
1	355 kg cementitious, 20% fly ash, 0% slag, 276 tonnes steel and regular M & R	Effect of additional fly ash
2	355 kg cementitious, 15% fly ash, 25% slag, 276 tonnes steel and regular M & R	Effect of slag/ternary mix
3	307 kg cementitious, 15% fly ash, 0% slag, 276 tonnes steel and regular M & R	Effect of tarantula optimization
4	355 kg cementitious, 15% fly ash, 0% slag, 126 tonnes steel and regular M & R	Effect of reduced steel
5	307 kg cementitious, 20% fly ash, 0% slag, 276 tonnes steel and regular M & R	Combined effect of reduced cementitious and increased fly ash

Alternative Scenarios (cont'd)

Case #	Case Description	Analysis Rationale
6	307 kg cementitious, 20% fly ash, 0% slag, 126 tonnes steel and regular M & R	Combined effect of reduced cementitious and steel, and increased fly ash (new MI spec.)
7	307 kg cementitious, 20% fly ash, 25% slag, 126 tonnes steel and regular M & R	Combined effect of new MI spec. and slag/ternary mix
8	307 kg cementitious, 20% fly ash, 25% slag, 126 tonnes steel and Extended M & R	Effect of extended M and R
9	355 kg cementitious, 15 % fly ash, 0% slag, 0 steel, TCP, regular M&R	Effect of thin concrete panel (TCP) 200mm thickness
10	307 kg cementitious, 15 % fly ash, 25% slag, 0 steel, TCP, extended M&R	Effect of reduced cementitious, TCP, ternary mix and extended M&R

Pavement Vehicle Interaction (PVI)

- Calculating effects of increased fuel consumption due to roughness and deflection between major rehabilitations
- PVI Parameters:
 - Vehicle operating speed = 100 km/h
 - Initial international roughness index (IRI) = 0.665 m/km (after re-construction)
 - Pre diamond ground (terminal) IRI = 2.5 m/km
 - Post diamond ground IRI = 1.0 m/km
 - Thickness loss per diamond grind = 5 mm

Base Case LCA Results – 50 yr. analysis period

		Life Cycle Stages							
Base Case	Units	Manufacturing	Construction	Maint & Rehab	Embodied Total	Use Phase - E Use due IRI	Excess Fuel to PVI Deflection	Total PVI Effects	Grand Total
Global Warming Potential	mtons CO ₂ eq	8,108	6,359	9,505	23,972	3,702	1,633	5,334	29,306
Acidification Potential	mtons SO ₂ eq	36	57	78	171	33	10	43	214
HH Particulate	mtons PM2.5 eq	14	3	6	23	2	1	2	26
Eutrophication Potential	mtons N eq	2	4	5	11	2	1	3	13
Smog Potential	mtons O ₃ eq	540	1,923	2,490	4,952	1,112	358	1,470	6,422
Total Primary Energy	GJ	111,008	92,399	129,007	332,415	53,793	23,777	77,570	409,985
Non-Renewable Energy	GJ	110,750	92,360	128,935	332,045	53,770	23,772	77,543	409,588
Fossil Fuel Consumption	GJ	90,985	92,216	124,871	308,071	53,687	23,754	77,441	385,512

GWP by Life Cycle Stage, %

- Over 80% of GWP due to materials, their placement & roadway maintenance
 - Equivalent to driving 6,190 passenger cars for a year
- Hence obvious focus for alternative design scenarios
- PVI significant user cost

Embodied effects = material manufacturing + construction + M&R PVI effects = increased fuel consumption due to roughness and deflection

Current Practice - 307 kg cementitious, 20% fly ash, 0% slag, 126 tonnes steel and regular M & R

Current Practice – with slag/ternary mix

355 kg cementitious, 15 % fly ash, 0% slag, 0 steel, TCP, regular M&R

307 kg cementitious, 15 % fly ash, 25% slag, 0 steel, TCP, extended M&R

LCCA Scenario Results - Agency Cost Net Present Value, million \$ (50-yr analysis, 3% disc. rate)

LCCA Results – Agency and User (PVI) Costs Net Present Value, million \$

Summary

- Directionally LCA and LCCA scenario results mirror one another
 - Greening PCC roadway design results in lower LC cost win/win
 - Embodied effects similar to agency cost both account for 80% of their respective GWP outcome
- PVI also significant contributor 20% of GWP effect and LCCA outcome
 - PVI higher LC cost than M&R strategy
 - Possible opportunity to spend more on M&R to reduce PVI induced user cost – trade-off analysis
- Enhanced mix designs (ternary mixes) in combination with new slab technology (TCP) may offer considerable improvements over MI's current LC strategy

The Athena Sustainable Materials Institute Ottawa, ON, Canada and Kutztown, PA, USA

info@athenasmi.org

www.athenasmi.org

Get in touch with us for more information.

QUESTIONS?

