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Abstract

Nonlinear systems are everywhere in engineering and science contexts including aerospace, chemical,

mechanical, and electrical engineering, and biology, chemistry, mathematics, and physics. Since analysis

and synthesis problems of nonlinear systems are usually impossible to solve analytically, much research has

focused on developing for computational tools for solving these problems for various classes of systems.

Linear matrix inequalities (LMIs) have been developed as a useful approach to developing such tools.

Many dynamical system analysis and controller synthesis problems based on optimization have been

formulated as linear matrix inequalities. The first LMIs in systems theory appeared in the 1890s with

Lyapunov’s stability theory. More recently, with the development of high-speed computers, computationally

tractable and efficient interior-point methods [79, 17] for solving convex optimization problems have been

developed and allowed stable and efficient computation of solutions of LMIs that arise in control systems

theory [100].

This thesis focuses on analysis and control based on Lyapunov functions which enable the analysis of

global asymptotic stability, decay rate, dissipativity, L2 (or l2), and RMS gains, to name a few. LMI-based

problem formulations are applied to a specific class of nonlinear systems called Lur’e systems, which consist

of a nominal LTI plant and feedback connected nonlinear functions whose properties are characterized by

the set-valued nonlinear functions.

This thesis consists of two main contributions. First, a less conservative tool is derived for stability and

performance analysis for Lur’e systems by exploiting the static (or memoryless), sector-bounded (or bounded-

gain), and slope-restricted (or Lipschitz-bounded) nature of the feedback-connected nonlinear operators.

Second, numerically tractable feasibility and optimization problems are constructed to solve LMIs for the

design of stabilizing controllers for a certain class of Lur’e systems. Chapter 1 provides an introduction for

nonlinear systems analysis and control, especially for absolute stability with a review of LMIs in systems

and control theory. The connections between classical nonlinear systems analysis based on frequency-domain

inequalities (FDIs) and LMIs of state-space realization are also described. Chapter ?? introduces some useful

results from convex analysis and mathematical preliminaries with proofs, which are frequently used in this
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thesis. In Chapter 2, the nonlinear stability analysis tools are formulated for certain classes of discrete-time

Lur’e systems as feasibility problems over LMIs. A superset of the Lur’e-Postnikov function is used and

specified properties of the nonlinear operators are exploited to reduce conservatism. Chapter 3 provides

LMI-based methods to design a stabilizing controller, where a simple class of Lur’e systems is considered.

Chapter 4 extends the results of Chapter 3 to robust control, where the nominal LTI plant is replaced by

uncertain models that are dependent on unknown parameters and the set-valued uncertain mapping, which

defines a set of plants of which the true process is in the set, corresponds to the plant/model mismatch.

Finally, Chapter ?? suggests a design tool for the design of a stabilizing controller, where the size of the set of

feedback-connected nonlinear operators is reduced by exploiting the slope-restrictedness (or Lipschitz-bound

property) as well as the sector-bounded property.
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Chapter 1

Introduction

This thesis considers the global stability of the state equation, that is, the internal stability of the system.

Although some theorems for the global stability of continuous-time nonlinear systems are described, a main

contribution in this thesis is to develop new nonconservative conditions for the stability analysis of discrete-

time systems, with the advances being LMI-based conditions that exploit the static (or memoryless), sector-

bounded (or bounded-gain), and slope-restricted (or Lipschitz-bounded) nature of the feedback-connected

nonlinear operators. The results are extended to address performance for discrete-time systems. Another

contribution in this thesis is to design controllers for a certain class of nonlinear systems such that closed-loop

stability and robustness is guaranteed. The discrete-time domain was the main focus, because discrete-time

systems are more naturally constructed from process input-output data. The global stability tools described

and developed here are based on Lyapunov stability analysis. Lyapunov methods provide a simple but

powerful way to analyze nonlinear systems and to synthesize stabilizing controllers with optimal performance.

1.1 Nonlinear Systems Analysis

In this section, consider a system of ordinary differential (or difference) equations of the general form

d

dt
x(t) = f(t, x(t)) (or x(k + 1) = f(k, x(k))), (1.1)

where f is assumed to be a continuous vector field so that, for each initial condition x0, there exists a solution

x(r) for r ∈ {t, k} such that x(0) = x0. This does not necessarily mean that the input to the system is zero

in which case (1.1) is called an unforced nonlinear equation. For example, when the input signal u(t) to the

system is a known function of (t, x), the overall closed-loop system can be interpreted as (1.1). A special

case of (1.1) is the so-called autonomous or time-invariant system given by

d

dt
x(t) = f(x(t)) (or x(k + 1) = f(x(k))). (1.2)
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If the system (1.1) is not autonomous then it is called non-autonomous. For notational simplicity, we will

only consider the discrete-time case in the remainder of this section; the results obtained can be trivially

extended for the continuous-time case. A central concept in nonlinear systems analysis is the existence of

an equilibrium point.

Definition 1. (Equilibrium points) The system state x = xe is called an equilibrium for (1.2), if x(k1) = xe

for some k1 ∈ Z implies that x(k) = xe for all future time k ≥ k1 on the maximum interval of existence of

the solution for (1.2). Furthermore, xe is an equilibrium point if and only if f(xe) = xe for the discrete-time

case and f(xe) = 0 for the continuous-time case.

A primary concern is to determine whether an equilibrium point is stable or unstable.

1.1.1 Lyapunov Stability

This section is devoted to the internal stability of nonlinear autonomous systems. The internal stability

of an equilibrium point is investigated in several different behaviors of the trajectories of the solution for the

system (1.2). Let define Xx0 for the set of all the solutions such that x(0) = x0. In addition, assume that

the origin x ≡ 0 is an equilibrium point without loss of generality. Note that any arbitrary equilibrium can

be translated to the origin via a change of coordinates (see page 147 of [56] for details).

Definition 2. (Definitions of stability for the equilibrium point at the origin) The equilibrium point x ≡ 0

for the system (1.2) is

(i) (Lyapunov) stable if for each ϵ > 0 there exists δ(ϵ, t0) such that

∥x(t)∥ ≤ ϵ, ∀t ≥ t0 whenever ∥x(t0)∥ ≤ δ(ϵ, t0).

(ii) uniformly (or Lagrange) stable if it is stable with δ = δ(ϵ) that is independent of the initial time t0.

(iii) asymptotically stable (AS) if it is stable and there exists a constant δ(t0) such that

lim
t→∞

x(t) = 0 whenever ∥x(t0)∥ < δ(t0).

In other words, for every ϵ > 0 there exists T (ϵ) > 0 and δ(t0) > 0 such that

∥x(t)∥ ≤ ϵ, ∀t ≥ t0 + T (ϵ) whenever ∥x(t0)∥ < δ(t0).
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(iv) uniformly asymptotically stable (UAS) if it is uniformly stable and asymptotically stable with δ such

that δ is independent of t0 and the convergence of the solution x(t) to the origin is uniform in t0. In

other words, for every ϵ > 0 there exists T (ϵ) > 0 and δ > 0 such that

∥x(t)∥ ≤ ϵ, ∀t ≥ t0 + T (ϵ) whenever ∥x(t0)∥ < δ.

(v) exponentially stable (ES) if there exist some positive numbers β and λ such that for sufficiently small

x0 = x(t0)

∥x(t)∥ ≤ β∥x0∥e−λ(t−t0) ∀t ≥ t0.

(vi) globally uniformly asymptotically stable (GUAS) if it is uniformly asymptotically stable and ϵ and γ

can be arbitrary large values.

(vii) globally exponentially stable (GES) it is exponentially stable for arbitrary initial condition x0.

It is easy to see that there exists no nonuniform version of the definitions for exponential stability. Noting

that for stability analysis of autonomous systems the Lyapunov stability theorem [115, 13, 56] is the most

popular and powerful approach, we will give a brief introduction for the so-called Lyapunov direct method,

which is also called the second method of Lyapunov.

The Second Method of Lyapunov

Let us consider the linear time invariant (LTI) system with a memoryless, nonlinear uncertainty

x(k + 1) = Ax(k) +Bpp(k) +Bww(k) +Buu(k)

q(k) = Cqx(k) +Dqpp(k) +Dqww(k) +Dquu(k)

z(k) = Czx(k) +Dzpp(k) +Dzww(k) +Dzuu(k)

p(k) = ϕ(q(k))

(1.3)

where p, w, and u indicate the feedback input from the (unknown) nonlinear mapping ϕ(·), the disturbances,

and the control input to the LTI system, respectively. To investigate the internal stability of the system in

Figure 1.1, let us assume that u = w = z = 0 such that

G(s) = Cq(sI −A)−1Bp +Dqp =:

 A Bp

Cq Dqp



3



Figure 1.1: Standard Nonlinear Feedback System Figure 1.2: Reduced Standard Nonlinear Feedback
System
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is a stable and proper rational transfer function, i.e., A is Hurwitz and Dqp is a constant matrix. The reduced

block diagram is in Figure 1.2. The nonlinear function described in (1.3) is assumed to belong to the family

of nonlinear functions denoted by Φ. The classifications for some families of nonlinear function will be given

in Section 1.1.3. The development of a mathematical framework to analyze and synthesize generic nonlinear

systems should fulfill the following conditions:

i Large applicability.

ii Simplicity.

iii Computational feasibility.

iv Unification of theoretical results.

The so-called second method of Lyapunov leads to conclusions regarding the stability of well-defined

families of systems. This method made it natural to introduce the notion of asymptotic stability. Its origin

can be traced to Lyapunov’s book that was first published in 1892, but received little attention outside Russia

until the late 1950s [65]. Lyapunov’s method is a general approach used to verify the stability of nonlinear

systems without solving any differential equations. In this method, a “bowl-shaped” energy function V (x)

is defined, where V : Rn → R has continuous partial derivatives such that V (x) > 0 and V (xeq) = 0 for

xeq = 0, and xeq is the equilibrium point. Such functions are known as Lyapunov functions and in some

sense they can be considered to define the total “energy” of the system. If the system is perturbed to a new

energy level (or initial state) then, the trajectories of a solution of the system show some distinct nature of

the Lyapunov function and its time-difference (or time-derivative for continuous-time systems). Here, we

give a description only for Lyapunov function properties of a discrete-time system to determine whether

the origin is an asymptotically stable equilibrium point and recommend the reader to see the nonlinear

system books [115, 13, 56] for more details. Theorem 1 provides conditions for the Lyapunov stability of the

discrete-time system. The disadvantage of the second method of Lyapunov is that it provides only sufficient

conditions (except in specialized cases such as the linear time invariant systems, where its conditions are

necessary and sufficient [20]). If the method fails to prove stability no definite conclusion may be reached,

which is the weakest aspect of the Lyapunov method for nonlinear system stability analysis. A very thorough

discussion of Lyapunov’s direct method can be found in [61]. The following theorem formalizes the discussion

on the second method of Lyapunov for the discrete-time case.

Theorem 1 (Discrete Time Lyapunov GAS [20]). A system of the form

x(k + 1) = f(x(k))
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has a globally asymptotically stable equilibrium point at the origin if:

1. V (xeq = 0) = 0 and V (x(k)) > 0 for all x(k) ̸= 0,

2. ∆V (x(k)) = V (x(k + 1))− V (x(k)) < 0 for all x(k) ̸= 0, and

3. V (x(k)) → ∞ as ∥x(k)∥ → ∞, i.e., V (·) is radially unbounded.

The most commonly used Lyapunov function is quadratic:

V (x) = xTPx (1.4)

where P is a positive-definite matrix. Investigations into global asymptotic stability using quadratic Lya-

punov functions can provide conservative results, which in some cases may be unsatisfactory. Because of this

reason, many researchers have looked for alternative forms of the Lyapunov function [69, 77, 63, 86, 121].

Construction of suitable Lyapunov functions is something of an art, however a number of standard functions

have been studied extensively, for example, quadratic forms, quadratic plus integral of the feedback-connected

nonlinear functions, and parameter-dependent Lyapunov functions (PDLFs). Researchers have focussed on

developing Lyapunov functions that are both flexible in addressing general nonlinear systems and restrictive

in excluding nonlinearities that are not meaningful. The key idea used in many researches is to introduce new

variables and enlarge the dimension of the linear matrix inequalities (LMIs) to obtain sufficient conditions

for the existence of a PDLF.

Comment 1. (Existence and necessity of a PDLF in the stability analysis in robust and nonlinear system

theory) When a nominal LTI plant has a feedback connection with uncertain and/or nonlinear mappings

whose input-output relation is the only information available, the quadratic form for the Lyapunov functions

can be hugely conservative in the analysis and synthesis of the closed-loop system. It is natural to have an

intuition that some known or estimated properties, if any, of the uncertain and/or nonlinear parts should be

considered in the analysis and synthesis problems. One of the primary purposes of this thesis is to reduce

potential conservatism by using knowledge about the system as much as possible.

For a single-input and single-output (SISO) system given by

x(k + 1) = Ax(k)− bϕ(q(k)), q(k) = cTx(k), (1.5)
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which is a special case of (1.3), one such way is to use a term involving an integral of the nonlinearity [33,

68, 64], which is well-known and for which there is a large literature:

V (x(k)) = xT (k)Px(k) + λ

∫ q

0

ϕ(σ)dσ (1.6)

where P is a positive-definite symmetric matrix and λ ≥ 0. Equation (1.6) is known as Lur’e-Postnikov

equation [97, 118, 69, 86] and the existence of such a Lypunov function is a key question in absolute

stability theory described in Section 1.1.3. It is a well-known fact that Lur’e-Postnikov equations provide

less conservative results than quadratic Lyapunov functions for a certain class of nonlinear functions Φ,

whose output enters an LTI plant. By restricting the input-output properties of the feedback-connected

nonlinear functions to satisfy the local slope restriction or the Lipschitz bound condition given by

0 <
ϕ (qk+1)− ϕ (qk)

qk+1 − qk
< µ, ∀k ∈ Z+ (1.7)

where µ ∈ R represents the maximum local slope for the nonlinearity, less conservative analysis and synthesis

results can be obtained. A continuous-time version of a slope-restricted Lyapunov function and a description

of the kind of Lyapunov functions to be used for different admissible nonlinearities can be found in [33]

and [42].

1.1.2 Passivity and Small-Gain Theorems

A. The Passivity Theorem and The Positive Real Lemma

The definitions for input-output stability and passive operators follow the standard nomenclature [53, 28,

115, 56].

Definition 3. (Input-output stability) A causal operator H : L2 → L2 is said to be L2 stable if Hx ∈ L2 for

all x ∈ L2. More specifically, if there exist γ ≥ 0 and γ0 such that

∥Hx∥L2 ≤ γ∥x∥L2 + γ0 ∀x ∈ L2

then the operator H is said to be finite-gain L2 stable.

Definition 4. (Passivity) A causal operator H : L2 → L2 is said to be passive if there exist γ ≥ 0 and some

γ0 such that

⟨xT |(Hx)T ⟩ ≥ γ∥xT ∥2L2
+ γ0 ∀T ∈ R+, ∀x ∈ L2e,
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Figure 1.3: Passivity Theorem Figure 1.4: Passive Multiplier
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where the subscript T and an inner product ⟨·, ·⟩ are defined as

xT (t) ≜

 x(t) for t ≤ T

0 for t > T
and ⟨x|y⟩ ≜

∫ +∞

−∞
xT (t)y(t)dt.

If γ > 0, then the operator H is said to be strictly passive.

The connection between passivity and stability of a closed-loop system which is composed of successive

feedback interconnections of operators is discussed in many classical control and networks theory books and

papers [7, 6, 53, 115, 28, 56]. The fundamental approach has been to investigate if a network consisting of

successively connected passive subsystems is necessarily stable. The following so-called passivity theorem

answers this question.

Theorem 2. (Passivity theorem) Consider the feedback system shown in Figure 1.3, where the negative

feedback-connected operators H1,H2 : L2e → L2e are any general causal operators. Assume that for any

u1, u2 ∈ L2, there exist solutions e1, e2, y1, y2 ∈ L2e. That is, the system in Figure 1.3 is well-posed. Suppose

that there exist scalar constants γ, γ1, γ2, γ0, γ10, γ20 such that

∥(Hx)T ∥L2 ≤ γ∥xT ∥L2 + γ0

⟨xT |(H1x)T ⟩ ≥ γ1∥xT ∥2L2
+ γ10 (1.8)

⟨xT |(H2x)T ⟩ ≥ γ2∥xT ∥2L2
+ γ20

(1.9)

for all T ∈ R+ and x ∈ L2e. Then, u1, u2 ∈ L2 implies that e1, e2, y1, y2 ∈ L2 provided γ1 + γ2 > 0.

Furthermore, the mapping from the inputs (u1, u2) to the internal states (e1, e2, y1, y2) is finite-gain L2

stable whenever there exists the constants γ0, γ10, γ20 whose values are all zeros such that the conditions in

(1.8).

Proof: There are many good monographs that review the passivity theorem and related results. For example,

see [53, 115, 28, 56]. □

Lemma 1. (Successive feedback connection of passive systems) The negative feedback connection of two

passive systems is passive.

Proof: The proof of the lemma is nothing but an application of the result in Theorem 2. See [53, 115, 28, 56]

for the details. □
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Remark 1. (Passive multiplier [53, 115, 28, 56]) It is well known that the system represented by the inter-

connection of H1 and H2 in Figure 1.3 is stable if and only if the system represented by the interconnection

of Ĥ1 and Ĥ2 in Figure 1.4 is stable, provided that the multipliers W1 and W2 in Figure 1.4 are rational,

proper, and stable transfer functions, or constant gains.

The positive real lemma

The positive real lemma is a fundamental result concerning stability of the Lur’e problem as well as of

uncertain systems. It is also known as the Kalman-Yakubovich lemma [124, 127, 125, 126, 115, 92] due

to the fact that Kalman and Yakubovich independently discovered it in the early 1960s. It provides an

algebraic criterion for the transfer function of a continuous-time system to be positive real. This criterion

states conditions for a quadratic Lyapunov function to guarantee the stability of the Lur’e problem with a

single memoryless nonlinearity. These ideas were extended to the multivariable case by Anderson [6, 7] and

were later written in terms of an algebraic Ricatti equation [100, 34]. The Kalman-Yakubovich lemma and

the equivalent algebraic Ricatti equation are described Section ??.

I. The continuous time positive real lemma

Before stating the positive real lemma [33, 6, 120, 67], consider following definitions and results.

Definition 5. Consider the following definitions:

1. A square transfer function G(s) is positive real if all poles of G(s) are in the closed left-half plane, and

G(s)+G∗(s) is positive semi-definite for all Re(s) > 0, where G∗(s) is the conjugate transfer function

of G(s).

2. A square transfer function G(s) is strictly positive real if all poles of G(s) are in the open left-half

plane (asymptotically stable), and G(jω) +G∗(jω) is positive definite for all ω ∈ R.

3. A square transfer function G(s) is strongly positive real if G(s) is strictly positive real, and D+DT > 0

where D = G(∞).

Lemma 2. ([115, 56]) Let G(s) = Cq(sI − A)−1Bp + Dqp be a transfer function matrix of compatible

dimension and (A,Bp, Cq) is controllable and observable. Then, G(s) is strongly positive real if and only if

there exist matrices P = PT > 0, L, and W with full row rank and a positive constant ϵ such that

PA+ATP = −LTL− ϵP, PBp = CT
q − LTW, and WTW = Dqp +DT

qp.

10



Consider a proper and strongly positive real transfer function in a negative feedback configuration with

a time-varying memoryless nonlinearity where the set of nonlinear functions is given by

Φ̄pr = Φ̄
[0,∞]
sb,tv ≜

{
ϕ(σ(t), t) : Rnq × R+ → Rnp : ϕT (σ(t), t)σ(t) ≥ 0, σ(t) ∈ Rnq , ∀t ≥ 0

}
(1.10)

and ϕ(σ(t), t) is Lebesgue measurable for all (σ(t), t) ∈ Rnq × R+. A sufficient condition for the stability of

a system (1.3) where ϕ ∈ Φ̄pr is given by the following theorem.

Theorem 3. Consider the transfer function G(s) that corresponds to the minimal realization of a nonlinear

system of the form described in (1.3). Then the following statements are equivalent:

1. A is Hurwitz and G(s) is strongly positive real;

2. Dqp +DT
qp > 0 and there exist positive-definite matrix P such that:

ATP + PA PBp − CT
q

BT
p P − Cq −Dqp −DT

qp

 < 0 (1.11)

Furthermore, the negative feedback interconnection of G(s) is asymptotically stable for all ϕ ∈ Φ̄pr.

Proof: The proof using the KYP lemma described in the later part of this section has been described many

times in the literature [33, 118, 37, 56]. To prove global asymptotic stability, consider the system realization

(A,Bp, Cq, Dqp) and consider the passivity of the nonlinear function ϕ. Define the Lyapunov function:

V (x) = xTPx+ 2

∫ t

0

ϕT (q(τ), τ)q(τ)dτ ≥ 0, ∀t ∈ R+. (1.12)

Note that V (0) = 0, since ϕ(0) = 0 which implies that the nonlinear function is zero-observable [56], and

that V (x) > 0, ∀t since ϕ ∈ Φ̄pr. Thus,

V̇ =

x
ϕ


T  ATP + PA −PBp + CT

q

−BT
p P + Cq −Dqp −DT

qp


x
ϕ

 (1.13)

Historically, in 1971, Willems related the LMI in the positive real lemma for a strictly proper transfer

function to an algebraic Riccatti equation. Later in 1993, Haddad and Bernstein extended this result for
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proper transfer functions [33, 100, 123]. The positive real lemma is considered a generating theorem since it

can be used to derive other important stability criterions.

II. The Discrete-Time Positive Real Lemma

An analogous result to the continuous-time positive real lemma was derived by Szego and Kalman [109] for

SISO discrete-time systems, and was also extended to the multivariable case by Hitz and Anderson [39] who

defined the notion of discrete positive real and obtained an algebraic stability criterion. The discrete-time

positive real lemma has also been written as algebraic Ricatti equations [36, 118]. Before stating the discrete-

time positive real lemma, the following definition describing positive real transfer functions [36, 39, 118] is

relevant.

Definition 6. Consider the following definitions:

1. A square transfer function G(z) is discrete positive real if all poles of G(z) are in the closed unit disk,

and G(z) +G∗(z) is nonnegative definite for |z| < 1, where G∗(z) is the conjugate transfer function of

G(z).

2. A square transfer function G(z) is strictly discrete positive real if all poles of G(z) are asymptotically

stable, and G(ejω) +G∗(ejω) is positive definite for all ω ∈ [0, 2π].

3. A square transfer function G(s) is strongly discrete positive real if G(z) is strictly discrete positive

real, and D +DT > 0 where D = G(∞).

Lemma 3. ([35, 36]) Let G(z) = Cq(zI − A)−1Bp + Dqp be a a transfer function matrix of compatible

dimension and (A,Bp, Cq) is controllable and observable. Then, G(s) is strongly positive real if and only if

there exist matrices P = PT > 0, L, and W which has full row rank, and a positive constant ϵ such that

ATPA− P = −LTL− ϵP, ATPBp = CT
q − LTW, and BT

p PBp +WTW = Dqp +DT
qp;

Consider a proper strongly discrete positive real transfer function in a negative feedback configuration

with a time-varying memoryless nonlinearity where ϕ ∈ Φ̄pr which is the discrete time version of (1.10) A

sufficient condition for a system of the form shown in (1.3) in terms of an LMI is given by the following

theorem.

Theorem 4. Consider the transfer function G(z) which corresponds to the minimal realization of a nonlinear

system of the form described in (1.3). Then the following statements are equivalent:

12



1. A is asymptotically stable and G(z) is strongly positive-real.

2. There exists a positive-definite matrix M such that

ATPA− P ATPBp − CT

BT
p PA− C BT

p PBp −Dqp −DT
qp

 < 0. (1.14)

Proof Same as [118] and applying Schur complement. □

The discrete-time version of the Kalman-Yakubovich Lemma and how it is written in terms of an algebraic

Ricatti equation are also described in Section ??. The LTI system whose transfer function is (strictly) positive

real has the passivity property.

Remark 2. (Passivity and positive realness [53, 115, 28, 56, 29]) The transfer function G(s) = C(sI −

A)−1B +D is (strictly) passive if G(s) is (strictly) positive real.

B. The Small-Gain Theorem and The Bounded Real Lemma

The bounded real lemma is basically a result of the small-gain theorem. The lemma below reviews the

statements of the small-gain theorem and shows that the bounded real lemma is a special case.

Lemma 4. (The small-gain theorem and its stronger form [8]) Let us consider the system in Figure 1.3 and

suppose that the causal operators H1,H2 : L2e → L2e satisfy the following conditions:

i. H1 is bounded and H2 is Lipschitz continuous.

ii. ∥H1H2∥L2e
< 1.

Then, the closed-loop system is stable. Moreover, noting the condition on H2 is stronger than that on H1

and the condition ∥H1∥L2e∥H2∥L2e < 1 is stronger than ∥H1H2∥L2e < 1, we can conclude that the condition

∥H1∥L2e∥H2∥L2e < 1 can replace the conditions i. and ii. as a sufficient condition for the stability of the

closed-loop system.

I. The Continuous-Time Bounded Real Lemma

The bounded real lemma is also a version of the KYP lemma and gives a tool to transform H∞ norm

condition into an LMI–this change of the condition to achieve a performance is very helpful for attaining

the optimal controller design.
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Theorem 5. Suppose that the system transfer function G(s) has the state space realization (A,Bp, Cq, Dqp).

Then the following statements are equivalent:

1. All poles of G(s) are in the open left-half plane, and γ2I − G∗(s)G(s) is positive semi-definite for

Re(s) > 0, where G∗(s) is the conjugate transfer function of G(s).

2. The matrix A is Hurwitz and

∥G(s)∥∞ < γ.

3. There exists a positive definite matrix P = PT > 0 such that

1

γ2

CT
q

DT
qp

[Cq Dqp

]
+

ATP + PA PBp

BT
p P −I

 < 0.

II. The Discrete-Time Bounded Real Lemma

Theorem 6. Suppose that the system transfer function G(z) has the state space realization (A,Bp, Cq, Dqp).

Then the following statements are equivalent:

1. All poles of G(z) are in the open unit disk, and γ2I −G(z)G∗(z) is positive semi-definite for |z| < 1,

where G∗(z) is the conjugate transfer function of G(z).

2. The matrix A is Schur and

∥G(z)∥∞ < γ.

3. There exists a positive definite matrix P = PT > 0 such that

1

γ2

CT
q

DT
qp

[Cq Dqp

]
+

ATPA− P ATPBp

BT
p PA BT

p PBp − I

 < 0.

The bounded real lemma previously described is nothing but an application of the results in the small gain

theorem and the KYP lemma. So the proofs for Theorem 5 and 6 are omitted to avoid redundancy.

C. The Kalman-Yakubovich-Popov (KYP) Lemma

There are many variations of the KYP lemma, which establishes the equivalence between a frequency

domain inequality (FDI) and a conditions given in a Riccati equation or an LMI with respect to the state

space realization of the system. In this section, the primary results are from a pioneer paper [123] in frequency
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domain inequalities and linear matrix inequalities and a recently written paper [96] whose results are parallel

to [123]. The description about the KYP lemma and its variations presented in [123, 96] can be considered

a general description of the connections between FDIs and LMIs. Here we give a brief introduction for the

KYP lemma and its variations. For the details and proofs, readers are recommended to see [123, 96].

Theorem 7. (The KYP lemma for the continuous-time system) Given the system realization (A,Bp) and a

matrix Mq which characterize the properties of the system, of the compatible dimensions, if det(jωI−A) ̸= 0

for all ω ∈ R and (A,Bp) is controllable then the following statements are equivalent:

1. (jωI −A)−1Bp

I


∗

Mq

(jωI −A)−1Bp

I

 ≤ 0 ∀ω ∈ R; (1.15)

2. there exists a matrix P = PT of the compatible dimension such that

Mq +

ATP + PA PBp

BT
p P 0

 ≤ 0. (1.16)

The equivalence of the corresponding to strict inequalities holds without assuming that (A,Bp) is controllable.

Theorem 8. (The KYP lemma for the discrete-time system) Given the system realization (A,Bp) and a

matrix Mq which characterize the properties of the system, of the compatible dimensions, if det(ejωI−A) ̸= 0

for all ω ∈ R and (A,Bp) is controllable then the following statements are equivalent:

1. (ejωI −A)−1Bp

I


∗

Mq

(ejωI −A)−1Bp

I

 ≤ 0 ∀ω ∈ R; (1.17)

2. there exists a matrix P = PT of the compatible dimension such that

Mq +

ATPA− P ATPBp

BT
p PA BT

p PBp

 ≤ 0. (1.18)

The equivalence of the corresponding to strict inequalities holds without assuming that (A,Bp) is controllable.
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Now, the following statements show that the bounded real lemma and the positive real lemma are special

cases of descriptions for the KYP lemma.

Remark 3. (The bounded real lemma and the positive real lemma) The quadratic inequality (1) and its

equivalent LMI (2) recover the bounded and positive real lemma:

1. The values of

Mq =

CT
q

DT
qp

[Cq Dqp

]
+

0 0

0 −γ2I


gives the bounded real lemma for a FDI and an LMI;

2. The values of

Mq =

CT
q

DT
qp

[0 −I

]
+

 0

−I

[Cq Dqp

]

gives the positive real lemma for a FDI and an LMI.

1.1.3 Absolute Stability–Lur’e Problems

A problem on the stability analysis of a class of nonlinear systems was formulated by Lur’e and Postnikov

in 1944 [69]. This benchmark problem is known as the Lur’e problem and the primary purpose is to ask if

the zero equilibrium point x ≡ 0 of the continuous-time system given by

d

dt
x(t) = Ax(t) + bϕ(q(t)), q(t) = cTx(t) (1.19)

is GUAS for any the nonlinear function ϕ satisfying the so-called sector condition

0 ≤ σϕ(σ) ≤ ξσ2, (1.20)

where ξ corresponds to the maximum upper bound on the sector with which the input-output relations of

the nonlinear function are characterized. In addition, the nonlinear function ϕ is required to provide the

existence and uniqueness of the solution of (1.19), which is guaranteed if the origin x = 0 is the unique

solution for ϕ(cTx) = 0 or ϕ(cTx) = b⊥. After the Lur’e problem of absolute stability had been addressed,

two famous conjectures were suggested and were disproved by counterexamples:

i. Aizerman conjecture (1949): When the system given by (1.19) is stable for all linear function in the

sector [0, ξ] is stable, does it immediately follow that the system with the same system realization and
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the nonlinear function which is characterized by (1.20) is also stable?

ii. Kalman conjecture (1957): If the nonlinear function characterized by (1.20) is differentiable almost

everywhere and its derivative ϕ′ is in the sector [ϵ1, ξ − ϵ2] for some small positive numbers ϵ1, ϵ2, then

does it immediately follow that the system with the same system realization and the nonlinear function

ϕ?

Those two hypotheses have been disproved by some counter examples of higher-order systems. In the

wake of Lur’e problem and successive interesting hypotheses, the well known Circle and Popov criteria was

used in the absolute stability theory and their geometrical properties in the diagrams of frequency domain

gave straightforward tools for the stability analysis in the Lur’e system with a scalar-valued nonlinear

function ϕ. More through review for these frequency domain criteria will be given in Section 1.2. Through

this thesis, we will consider some certain classes of nonlinear functions that are characterized by their input-

output relations.

Through this thesis, some certain classes of nonlinear functions and their interconnections with a nominal

linear time-invariant (LTI) plant will be considered.

Definition 7. (Definitions for some certain classes of nonlinear functions) Let us consider some classes of

nonlinear mappings whose properties are characterized by the so-called sector bound and/or Lipschitz bound:

Φ
[0,ξ]
sb ≜ {ϕ : Rnq → Rnq |ϕi(σ)

[
ξ−1
i ϕi(σ)− σ

]
≤ 0, ∀σ ∈ R and for i = 1, . . . , nq};

Φ
|ξ|
sb ≜ {ϕ : Rnq → Rnq |

[
ξ−1
i ϕi(σ) + σ

] [
ξ−1
i ϕi(σ)− σ

]
≤ 0, ∀σ ∈ R and for i = 1, . . . , nq};

Φ̄ξ
sb ≜ {ϕ : Rnq → Rnp |ϕT (σ)ϕ(σ) ≤ ξ2σTσ, ∀σ ∈ Rnq};

Φ̄pr ≜
{
ϕ(σ(t), t) : Rnq × R+ → Rnp : ϕT (σ(t), t)σ(t) ≥ 0, σ(t) ∈ Rnq , ∀t ≥ 0

}
= Φ̄

[0,∞]
sb,tv ;

Φ[0,µ]
sr ≜ {ϕ : Rnq → Rnq | 0 ≤ ϕi(σ)− ϕi(σ̂)

σ − σ̂
≤ µi, ∀σ ̸= σ̂ ∈ R and for i = 1, . . . , nq};

Φ|µ|
sr ≜ {ϕ : Rnq → Rnq | − µi ≤

ϕi(σ)− ϕi(σ̂)

σ − σ̂
≤ µi, ∀σ ̸= σ̂ ∈ R and for i = 1, . . . , nq};

Φ̄µ
sr ≜ {ϕ : Rnq → Rnp | ∥ϕ(σ)− ϕ(σ̂)∥22 ≤ µ2∥σ − σ̂∥22, ∀σ ̸= σ̂ ∈ Rnq};

Φodd ≜ {ϕ : Rnq → Rnp |ϕi(σ) = −ϕi(−σ), ∀σ ∈ R and for i = 1, . . . , nq}.

Note that Φ
[0,ξ]
sb ⊂ Φ

|ξ|
sb and Φ

[0,µ]
sr ⊂ Φ

|µ|
sr . Further, if ξi = ξ and µi = µ for all indices i, and nq = np, then

Φ
|ξ|
sb ⊂ Φ̄ξ

sb and Φ
|µ|
sr ⊂ Φ̄µ

sr, respectively. The converses, however, are not true.
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Figure 1.5: Loop Transformations for Sector Conditions

1.1.4 Loop Transformations

Loop Transformations for Sector Conditions

This section shows that any forms of sector-bounded nonlinear functions can be transformed into other

forms of sector-bounded nonlinear functions via the so-called loop transformations with constant gains [115,

100, 56]. The purpose is to derive another feedback connected system S̄ from the given feedback system S

such that the new system realization S̄ is stable if and only if the original system representation S is stable.

Example 1: Consider the Lur’e system with general sector conditions:

S : ẋ = Ax+Bp, q = Cx+Dp, (1.21)

pi(t) = ϕi(qi(t)), αiσ
2 ≤ σϕi(σ) ≤ βiσ

2. (1.22)

Here we have dropped the variables w and z and the subscripts on B, C and D to simplify the presentation.

Assume that this system is well-posed, i.e., det(I −D∆) is nonsingular for all diagonal ∆ = diag(∆ii) with
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αi ≤ ∆ii ≤ βi. Note that ∆ might be time-dependent. Define

p̄i ≜
2

βi − αi
(pi − αiqi)− qi. (1.23)

Then it is readily shown that |p̄i(t)| ≤ |qi(t)| for all t. Define the diagonal matrices:

Λ ≜ diag(
αi + βi

2
), Λ̃ ≜ diag(

βi − αi

2
),

so that p = Λ̃p̄ + Λq . Using our well-posed assumption and change of variables in which p̄ is substituted

into p, this results in

ẋ = [A+BΛ(I −DΛ)−1C]x+ [BΛ(I −DΛ)−1DΛ̃ +BΛ̃]p̄, (1.24)

q = (I −DΛ)−1Cx+ (I −DΛ)−1DΛ̃p̄. (1.25)

Hence the Lur’e system can be expressed with general sector conditions as a system with diagonal norm-

bounded uncertainties:

S̄ : ẋ = Āx+ B̄p̄, q = C̄x+ D̄p̄, (1.26)

p̄i(t) = ϕ̄i(qi(t)), |ϕ̄i(σ)| ≤ |σ|. (1.27)

where

Ā = A+BΛ(I −DΛ)−1C, B̄ = BΛ(I −DΛ)−1DΛ̃ +BΛ̃, (1.28)

C̄ = (I −DΛ)−1C, D̄ = (I −DΛ)−1DΛ̃. (1.29)

Example 2: Consider the discrete-time Lur’e system with general sector conditions:

S : x(k + 1) = Ax(k) +Bp(k), q(k) = Cx(k), (1.30)

pi(k) = −ϕi(qi(k)), 0 ≤ σϕi(σ) ≤ µiσ
2. (1.31)
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Here the variables w and z and the subscripts on B and C are dropped to simplify the presentation and it

is assumed that the system is strictly proper, i.e., D ≡ 0. Define a new variable:

ϕ̄i ≜ αi

(
2

µi
ϕi − qi

)
. (1.32)

Then it is readily shown that |ϕ̄i(k)| ≤ αi|qi(t)| for all k. Define the diagonal matrices:

Λ ≜ diag(−µi

2
), Λ̃ ≜ diag(

µi

2αi
),

where αi ̸= 0 for all indices i such that p = Λ̃p̄+Λq. Hence the Lur’e system with general sector conditions

can be expressed as a system with diagonal norm-bounded uncertainties:

S̄ : x(k + 1) = Āx(k) + B̄p̄(k), q(k) = Cx(k), (1.33)

p̄i(k) = −ϕ̄i(qi(k)), |ϕ̄i(σ)| ≤ αi|σ|, i = 1, · · · , np. (1.34)

with

Ā = A−BΛ̃C, B̄ = BΛ̃.

For the case when αi = α for all indices i, the transformed norm-bounded condition can be written as

||p(k)||22 = ϕ̄(q(k))T ϕ̄(q(k)) ≤ α2||q(k)||22 = α2xT (k)CTCx(k) for all k ∈ Z+.

Loop Transformation for a Class of Lipschitz-bound or Slope-restricted Nonlinear Functions

The process for loop transformations with constant gains is illustrated for a class of Lipschitz-bound or

slope-restricted nonlinear functions. The purpose is to derive another feedback connected system S̄ from the

given feedback system S such that the new system realization S̄ is stable if and only if the original system

representation S is stable. Consider the discrete-time Lur’e system with the slope-restricted nonlinear

function:

S : x(k + 1) = Ax(k) +Bp(k), q(k) = Cx(k), (1.35)

pi(k) = −ϕi(qi(k)), αi ≤
ϕi(σ)− ϕi(σ̂)

σ − σ̂
≤ βi. (1.36)

That is, ϕ ∈ Φ
[α,β]
sr . Further, it is readily seen that the nonlinear function satisfies also a sector-bound

condition ϕ ∈ Φ
[α,β]
sb . Here the variables w and z and the subscripts on B and C are dropped to simplify
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the presentation. Assume that this system is well-posed, i.e., det(I − D∆) is nonsingular for a diagonal

nonlinear perturbation ∆ = diag(∆i). Note that ∆ might be time-dependent. Define

ϕ̄i(σ) ≜
2µi

βi − αi
(ϕi(σ)− αiσ)− µiσ. (1.37)

Then it is readily shown that −µi ≤ ϕ̄i(σ)−ϕ̄i(σ̂)
σ−σ̂ ≤ µi for all σ ∈ R such that ϕ̄ ∈ Φ

|µ|
sr . Now, define the

diagonal matrices:

Λ ≜ diag(
αi + βi

2
), Λ̃ ≜ diag(

βi − αi

2µi
),

so that p = Λ̃p̄+ Λq with pi(k) := ϕi(qi(k)). The well-posed assumption and change of variables in which

p̄ is substituted into p implies that

ẋ = [A+BΛ(I −DΛ)−1C]x+ [BΛ(I −DΛ)−1DΛ̃ +BΛ̃]p̄, (1.38)

q = (I −DΛ)−1Cx+ (I −DΛ)−1DΛ̃p̄. (1.39)

Therefore the Lur’e system with general slope-restricted nonlinear conditions can be expressed as a system

with diagonal Lipschitz-bounded nonlinearities:

S̄ : x(k + 1) = Āx(k) + B̄p̄(k), q(k) = C̄x(k) + D̄p̄(k), (1.40)

p̄i(k) = ϕ̄i(qi(k)), −µi ≤
ϕ̄i(σ)− ϕ̄i(σ̂)

σ − σ̂
≤ µi. (1.41)

where

Ā = A+BΛ(I −DΛ)−1C, B̄ = BΛ(I −DΛ)−1DΛ̃ +BΛ̃, (1.42)

C̄ = (I −DΛ)−1C, D̄ = (I −DΛ)−1DΛ̃. (1.43)
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For the case when µi = µ for all indices i, the transformed diagonal slope-restricted nonlinear function

satisfies the following Lipschitz condition:

∥p̄(k + 1)− p̄(k)∥22

≤ µ2∥q(k + 1)− q(k)∥22

= µ2


x(k)

p̄(k)

p̄(k + 1)


T 

(Ā− I)T C̄T

(C̄B̄ − D̄)T

D̄T


[
C̄(Ā− I) (C̄B̄ − D̄) D̄

]
x(k)

p̄(k)

p̄(k + 1)



= µ2


x(k)

p̄(k)

p̄(k + 1)


T 

(Ā− I)T C̄T C̄(Ā− I) (Ā− I)T C̄T (C̄B̄ − D̄) (Ā− I)T C̄T )D̄

(C̄B̄ − D̄)T C̄(Ā− I) (C̄B̄ − D̄)T (C̄B̄ − D̄) (C̄B̄ − D̄)T D̄

D̄T C̄(Ā− I) D̄T (C̄B̄ − D̄) D̄T D̄




x(k)

p̄(k)

p̄(k + 1)


for all k ∈ Z+.

Limitations of Loop Transformation for a Class of Nonlinear Functions

Let us consider the discrete-time Lur’e system with sector-bounded and slope-restricted nonlinear functions:

S : x(k + 1) = Ax(k) +Bp(k), q(k) = Cx(k), (1.44)

pi(k) = −ϕi(qi(k)), (1.45)

where ϕ ∈ Φ
[ὰ,ά]
sb ∩Φ

[β̀,β́]
sr . It can be easily seen that there is no loop transformation such that ϕ̄ ∈ Φ

|α|
sb ∩Φ

|β|
sr

unless ὰ ≡ β̀ and ά ≡ β́. In other words, if ϕ ∈ Φ
[ὰ,ά]
sb ∩Φ

[β̀,β́]
sr and either of ὰ ̸= β̀ or ά ̸= β́ holds, then such

a nonlinear function ϕ cannot be transformed into the standard bound representation ϕ̄ ∈ Φ
|α|
sb ∩ Φ

|β|
sr .

1.2 Literature Review for Absolute Stability–FDI and LMI

Approaches

1.2.1 Circle Criterion

The circle criterion is a generalization of the sufficient part of the conventional Nyquist stability criterion.

It was first produced by Sandberg and Zames for a scalar nonlinear feedback system [130, 131, 102]. They

showed that the critical point in the classical Nyquist criterion could be expanded to an on-axis disc with

radius proportional to the degree of departure from linearity by the nonlinearity. The circle theorem is
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geometric in nature since the stability criterion is that the frequency response function G(jω) should not

intersect or encircle the disc shown in Figure 1.6. The circle theorem is inherently conservative, and it is also

applicable to time-varying systems whereas the Nyquist theorem is only applicable to linear time-invariant

systems. The circle theorem generalizes the Nyquist theorem since it includes it as a special case. The

Nyquist theorem [81, 80, 25] is a well known result and it is not covered in this section due to limited space.

Instead, in this section, the frequency domain circle theorem for the scalar case will be first introduced

in order to describe its geometrical characteristics of the SISO case. Then a mapping transfer function is

described that relates the circle criterion to a positive real function that leads to a formulation in the form

of an algebraic Riccati equation. Finally, the scalar algebraic version is extended to the multivariable case.

The Continuous-Time Circle Criterion

In a 1966 paper, Zames [131] (Lemma 1 on page 467) showed that a conic sector of the form shown in (1.20)

has a counterpart in the frequency plane in the form of a circular disk, given by the condition

∣∣∣∣G(jω) +
1

2

(
1

α
+

1

β

)∣∣∣∣ ≥ 1

2

(
1

α
− 1

β

)
(1.46)

such that the Nyquist plot of G(s) does not encircle the point −1
2 (

1
α + 1

β ). Equation (1.46) corresponds to

the complement of equation (1.20). Therefore, the frequency domain statement of the circle criterion is as

follows [18, 19].

Theorem 9. (Circle criterion in geometrical point of view) Let n(s) and d(s) be coprime polynomials, i.e.

they do not have common factors, where G(s) = n(s)
d(s) is strictly proper without loss of generality. Then if

d(s) has no zeros for all s ∈ C such that its real part is positive then the following statements hold:

1. The trajectories of solutions of (1.19) are bounded if ϕ ∈ Φ
[α,β]
sb and the Nyquist locus of G(s) does not

encircle or intersect the open disk D(α, β) which is centered on the negative real axis of the G(s) plane

and has as a diameter the segment of the negative real axis (− 1
α ,−

1
β ) (see Figure 1.6).

2. The trajectories of solutions of (1.19) are bounded and exponentially converge to the origin if there is

some ϵ > 0 such that ϕ ∈ Φ
[α+ϵ,β−ϵ]
sb and the Nyquist locus of G(s) does not encircle or intersect the

open disk D(α, β) which is centered on the negative real axis of the G(s) plane and has as a diameter

the segment of the negative real axis (− 1
α ,−

1
β ) (see Figure 1.6).

Under the conditions, the closed loop system is asymptotically stable in that all sets of initial conditions

lead to outputs which are bounded as t approaches infinity if the Nyquist locus of G(s) does not intersect

the disk D(α, β) and encircles it mρ times in the counterclockwise direction.
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Figure 1.6: Geometric Circle Criterion in Nyquist Diagram: q = jω for CT cases or ejω for DT cases
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Different proofs of the circle criterion based on Lyapunov functions have appeared in the literature [33,

115, 122]. To generate a Lyapunov function for the circle criterion, the positive real lemma [6] is applied to

the following mapping of the transfer function for the scalar case [19, 9]:

Ĝ(s) ≜ 1 + αG(s)

1 + βG(s)
=

α

β

n̂(s)

d̂(s)
, (1.47)

where n̂(s) = n(s) + 1
αd(s), and d̂(s) = n(s) + 1

βd(s) Note that the mapping described in (1.47) takes the

exterior of the disk D(α, β) in the s-domain for the scalar transfer function G(s) into the right-half-plane

(RHP) in the s-domain for the transformed transfer function Ĝ(s), if G(jω) is exterior to D(α, β) for all

ω ∈ R (see Lemma 3 in [19]):

0 ≤ Re [F (jω)] = Re

[
1 + αG(s)

1 + βG(s)

]
≤ d̂(jω)n̂(−jω) + d̂(−jω)n̂(jω)

2|d̂(jω)|2
(1.48)

with 0 ̸= α ̸= β ̸= 0. The above implies that the numerator of equation (1.48) is a positive real function.

For a proof of equation (1.48) see [119]. The following statement for asymptotic stability using the circle

criterion corresponds to Lemma 4 in [19].

Lemma 5. Let us consider a strictly proper rational transfer function G(s) and a nonlinear function ϕ ∈

Φ
[α,β]
sb , then if F (s) is positive real the feedback nonlinear system described by equations (1.3) is asymptotically

stable.

Multivariable extensions of the circle criterion have been proposed [133] and a multivariable version by

Haddad and Bernstein has been written as an algebraic Ricatti equation [33]. The multivariable version of

(1.47) is given by

Ĝ(s) = [I +K1G(s)] [I +K2G(s)]
−1

(1.49)

where K1,K2 are the matrices of compatible dimensions and the multivariable conic sector is defined by

Φ̄
[K1,K2]
sb ≜

{
ϕ : Rnq → Rnp |(ϕ(σ(t))−K1σ(t))

T (ϕ(σ(t))−K2σ(t)) ≤ 0, ∀σ(t) ∈ Rnq
}

(1.50)

and ϕ(σ(t)) is Lebesgue measurable for all σ(t) ∈ Rnq .

By writing a realization of Ĝ(s) in (1.49) and using the Kalman-Yakubovich-Popov (KYP) Lemma with

the procedure shown in Section ??, a multivariable algebraic Ricatti equation equivalent to Lemma 5 can

be written [34] such that it yields the following theorem in terms of an LMI.

Theorem 10. Suppose Ĝ(s) is strongly positive real and G(s) is a minimal realization of the system described
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in (1.3), then there exists a matrix P > 0 satisfying:

ÂTP + PÂ PB̂ − ĈT

B̂TP − Ĉ −D̂ − D̂T

 < 0 (1.51)

where

Â = A−B(I +K1D)−1K1C

B̂ = B(I +K1D)−1

Ĉ = (K2 −K1)(I +DK1)
−1C

D̂ = I + (K2 −K1)(I +DK1)
−1D

(1.52)

Furthermore, the negative feedback interconnection of G(s) and ϕ(q(t)) is asymptotically stable for all ϕ ∈

Φ̄
[K1,K2]
sb .

Proof: This is nothing but the combination of taking a loop transformation and applying the positive real

lemma. The same result has been shown in [34] when applying Schur complement. □

Remark 4. (Loop transformation (or multiplier theory)) A loop transformation with constant gain matrices

does not change the stability of the system. That is, the system which consists of the transfer function G(s)

and the negative feedback interconnection with the nonlinear function ϕ ∈ Φ̄
[K1,K2]
sb is stable if and only if

Ĝ(s) is positive real such that its input-output property is characterized to be passive.

The circle criterion is an important result because it serves as a generating criterion for various con-

straining forms of nonlinear functions, Φ, for example, consider the following corollary.

Corollary 1. The circle criterion reduces to the positive real lemma described in Theorem 3 provided that

K2 = ∞I and K1 = 0.

The circle criterion is considered to be the least conservative result that can be obtained for time-varying

systems for the case of a quadratic Lyapunov function [122].

The Discrete-Time Circle Criterion

All the arguments regarding the formulation of the continuous-time circle theorem carry over to the case of

the discrete-time version of the circle criterion [18].

Theorem 11. (Circle criterion in geometrical point of view) Let n(z) and d(z) be coprime polynomials, i.e.

they do not have common factors, where G(z) = n(z)
d(z) is strictly proper without loss of generality. Then if

d(z) has no zeros outside the unit circle then the following statements hold:
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1. The trajectories of solutions of (1.3) are bounded if ϕ ∈ Φ
[α,β]
sb and the Nyquist locus of G(z) does not

encircle or intersect the open disk which is centered on the negative real axis of the z-domain for G(z)

and has as a diameter the segment of the negative real axis (− 1
α ,−

1
β ) (see Figure 1.6).

2. The trajectories of solutions of (1.3) are bounded and exponentially converge to the origin if there is

some ϵ > 0 such that ϕ ∈ Φ
[α+ϵ,β−ϵ]
sb and the Nyquist locus of G(z) does not encircle or intersect

the open disk which is centered on the negative real axis of the G(z) plane and has as a diameter the

segment of the negative real axis (− 1
α ,−

1
β ) (see Figure 1.6).

In 1994 Haddad and Bernstein [118] suggested a multivariable version of the discrete-time circle criterion

in terms of an algebraic Ricatti equation [36]. Here we give an alternative version of Theorem 12 in terms of

LMIs, which is nothing but the combination of taking a loop transformation and applying the positive real

lemma.

Theorem 12. Let us suppose Ĝ(z) ≜ 1+αG(z)
1+βG(z) is strongly positive real and G(z) is a minimal realization

of the system described in (1.3) such that their subscripts are dropped for convenience, then there exists a

matrix P > 0 satisfying: ÂTPÂ− P ÂTPB̂ − ĈT

B̂TPÂ− Ĉ B̂TPB̂ − D̂ − D̂T

 < 0 (1.53)

where the matrices Â, B̂, Ĉ, D̂, are the same as the ones defined in the continuous-time case. Furthermore,

similar to the continuous-time case, the negative feedback interconnection of G(z) and ϕ(q(k)) is asymptoti-

cally stable for all ϕ ∈ Φ̄
[K1,K2]
sb .

Proof: This is nothing but the combination of taking a loop transformation and applying the positive real

lemma. The same result has been shown in [34] when applying Schur complement. □

1.2.2 Popov Criterion

In 1960, V. M. Popov [89, 90, 91] provided a less conservative sufficient criterion for the stability of the system

shown in Figure 1.7 in terms of a modified frequency response of the linear part of the feedback system

G(jω). The idea consists on the removal of a multiplier from the linear element and further conditions on

the properties of the negative feedback connected nonlinear functions in the block Φ. Such conditions are

that ϕ ∈ Φ
[0,∞]
sr does not depend on time explicitly and is memoryless (static). It was not until Popov’s work

27



Figure 1.7: Loop Transformations for Popov Criterion

and making use of frequency response methods for nonlinear stability analysis and synthesis that a theory

of design for nonlinear systems began to emerge.

Continuous-Time Popov Criterion

In this section, the factorization and loop transformation that lead to the scalar version of the Popov criterion

are discussed. The aforementioned transformation leads to a Modified Phase Amplitude Characteristic or

MPAC; the geometrical interpretation of the Popov criterion in terms of an MPAC plot is described and

the previous results will be extended for the case where ϕ ∈ Φ
[0,µ]
sr for the SISO case. Finally, the scalar

algebraic version is extended to the multivariable case. Let us consider that the transfer function G(s) can

be factored as

G(s) =
1

1 + λs
(Ĝ(s)− 1

µ
) (1.54)

for some scalar λ ≥ 0, which is shown in Figure 1.7. This factorization leads to the transformed transfer

function

Ĝ(s) = µ−1 + (1 + λs)G(s) (1.55)
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The block diagram can be written for (1.55) by means of a loop transformation, as shown in Figure 1.7.

The detailed procedure for constructing this loop transformation is shown in the proof of Corollary 2 on

page 470 of [131]. Note that the nonlinear block Φ is multiplied by a first-order transfer function, thus the

name Popov multiplier for such transfer function. Such multiplication results in a modified block Φ̂ whose

elements ϕ̂ belong to the class of nonlinear function defined by Φ
[0,∞]
sr provided the nonlinear functions are

memoryless, as shown by Lemma 2 of [131] in page 468. The frequency response of the linear element is

modified by the removal, and, in effect, the size of the critical region is reduced. The Popov criterion for

continuous-time transfer functions [90, 115] follows.

Theorem 13. Consider a nonlinear feedback system of the form described in (1.3) where the nonlinear

element ϕ ∈ Φ
[0,∞]
sr . If there exists a number λ such that

Re [(1 + λjω)G(jω)] ≥ 0, ∀ω > 0 (1.56)

then the nonlinear feedback system is asymptotically stable.

Proof: The proof consists on showing that (1 + λs)G(s) is strictly positive real, thus by means of the

KYP lemma there exists a symmetric positive definite matrix P = PT > 0 that is used to establish a

Lure-Postnikov Lyapunov function [28, 115, 56] in order to prove global asymptotic stability. The details of

the proof are shown in Popov’s original paper [90] and on pages 231 to 233 of [115]. □

Note that (1 + λjω)G(jω) = n̂(jω)

d̂(jω)
has the form of a straight line provided G(jω) corresponds to the

horizontal axis and ωG(jω) corresponds to the vertical axis, as shown in Figure 1.8 which is known as

a Modified Phase Amplitude Characteristic or MPAC. The inequality expressed by (1.56) means that the

MPAC of G(jω) corresponds to a half-plane. Thus the Popov criterion reduces to finding the hyperplanes

that intersect the negative or positive real axis of a Nyquist plot modified by the multiplier that is to the left

of this plot but as close to the origin as possible. Thus, the geometrical interpretation of Theorem 13 is as

follows: if there is a straight line situated either in the first and the third quadrants of the G(jω) vs ωG(jω)

plane or it is the ordinate axis, and in addition it is such that the MPAC is on the right of this straight line,

then the trivial solution of the investigated system is absolutely asymptotically stable. Further, the MPAC

is on the right of this straight line if any point of the MPAC is either on the straight line or it is in the

half-plane bounded by this straight line and containing the point (0,+∞).

If ϕ ∈ Φ
[0,µ]
sr and ϕ ∈ Φ

[0,ξ]
sb such that µ ≥ ξ, then a special case of Theorem 13 can be considered [115]

by doing the loop transformation shown on Figure 1.7 [28, 115]. In terms of the geometrical interpretation

the straight line in Figure 1.8 may be shifted a distance 1
µ to the left as shown in Figure 1.8. Asymptotic
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Figure 1.8: Geometrical Popov Criterion in Nyquist Diagram

30



stability is guaranteed for any ϕ in a specified class of nonlinear functions, which is also called a relation.

The Popov criterion was generalized to the multivariable case [12, 7] in the late 1960s; the proof is very

similar to that of the scalar case since it is based on applying the KYP lemma to the multivariable version

of (1.56) given by

W (s) = M−1 + (I + Λs)G(s) (1.57)

in order to show positive realness of W (s), where M = diag{µ1, µ2, . . . , µnp} ∈ Rnp×np , and Λ is a nonneg-

ative definite diagonal matrix whose diagonal components correspond to the Lagrange multipliers, absolute

stability is proved by means of a Lur’e-Postnikov Lyapunov function. Details are shown on pages 490 to

491 of [12]. The set of nonlinear functions is defined in component-wise sense. That is, each component

ϕi(σi) of ϕ satisfies the restriction ϕi ∈ Φ
[0,µi]
sr and the components of ϕ are assumed to be decoupled. The

multivariable Popov equation described in (1.57) has been written as an algebraic Ricatti equation [12, 33],

which leads to the following theorem in terms of an LMI.

Theorem 14. Suppose W (s) is strongly positive real, where G(s) is a minimal realization of the system

described by equation (1.3) where Φ
[0,M ]
sr is as described previously in Definition 7, then there exist matrices

P > 0 and Λ ≥ 0 satisfying:

 ATP + PA (C + ΛCA−BTP )T

C + ΛCA−BTP (M−1 + ΛCB) + (M−1 + ΛCB)T

 < 0 (1.58)

Furthermore, the negative feedback interconnection of the LTI system G(s) and the nonlinear mapping ϕ is

asymptotically stable for all Φ
[0,M ]
sr .

Proof: The Lur’e-Postnikov-Lyapunov function for this theorem is proved on pages 490 and 491 of [12].

The LMI is obtained by applying the Schur complement to equation (71) on page 328 of [33]. See also pages

278–279 of [56]. □

The Popov criterion is less conservative since it removes the time variation property of the nonlinearities.

Further research on Popov criterion involved the consideration of local slope restrictions [101, 38]. In

particular, in [106] the Popov multiplier shown in (1.55) was substituted and (1.56) is required to be positive

real and µ is a bound on the local slope of the feedback nonlinearity such that

0 < ϕ′(σ) < µ, ∀σ ∈ R, (1.59)

which is also defined as the set of nonlinear functions Φ
[0,µ]
sr ⊆ R.
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Because of the new multiplier, the MPAC plot changes in such a way that the vertical axis corresponds

to 1
ω Im [G(jω)] and the Popov plane is bounded in terms of a straight line with a real axis intercept − 1

µ and

slope − 1
λ for the SISO case.

In 1995, Haddad and Kapila [37] generalized Theorem 13 to the multivariable case containing an ar-

bitrary number of memoryless time-invariant slope-restricted monotonic nonlinearities by considering the

multivariable version of (1.56) given in (1.57) with a different Lyapunov function.

Theorem 15. Let G(s) = C(sI −A)−1B be a stable transfer function, its realization (A,B,C) be minimal,

and CA−1B be nonsingular, which implies that the origin is the unique equilibrium point. If there exists a

positive semi-definite matrix Λ = diag{λ1, · · · , λnp} so that a new transfer function is defined as W (s) =

M−1+(I+Λs−1)G(s), then W (s) is strongly positive real if and only if there exists a positive definite matrix

P = PT > 0 such that  ĀTP + PĀ (B̄TP − ΛC̄Ā−1 − D̄)T

B̄TP − ΛC̄Ā−1 − D̄ 2M−1I

 < 0, (1.60)

where

Ā ≜

A 0

C 0

 , B̄ ≜

B
0

 , C̄ ≜
[
0 I

]
, D̄ ≜

[
C 0

]
(1.61)

Furthermore, the negative feedback interconnection of G(s) and ϕ is asymptotically stable for all ϕ ∈ Φ
[0,M ]
sr .

Proof: Details of the proof are shown in pages 362 and 363 of [37]. Strict positive realness leads to the

application of the Kalman-Yakubovich lemma and its equivalent LMI form is written by means of the Schur

complement. Absolute stability is proved by means of a modified Lur’e-Postnikov equation of the form:

V (ẋ(t), q(t)) =

ẋ(t)
q(t)


T

P

ẋ(t)
q(t)

+ 2

m∑
i=1

λi

∫ qi(t)

0

ϕ′(σ)σdσ (1.62)

Details are shown on page 363 of [37]. □

1.2.3 Tsypkin’s Criterion

After Popov published his stability criterion for continuous-time systems, several researchers worked on

developing a discrete-time stability test similar to Popov’s. The closest analog was developed by Tsyp-

kin [111, 112] who derived the following theorem.
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Theorem 16. The corresponding scalar nonlinear system with the form of equation (1.3), where ϕ belongs

to sector condition [0, ξ], i.e., ϕ ∈ Φ
[0,ξ]
sb , is globally asymptotically stable if the following condition holds:

Re [G∗(jω)] +
1

ξ
> 0 (1.63)

Proof: See pages 172 and 173 of [112]. □

The geometrical interpretation of Theorem 16 is shown in Figure 1.9. The discrete-time nonlinear system

will be absolutely stable if the frequency characteristic of G(z) of the linear part does not intersect the

straight line −1/ξ. The foundations upon which Popov’s criterion is extended to the discrete-time case

were established in the work of Hitz and Anderson [39] who described discrete positive-realness in terms of

the Kalman-Yakubovich lemma. Another important element was the work of Pearson and Gibson [86] who

bounded the integral of the difference equation of a discrete-time version of the Lur’e-Postnikov equation

in terms of the maximum slope of the nonlinearity, which makes it possible to further restrict the upper

boundary of the sector conditions in comparison with earlier applications of quadratic. In 1964, Jury and

Lee [49, 48] proposed a new sufficient condition that considers a local slope restriction that produces a

modified response by shifting the frequency response of the discrete-time transfer function G(z) to the right

in a manner proportional to the value of the slope µ, that is, the smaller the slope the more the modified

frequency is shifted to the right leading to a less conservative solution.

Theorem 17. The corresponding scalar nonlinear system with the form of equation (1.5), where ϕ ∈ Φ
[0.ξ]
sb ∩

Φ
[0,µ]
sr , is globally asymptotically stable if a non-negative scalar λ exists such that the inequality

Re [G∗(z)] [λ+ λ(z − 1)] +
1

ξ
− λµ

2
|(z − 1)G∗(z)|2 ≥ 0 (1.64)

is satisfied on the unit circle z = exp(jω) for ω ∈ [0, 2π].

Proof: See pages 53 to 56 of [49]. □

The criterion described in (1.64) includes Tsypkin’s criterion as a special case when λ = 0. The

multivariable extension of Jury and Lee’s criteria was described by Haddad and Bernstein [118, 36] by

defining the set ΦP characterizing a class of sector-bounded time-invariant memoryless nonlinearities. Let

K = diag{ξ1, · · · , ξnp} ∈ ℜnp×np be a given positive definite matrix and define:

0 ≤ σϕi(σ) ≤ ξiσ
2, ∀σ ∈ R, for i = 1, 2, . . . , np (1.65)
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Figure 1.9: Geometrical Tsypkin’s Criterion in Nyquist Diagram

34



and

0 <
ϕi(σ)− ϕi(σ̂)

σ − σ̂
< µi, i = 1, . . . , np. (1.66)

Note that components of ϕ are decoupled. The multivariable version of (1.64), as shown in [118] is given

by

K−1 + [I + (z − 1)Λ]G(z)− 1

2
|z − 1|2G∗(z)MΛG(z) (1.67)

where Λ is a positive semi-definite matrix. The multivariable version of Theorem 17 is described in terms of

an LMI in the following theorem.

Theorem 18. Consider the nonlinear system described in (1.3). If there exists a nonnegative definite

diagonal matrix N such that (1.67) is strongly discrete-time positive real, where G(z) is a minimal realization,

then the negative feedback interconnection of G(z) and ϕ(·) is asymptotically stable for ϕ ∈ Φ
[0,K]
sb ∩Φ

[0,M ]
sr if

the following condition holds:



 P −ATPA

−(A− I)TCTMΛC(A− I)


 −C −BTCTMΛC

−QCA+BTCTMΛCA+ ΛC +BTPA

 (−C −BTCTMΛC

−QCA+BTCTMΛCA+ ΛC +BTPA)T


(K−1 + ΛCB) + (K−1 + ΛCB)T

−BTCTΛCB −BTPB




> 0.

(1.68)

Proof: See [118] for the Riccati equation version and using the Schur complement lemma one has the

equivalent LMI condition above. □

1.3 Linear and Bilinear Matrix Inequalities

In this section, backgrounds on the mathematical theory and control applications of linear matrix inequal-

ities (LMIs) and bilinear matrix inequalities (BMIs) are provided. The research monograph [100] is a useful

introduction for locating LMI results scattered throughout the control and system engineering literature. A

through review for LMIs and BMIs for process control is given in [113]. More advanced topics of LMIs in

control are introduced in the book [58].
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1.3.1 The Linear Matrix Inequality and Optimization Problems

Here the definition and some properties of the LMI is given. A Linear Matrix Inequality (LMI) has the

form:

F (x) = F0 +
m∑
i=1

xiFi > 0 (1.69)

where x ∈ Rm, Fi ∈ Rn×n. The inequality means that F (x) is a positive definite matrix, that is,

zTF (x)z > 0, ∀z ̸= 0, z ∈ Rn. (1.70)

The symmetric matrices Fi, i = 0, 1, . . . ,m are fixed and x is the (decision) variable. Thus, F (x) is an affine

function of the elements of x.

Comment 2. Any feasible nonstrict LMI can be reduced to an equivalent strict LMI that is feasible. To

see this, eliminate implicit equality constraints and then reduce the resulting LMI by removing any constant

nullspace [100], page 19).

Proposition 1. (LMI equivalence to polynomial inequalities [113]) It is informative to represent the LMI

in terms of scalar inequalities. More specifically, the LMI (1.69) is equivalent to n polynomial inequalities.

Moreover, LMIs are not unique to represent a feasibility set.

Proposition 2. (Non-uniqueness of LMIs) A matrix A is positive (or negative) definite if and only if TTAT

is positive (or negative) definite for any nonsingular matrix T . Thus, the permutation transformation matrix

T gives some rearrangements of matrix elements such that definiteness of the transformed matrix does not

change.

Another interesting property of the LMI (1.69) is its convexity. A set C is said to be convex if λx+(1−λ)y ∈ C

for all x, y ∈ C and λ ∈ (0, 1) [2].

Proposition 3. (Convexity) An important property of LMIs is that the set {x|F (x) > 0} is convex, that is,

the LMI (1.69) forms a convex constraint on x.

An important property of LMIs in control and system engineering problems is its ability to consider multiple

control requirements or objectives by appending additional LMIs.

Proposition 4. (Capability to handle multiple constraints) Consider a set defined by q LMIs:

F 1(x) > 0; F 2(x) > 0; · · · ; F q(x) > 0. (1.71)
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Then, noting the fact that the eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues

of the blocks, or from the definition of positive definiteness, an equivalent single LMI is given by

F (x) = F0 +
m∑
i=1

xiFi = diag{F 1(x), F 2(x), · · · , F q(x)} > 0, (1.72)

where

Fi = diag{F 1
i , F

2
i , · · · , F

q
i }, ∀i = 0, · · · ,m (1.73)

and diag{X1, X2, · · · , Xq} is a block diagonal matrix with blocks X1, X2, . . . , Xq.

The linear constraints on variables can be written as LMI constraints and the problem to investigate the

existence of the solution which satisfies LMIs is called an LMI feasibility problem.

Proposition 5. (Linear constraints an an LMI) Consider the general linear constraint Ax < b written as

n scalar inequalities:

bi −
m∑
j=1

Aijxj > 0, i = 1, . . . , n (1.74)

where b ∈ Rn, A ∈ Rn×m, and x ∈ Rm. Each of the n scalar inequalities is an LMI. Since multiple LMIs

can be written as a single LMI, the linear inequalities (1.74) can be expressed as a single LMI.

In addition to the properties of LMIs, the following lemma is a tool to convert a class of convex nonlinear

inequalities to an LMI.

Lemma 6. (The Schur complement lemma) The convex nonlinear inequalities

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0, (1.75)

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend affinely on x, are equivalent to the LMI

 Q(x) S(x)

S(x)T R(x)

 > 0. (1.76)

Proof: A proof of the Schur Complement Lemma using only elementary calculus is given in the appendix.

In what follows, the Schur Complement Lemma is applied to several inequalities that appear in control and

system engineering problems. □

One of the most useful and promising aspects of LMIs is that fact that many optimization and control

problems can be formulated in terms of finding a feasible solution to a set defined by LMIs.
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Eigenvalue problems

The following optimization problem is commonly referred to as a semidefinite program (SDP) [5]:

inf

x

F (x) > 0

cTx (1.77)

An SDP that often arises in control applications is the LMI eigenvalue problem (EVP). It is the minimization

of the maximum eigenvalue of a matrix that depends affinely on the variable x, subject to an LMI constraint

on x. Many performance analysis tests, such as computing the H∞ norm, can be written in terms of an

EVP [114]. Two common forms of the EVP are presented so that readers will recognize them:

inf

x, λ

λI −A(x) > 0

B(x) > 0

λ (1.78)

and

inf

x, λ

A(x, λ) > 0

λ (1.79)

where A(x, λ) is affine in x and λ. The equivalence of (1.77), (1.78), and (1.79) can be easily seen [113].

Generalized eigenvalue problems

A large number of the control properties can be computed as a generalized eigenvalue problem (GEVP),

including many robustness margins and the minimized condition number discussed [100, 113, 103]. A GEVP

is, given square matrices A and B, B > 0, find scalars λ and nonzero vectors y such that

Ay − λBy = 0. (1.80)

The following property of GEVPs looks trivial, but its importance cannot be ignored.

Lemma 7. Let consider a symmetric matrix F (δ) such that F is convex in δ ∈ R. Then the open set

∆ ≜ {δ ∈ R |F (δ) < 0} is connected and the inf/sup values of δ ∈ ∆ are achieved on the boundary of the
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set. That is,

δlow ≜ arg infδ∈∆ δ = inf{δl, δr}

δupp ≜ arg supδ∈∆ δ = sup{δl, δr},

where δl, δr ∈ δ̄ such that F (δl − ϵ) ≥ 0 and F (δr + ϵ) ≥ 0 for some ϵ. Furthermore, it is allowed that

δl, δr ∈ {−∞,∞}.

Proof: From the convexity of F in δ ∈ R, the connectivity of the open set ∆ is trivial. In addition, since

∆ is a connected convex set, δl, δr are the left- and right-most values in the closed set ∆̄. □

The computation of the largest generalized eigenvalue can be written in terms of an optimization problem

with LMI-like constraints. Consider that the positive definiteness of B implies that for sufficiently large λ,

A− λB < 0. As λ is reduced from some sufficiently high value, at some point the matrix A− λB will lose

rank, at which point there exists a nonzero vector y that solves (1.80), implying that this value of λ is the

largest generalized eigenvalue. Hence

λmax = min
A−λB≤0

λ = inf
A−λB<0

λ. (1.81)

Often, our objective is to minimize the largest generalized eigenvalue of two symmetric matrices which

depend affinely on a variable x, subject to an LMI constraint on x:

inf

B(x) > 0

C(x) > 0

λmax(A(x), B(x)), (1.82)

where λmax(A(x), B(x)) is the largest generalized eigenvalue of two matrices, A and B, each of which depend

affinely on x. From (1.81) this optimization problem is equivalent to

inf

A(x)− λB(x) < 0

B(x) > 0

C(x) > 0

λ. (1.83)

1.3.2 The Bilinear Matrix Inequality and Optimization Problems

A bilinear matrix inequality (BMI) is of the form:
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F (x, y) = F0 +
m∑
i=1

xiFi +
n∑

j=1

yjGj +
m∑
i=1

n∑
j=1

xiyjHij > 0 (1.84)

where Gj and Hij are symmetric matrices of the same dimension as Fi, and y ∈ Rn. Bilinear matrix

inequalities were popularized by Safonov and co-workers in a series of proceedings papers [50, 51, 52, 72],

and first applied to a nontrivial process description (i.e., a chemical reactive ion etcher) by VanAntwerp and

Braatz [44], and was later applied to paper machines [45]. A BMI is an LMI in x for fixed y and an LMI in

y for fixed x, and so is convex in x and convex in y. The bilinear terms make the set not jointly convex in x

and y. Besides bilinear and general quadratic inequalities

xTQx+ cTx+ p > 0, (1.85)

general polynomial inequalities can also be written as BMIs.

Since a BMI describes sets that are not necessarily convex, they can describe much wider classes of

constraint sets than LMIs, and can be used to represent more types of optimization and control problems.

The main drawback of BMIs is that they are much more difficult to handle computationally than LMIs.

An optimization over BMI constraints is called a BMI problem:

inf

x, y

A([xT yT ]T ) > 0

F (x, y) > 0

cTx+ dT y (1.86)

where F (x, y) is defined in (1.84).

Many important problems in control that cannot be stated in terms of LMIs can be stated in terms of

BMIs. Examples include robustness analysis [27, 93], a large number of robust controller synthesis problems

including low order and decentralized control [72, 50], bilinear programming, and linear complementarity

problems [3, 4, 95]. It has been shown that there is a corresponding optimization over BMI constraints called

the BMI eigenvalue problem (BEVP) [113]:

inf

x, y, γ

A([xT yT ]T ) > 0

λmax(F (x, y)) < γ

γ (1.87)
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where λmax is the maximum eigenvalue of F (x, y). It is easy to see that the LMI eigenvalue problem is a

special case of the BMI optimization problem.

1.3.3 The S-Procedure

The S-procedure greatly extends the usefulness of LMIs by allowing non-LMI conditions that commonly

arise in nonlinear and/or uncertain systems analysis to be represented as LMIs, with the introduction of some

conservatism. The original question in the S-procedure is whether a quadratic inequality is satisfied over a

domain that is generally represented as a set of constraints and when a quadratic inequality is a consequence

of other quadratic inequalities, that is, does the nonempty set C ≜ {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , l} imply

that f0(x) ≥ 0?, where the functionals f0, gi : Rn → R are convex for i = 1, . . . , l.

I. The Lagrange Dual Problem in Convex Optimization Context

Lagrangian duality is an promising approach in convex optimization and its development in theory and

practice are far reaching. The main idea in Lagrangian duality is to associate an equivalent or weaker dual

problem with a given constrained primal problem. A dual problem may be much easier to solve than the

original problem while there might be some potential conservatism. First, we will see that any feasibility

problem can be transformed as a corresponding equivalent optimization problem. The S-procedure is a

special case of the Lagrange dual problem.

Proposition 6. (The equivalence of a feasibility problem and a linear objective optimization problem) The

feasibility problem

f(x) < q such that x ∈ X

can be reformulated as the LP

inf

f(x)− tI ≤ q

x ∈ X

t

It is easy to see that the optimal solution t∗ of the above LP is less than zero if and only if the inequality

f(x) < q holds for all x ∈ X .

We should note that the reformulation of a convex min-max optimization problem may not unique, in

general. Often, different reformulations have certain advantages from the point of solution approaches. For

the details and examples, see [17]. Let us consider the following general (not necessarily convex) optimization
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problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , l and x ∈ X ,
(1.88)

where X ⊆ Rn and fi : X → R, i = 1, . . . , l. The equivalence of the S-procedure and the Lagrange dual

problem is due to their basic idea which is to relax the constraints by augmenting the objective function

with a weighted sum of the constraints.

Definition 8. (The Lagrangian and the Lagrangian dual function [17]) Let us introduce the so-called La-

grange multiplier vector λ ∈ Rl. Then the Lagrangian L : Rn × Rl → R associated with the optimization

problem (1.88) is defined as

L(x, λ) = f0(x) +
l∑

i=1

λifi(x)

and the corresponding Lagrange dual function g : Rl → R is defined as

g(λ) = inf

x ∈ X
L(x, λ) = inf

x ∈ X

(
f0(x) +

l∑
i=1

λifi(x)

)
.

The Lagrange dual function g is concave, even if the primal optimization problem (1.88) is not convex.

It is well known that the dual function yields lower bounds on the optimal value of the primal problem

(1.88), i.e., g(λ) ≤ f0(x
∗) where x∗ is an optimal solution of the problem (1.88). Now, it is natural to ask

what the closest approximation based on the Lagrange dual function for the optimal value f0(x
∗) is. Thus,

we are led to consider the other optimization problem which is called the dual problem:

maximize g(λ)

subject to λi ≥ 0, i = 1, . . . , l.
(1.89)

The main advantage to consider the Lagrange dual problem (1.89) is the fact that the Lagrange dual problem

(1.89) is a convex optimization problem whether or not the primal problem (1.88) is convex. The difference

between the optimal values of the problems (1.88) and (1.89) is called the dual gap and when there is no

dual gap, the Lagrange dual problem (1.89) is said to be strongly dual and the strong duality corresponds

to lossless in the S-procedure. The following lemma deals under which conditions the strong duality is

guaranteed.

Lemma 8. (Farkas’ lemma and Slater’s constraint qualifications [87, 17]) Let f0, fi : Rn → R be convex

functionals for i = 1, . . . , l and X ∈ Rn ba a convex set. In addition, let us assume that the so-called Slater’s
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condition [17], which is a simple constraint qualification, holds for the set C1 ≜ {x ∈ Rn | fi(x) ≤ 0, i =

1, . . . , l}. That is, there exists a vector x̃ ∈ rel int C1 ∩ int C2 where rel int indicates the relative interior of

a set and for its definition, the readers are recommended to see [99, 17]. Then the following two statements

are equivalent:

1. The feasibility problem

f0(x) < 0 such that x ∈ C1 ∩ C2

is not solvable.

2. There exists a Lagrange multiplier vector λ := (λ1, · · · , λl) ≥ 0 such that

f0(x) +
l∑

i=1

λifi(x) ≥ 0, ∀x ∈ C1.

Note that the constraint C2 is relaxed in the second statement by the introduction of the Lagrange multiplier

vector λ.

II. The S-Procedure in Control Theory Context

We will mainly consider the use of the S-proceure in finite dimensional spaces and the S-procedure

can applied to quadratic functions as easily as to quadratic forms. Let the real valued functionals fj(x),

j = 0, . . . , l be quadratic of x ∈ X ⊂ Rn:

fj(x) = xTTix+ 2uT
i x+ vi, (1.90)

where Ti’s are symmetric matrices, ui’s are vectors, and vi’s are scalars. It can be easily seen that if there

exists λ ≥ 0 such that

f0(x)−
l∑

i=1

λifi(x) ≥ 0 ∀x ∈ X , (1.91)

then

f0(x) ≥ 0 ∀x ∈ X ∩ C, (1.92)

where C ≜ {x ∈ Rn | fj(x) ≥ 0, j = 1, . . . , l}. It is well known that the S-procedure is also necessary when

l = 1 and is called lossless.

Theorem 19. (Yakubovich [128]) Let fj : X → R, j = 0, . . . , l and assume the constraints fj(x) ≥ 0 for all
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j = 1, . . . , l are regular, i.e., there exists x̃ ∈ X such that fj(x) > 0. In addition, let us define sets

Cf ≜ {f(x) ∈ Rl+1 | f(x) = (f0(x), · · · , fl(x))T , x ∈ X},

L ≜ {λ ∈ Rl+1 |λ = (λ0, · · · , λl)
T }.

Then if Cf ∩ L = ∅ implies that Co(Cf ) ∩ L = ∅ then the S-procedure is lossless.

Proof: The separating hyperplane theorem [69, 17] plays a crucial role in the proof. The details of the proof

are in [128]. □

Remark 5. As a special case, if the set Cf is convex set, which is guaranteed when the functionals fj’s are

convex in x ∈ X , then the S-procedure is lossless.

Sometimes it is very important to know whether the S-procedure is lossless for a certain class of functionals

fj .

Proposition 7. (Lossless S-procedure [75]) There are some special classes of functionals with which the

S-procedure is lossless.

1. If fj(x)’s are linear functionals in x ∈ X , X is a convex set, and there exists a vector x̃ ∈ rel int X

such that x̃ ∈ C, then the S-procedure is lossless.

2. The S-procedure is lossless in the case when l = 1 and the functionals are all quadratic forms on a real

linear space X .

3. The S-procedure is lossless in the case when l = 2 and the functionals are all Hermitian forms on a

complex linear space X .

We should note that the first statement is nothing but Slater’s constraint qualification.

Proof: The proof is given in [75]. □

Example: The feasibility problem (1.92) is equivalent to the following LMI condition in the Lagrange

multiplier vector λ: T0 u0

uT
0 v0

−
l∑

i=1

λi

Ti ui

uT
i vi

 ≥ 0. (1.93)

Comment 3. The S-procedure also holds for the case of a strict inequality.
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Remark 6. (Multidimensional Circle and Popov criteria) Consider the set Φ̄
[K1,K2]
sb of sector-bounded static

nonlinear functions:

Φ̄
[K1,K2]
sb ≜ {ϕ : Rnq → Rnp | (ϕ(σ)−K1σ)

T (ϕ(σ)−K2σ) ≤ 0, ∀σ ∈ Rnq},

where Ki ∈ Rnp×nq for each index i and the nonlinear function ϕ(σ) is Lebesgue measurable for all σ ∈ Rnq .

Then the relation in the definition of the set Φ̄
[K1,K2]
sb can be represented as an equivalent LMI

f1(x, ϕ) ≜

x
ϕ


T


CT

q (K
T
1 K2 +KT

2 K
T
1 )Cq

 CT
q (K1 +K2)

T

−CT
q (K

T
1 K2 +KT

2 K1)Dqp

 (K1 +K2)Cq

−DT
qp(K

T
1 K2 +KT

2 K1)Cq


2I − (K1 +K2)Dqp −DT

qp(K1 +K2)
T

+DT
qp(K

T
1 K2 +KT

2 K1)Dqp




x
ϕ

 ≤ 0

With a predefined Lyapunov function V (x) and its time-derivative (or time-difference) function which is

represented by the inequality f0(x, ϕ) ≜ d
dtV (x) < 0 for the continuous-time systems or ∆V (x) < 0 for the

discrete-time systems, if there exists a scalar λ ≥ 0 such that the inequality f0(x, ϕ) − λf1(x, ϕ) < 0 holds

for all (x, ϕ) ∈ Rn × Rnp then the functional d
dtV (x) (or ∆V (x)) is negative for all (x, ϕ) ∈ Rn × Φ̄

[K1,K2]
sb .

Now, consider the set Φ̄
[M1,M2]
sr of slope-restricted static nonlinear functions:

Φ̄[M1,M2]
sr ≜ {ϕ : Rnq → Rnp | (ϕ′(σ)−M1σ)

T (ϕ′(σ)−M2σ) ≤ 0, ∀σ ∈ Rnq},

where Mi ∈ Rnp×nq for each index i and the derivative of the nonlinear function ϕ′(σ) is also Lebesgue

measurable for all σ ∈ Rnq . Similarly to Φ̄
[K1,K2]
sb , the relation in the definition of the set Φ̄

[M1,M2]
sr can be

represented as an equivalent LMI

f2(x, ϕ, ϕ
′) ≜


x

ϕ

ϕ′


T 

CT
q (M

T
1 M2 +MT

2 MT
1 )Cq CT

q (M
T
1 M2 +MT

2 M1)Dqp −CT
q (M1 +M2)

T

DT
qp(M

T
1 M2 +MT

2 M1)Cq DT
qp(M

T
1 M2 +MT

2 M1)Dqp −DT
qp(M1 +M2)

T

−(M1 +M2)Cq −(M1 +M2)Dqp I



x

ϕ

ϕ′

 ≤ 0

for the continuous-time case. Therefore, if there exists a scalar λ1, λ2 ≥ 0 such that the inequality f0(x, ϕ)−

λ1f1(x, ϕ)−λ2f2(x, ϕ, ϕ
′) < 0 holds for all (x, ϕ, ϕ′) ∈ Rn×Rnp×Rnp , then the functional d

dtV (x) is negative

for all (x, ϕ) ∈ Rn ×
(
Φ̄

[K1,K2]
sb ∩ Φ̄

[M1,M2]
sr

)
.

Proof: The proof is just simple algebraic computation using the S-procedure and omitted due to the limited

space. □
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Chapter 2

Stability and Performance Analysis
for Lur’e Systems

This chapter considers the analysis of stability and performance of Lur’e systems. Sufficient conditions for

the existence of a certain type of Lyapunov function, a modified Lur’e-Postnikov function, are given in terms

of linear matrix inequalities (LMIs). The derived critera for the analysis of stability and performance are

shown to be less conservative than criteria published in the literature. Extensions to cover the performance

analysis for a specific class of uncertain nonlinearities are also included.

2.1 Introduction

Absolute stability theory considers the stability of a nominal linear time-invariant system interconnected

with a static nonlinearity, that is, a real function of real variables with no internal states. The literature

on absolute stability theory can be categorized in terms of the properties of static nonlinearities that are

considered. This chapter develops new sufficient conditions for the stability analysis of discrete-time systems

with the advance being LMI conditions that exploit the static, sector-bounded, and globally slope-restricted

nature of the componentwise nonlinear operators. The results are extended to address performance analysis

for discrete-time systems [98].

Lyapunov methods provide a simple but powerful way to analyze nonlinear systems and design stabilizing

controllers [100, 22, 55, 57, 23]. Many well-known results on absolute stability were developed for a bench-

mark problem called the Lur’e problem [76, 53, 84, 105]. The Popov and Circle criteria are frequency-domain

conditions for absolute stability of the feedback interconnection of a continuous linear time-invariant system

with a sector-bounded nonlinearity [32, 35, 56, 62, 106, 132]. Its counterpart for a discrete-time system is

known as the Tsypkin criterion [60, 85] and the Jury-Lee criterion [49, 48]. Consider the nonlinear system:

x(k + 1) = Ax(k) +Bp(k); q(k) = Cx(k) +Dp(k); p(k) = −ϕ(q(k)), (2.1)

where A ∈ Rn×n, B ∈ Rn×np , C ∈ Rnq×n, D ∈ Rnq×np , the nonlinear operator is given by ϕ ∈ Φ, and Φ

is a set of static functions that satisfy ϕ(0) ≡ 0 and have some specified input-output characteristics. This
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chapter considers several classes of nonlinear operator ϕ(·) that are applied componentwise to the elements

of the vectors, defined in Definition 7. Suppose that the state-space system representation (A,B,C,D) is

a minimal realization of the transfer function G(z) = C(zI − A)−1B +D such that the triplet (A,B,C) is

controllable and observable. [Alternatively, the controllability and observability conditions can be removed

because strict inequalities will be used in the stability criteria (see Section 2 in [96]). Instead, the condition

KerA ∩ KerB = {0}, which implies that the origin is the one equilibria, is assumed to hold.] As explained

in Chapter 1, the frequency-domain conditions—the Circle, Popov and Tsypkin criteria—for the absolute

stability of the system (2.1) are simply represented by linear matrix inequalities (LMIs) written in terms of

time-domain systems representation, (A,B,C,D), and some matrix variables whose existence corresponds

to the feasibility of LMIs such that determine the stability of the system via the celebrated positive real

lemma and KYP lemma [100, 85, 23].

The S-procedure discussed in Chapter ?? converts constraints over the nonlinearities into LMI condi-

tions, which is a key step in the direct derivation of LMI-based tests for absolute stability [100, 75, 84, 129].

Related results have been derived based on integral quadratic constraints (IQCs) [30, 46, 47, 74, 75, 96] of sys-

tems with repeated monotonic or slope-restricted nonlinearities in continuous-time cases. Since a quadratic

Lyapunov function yields substantial conservatism, we introduce a modified Lur’e-Postnikov function for

less conservative analysis of stability, state performance, and input-output performance. The resulting LMI

problems are solved using off-the-shelf software [83, 108, 66].

2.2 Sufficient Conditions for Asymptotic Stability–Lyapunov

Stability Analysis

2.2.1 Modified Lur’e-Postnikov Stability of a Discrete Time Lur’e System

Due to the conservativeness inherent to quadratic Lyapunov functions when applied to nonlinear systems,

this section considers the use of a modified Lur’e-Postnikov function that includes integral terms whose

sign definiteness are implied by the sector-bounded property of the nonlinear operators (ϕ ∈ Φ
[0,ξ]
sb ). To

derive sufficient conditions for the origin of (2.1) to be globally asymptotically stable, consider the Lyapunov

function:

V (xk) = x̄T
k Px̄k + 2

nq∑
i=1

Qii

∫ qk,i

0

ϕi(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk,i

0

[ξiσ − ϕi(σ)] dσ, (2.2)
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where

x̄k ≜


xk

pk

qk

 , PT = P ≜


P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33

 ≥ 0, P11 > 0, Qii ≥ 0, Q̃ii ≥ 0, ∀i = 1, . . . , nq

and the subscript k indicates a sampling instance. Both pk and qk are functions of the state variable vector

xk, and the above Lyapunov function is radially unbounded and positive for all nonzero xk ∈ Rn.

For P12 = 0, P13 = 0, P22 = 0, P23 = 0, P33 = 0, Q̃ ≜ diag{Q̃ii} = 0, the Lyapunov function (2.2)

reduces to the Lur’e-Postnikov Lyapunov function used in the derivation of the Popov criterion. All other

Lyapunov functions considered in the Lur’e problem literature are subsets of (2.2). Some papers in the Lur’e

stability literature that appear to have some additional terms than (2.2) are actually just introducing the

S-procedure in a different way. The dependence of the Lyapunov function (2.2) on the nonlinearities and

the states provide additional degrees of freedom for reducing conservatism during stability and performance

analysis. The application of the S-procedure provides a standard way to consider more restrictive classes of

nonlinearities without having modify the Lyapunov function. The degree of conservatism will be compared

for sub-problems with different subsets of the Lyapunov function (2.2), to assess the reduction in conservatism

posed by each term.

2.2.2 Lagrange Relaxations

Yakubovich showed that the positiveness of a quadratic function f0(x) in a constraint set expressed in terms

of quadratic functions, say fi(x) i = 1, . . . ,m, can be implied by the relaxed form with (Lagrange) multipliers.

The S-procedure is a special case of Lagrange relaxation in which the constraints are represented in terms

of quadratic functions, so that the multipliers can be combined into an LMI inequality. The application

of the S-procedure appears not only in control theory but also in the more generic optimization literature.

This chapter applies the S-procedure in finite-dimensional spaces and especially for quadratic inequalities

(see Chapter ?? for the details).

Lemma 9. (S-procedure for Quadratic Inequalities) For the Hermitian matrices Θi, i = 0, . . . ,m, consider

the two sets:

(S1) ζ∗Θ0ζ < 0, ∀ζ ∈ Φ ≜ {ζ ∈ Fn|ζ∗Θiζ ≤ 0, ∀i = 1, . . . ,m};

(S2) ∃τi ≥ 0, i = 1, . . . ,m such that Θ0 −
∑m

i=1 τiΘi < 0.

The feasibility of (S2) implies (S1).
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2.2.3 Discrete-Time Lur’e Systems with Slope-restricted Nonlinearities

While conic-sector bounded nonlinearities, which bound the global slope of the nonlinear functions ϕ(·),

have been heavily studied in the literature, such a description allows the local slope of the nonlinear functions

ϕ(·) to vary arbitrarily from one time instance to another. That is, such nonlinearities do not imposes any

local slope restriction. Most nonlinearities in practice have a local slope restriction, in which case a less

conservative analysis condition may be achieved if these constraints on the nonlinearities are included in the

analysis via the S-procedure. A local slope restriction also provides an upper bound on the change of the

integral term in the Lyapunov function, provided that ϕ(·) is continuous almost everywhere (a.e.).

Theorem 20. Consider a system of the form (2.1) with the memoryless nonlinearity ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr

that is continuous almost everywhere. A sufficient condition for global asymptotic stability is the existence

of a positive semidefinite matrix P = PT with a positive definite submatrix P11 = PT
11 and diagonal positive

semidefinite matrices Q, Q̃, T , T̃ , N ∈ Rnq×nq such that

G =


G11 G12 G13

GT
12 G22 G23

GT
13 GT

23 G33

 < 0 (2.3)

where

G11 = AT (P11 + P13C + CTPT
13 + CTP33C)A− P11 − P13C − CTPT

13 − CTP33C +ATCT Q̃ξCA− CT Q̃ξC

G12 = AT (P11 + P13C + CTPT
13 + CTP33C)B − P12 − P13D − CTPT

23 − CTP33D − CTT + (CA− C)TQ

+ATCT Q̃ξCB + (CA− C)T Q̃− CT Q̃ξD + (CA− C)TµN

G13 = ATP12 +ATP13D +ATCTPT
23 +ATCTP33D −ATCT T̃ − (CA− C)TQ+ATCT Q̃ξD − (CA− C)TµN

G22 = BT (P11 + P13C + CTPT
13 + CTP33C)B − P22 − P23D −DTPT

23 −DTP33D − 2ξ−1T − TD −DTT

+Q(CB −D) + (CB −D)TQ− µ−1Q+BTCT Q̃ξCB −DT Q̃ξD + (CB −D)T Q̃+ Q̃(CB −D)− µ−1Q̃

− 2N +Nµ(CB −D) + (CB −D)TµN

G23 = BTP12 +BTP13D +BTCTPT
23 +BTCTP33D −BTCT T̃ +QD +Qµ−1 + µ−1Q̃+ Q̃D +BTCT Q̃ξD

+ 2N − (CB −D)TµN +NµD

G33 = P22 + P23D +DTPT
23 +DTP33D − 2ξ−1T̃ − T̃D −DT T̃ −QD −DTQ−Qµ−1 − µ−1Q̃+DT Q̃ξD

− 2N −NµD −DTµN
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Proof: The Lyapunov function (2.2) is used to derive the sufficient condition for global asymptotic stability.

The difference in the Lyapunov function between the k + 1 and k sampling instances is

∆V (xk) = ζTk (A
T
a PAa − ET

a PEa)ζk + 2

nq∑
i=1

Qii

∫ qk+1,i

qk,i

ϕi(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

[ξiσ − ϕi(σ)] dσ, (2.4)

where

ζk ≜


xk

pk

pk+1

 , Aa ≜


A B 0

0 0 I

CA CB D

 , Ea ≜


I 0 0

0 I 0

C D 0


Slope restrictions on the nonlinearities place an upper bound on the first integral:

2

nq∑
i=1

Qii

∫ qk+1,i

qk,i

ϕ(σ)dσ ≤ 2

nq∑
i=1

Qii

{
(ϕk+1,i − ϕk,i)(qk+1,i − qk,i)−

1

2µi
(ϕk+1,i − ϕk,i)

2

}
= ζTk U1ζk,

where

U1 ≜


0 (CA− C)TQ −(CA− C)TQ

∗ Q(CB −D) + (CB −D)TQ−Qµ−1 QD +Qµ−1

∗ ∗ −QD −DTQ−Qµ−1

 .

Similarly, an upper bound can be derived on the second integral:

2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

[ξiσ − ϕ(σ)] dσ = −2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

ϕ(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

ξiσdσ

≤ −2

nq∑
i=1

Q̃ii

{
1

2µi
(ϕk+1,i − ϕk,i)

2 + ϕk,i(qk+1,i − qk,i)

}
+

nq∑
i=1

Q̃iiξi
[
q2k+1,i − q2k,i

]
= ζTk U2ζk,

where

U2 ≜



ATCT Q̃ξCA− CT Q̃ξC ATCT Q̃ξCB + (CA− C)T Q̃− CT Q̃ξD ATCT Q̃ξD

∗

 BTCT Q̃ξCB −DT Q̃ξD

+(CB −D)T Q̃+ Q̃(CB −D)− µ−1Q̃

 µ−1Q̃+ Q̃D +BTCT Q̃ξD

∗ ∗ −µ−1Q̃+DT Q̃ξD


.

Since the (negative) feedback-connected nonlinear function is monotonic with slope restriction in addition
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to being [0, ξ] sector bounded, i.e., ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr , it can be shown that the following inequalities are

satisfied at each sampling instance k and all indices i = 1, . . . , nq:

ϕk,i[ξ
−1
i ϕk,i − qk,i] ≤ 0, (2.5)

(ϕk+1,i − ϕk,i)[µ
−1
i (ϕk+1,i − ϕk,i)− (qk+1,i − qk,i)] ≤ 0. (2.6)

The following notations based on (2.5) are useful when applying the S-procedure:

nq∑
i=1

2τiϕk,i[ξ
−1
i ϕk,i − qk,i] = ζTk S1ζk,

nq∑
i=1

2τ̃iϕk+1,i[ξ
−1
i ϕk+1,i − qk+1,i] = ζTk S2ζk, (2.7)

where

S1 ≜


0 CTT 0

∗ 2ξ−1T + TD +DTT 0

∗ ∗ 0

 , S2 ≜


0 0 ATCT T̃

∗ 0 BTCT T̃

∗ ∗ 2ξ−1T̃ + T̃D +DT T̃

 .

A similar notation based on the inequality (2.6) is:

nq∑
i=1

2Nii(ϕk+1,i − ϕk,i)
[
µ−1
i (ϕk+1,i − ϕk,i)− (qk+1,i − qk,i)

]
= ζTk S3ζk, (2.8)

where

S3 ≜


0 −(CA− C)TN (CA− C)TN

∗ 2Nµ−1 − (CB −D)TN −N(CB −D) −2Nµ−1 + (CB −D)TN −ND

∗ ∗ 2Nµ−1 +DTN +ND

 .

Applying the S-procedure, if the LMI G ≜ AT
a PAa−ET

a PEa+U1+U2−S1−S2−S3 < 0 is feasible then

∆V (xk) < 0 is satisfied for the specific class of feedback-connected nonlinearities ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr . All of

introduced matrix (decision) variables are of compatible dimensions. □

Remark 7. The upper bounds on the integral terms in (2.4) are derived by considering the a.e. continuity

of the nonlinearity ϕ(·). In those upper bounds the slope-restricted properties of the nonlinear feedback are

exploited, which gives sharper bounds than the upper bounds in [36, 37, 55].
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2.2.4 Discrete-Time Lur’e Systems with Slope-restricted and Odd Monotonic

Nonlinearities

Theorem 20 exploits more information on the nonlinear operator than the original Lur’e problem. This

section derives a less conservative sufficient stability condition for the more restrictive class of nonlinearities

that are odd monotonic, by the introduction of additional quadratic constraints.

Theorem 21. Consider a system of the form (2.1) with the memoryless nonlinearity ϕ ∈ Φ
[0,ξ]
sb ∩Φ[0,µ]

sr ∩Φodd

which is continuous almost everywhere. A sufficient condition for global asymptotic stability is the existence

of a positive semidefinite matrix P = PT with a positive definite submatrix P11 = PT
11 and diagonal positive

semidefinite matrices Q, Q̃, T , T̃ , N , L, and L̃ ∈ Rnq×nq such that

G =


G11 G12 G13

GT
12 G22 G23

GT
13 GT

23 G33

 < 0 (2.9)

where

G11 = AT (P11 + P13C + CTPT
13 + CTP33C)A− P11 − P13C − CTP13 − CTP33C +ATCT Q̃ξCA− CT Q̃ξC

G12 = AT (P11 + P13C + CTPT
13 + CTP33C)B − P12 − P13D − CTPT

23 − CTP33D − CTT

+ (CA− C)TQ+ATCT Q̃ξCB + (CA− C)T Q̃− CT Q̃ξD + (CA− C)TµN − (CA− C)TL− (CA+ C)T L̃

G13 = ATP12 +ATP13D +ATCTPT
23 +ATCTP33D −ATCT T̃ − (CA− C)TQ+ATCT Q̃ξD

− (CA− C)TµN − (CA− C)TL− (CA− C)T L̃

G22 = BT (P11 + P13C + CTPT
13 + CTP33C)B − P22 − P23D −DTPT

23 −DTP33D − 2ξ−1T − TD −DTT

+Q(CB −D) + (CB −D)TQ− µ−1Q+BTCT Q̃ξCB −DT Q̃ξD + (CB −D)T Q̃+ Q̃(CB −D)− µ−1Q̃

− 2N +Nµ(CB −D) + (CB −D)TµN − (CB −D)TL− L(CB −D)− (CB +D)T L̃− L̃(CB +D)

G23 = BTP12 +BTP13D +BTCTPT
23 +BTCTP33D −BTCT T̃ +QD +Qµ−1 + µ−1Q̃+ Q̃D +BTCT Q̃ξD

+ 2N − (CB −D)TµN +NµD − (CB −D)TL− LD − ξ−1L− (CB −D)T L̃− L̃D + µ−1L̃

G33 = P22 + P23D +DTPT
23 +DTP33D − 2ξ−1T̃ − T̃D −DT T̃ −QD −DTQ−Qµ−1 − µ−1Q̃+DT Q̃ξD

− 2N −NµD −DTµN −DTL− LD − L̃D −DT L̃
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Proof: The difference in the Lyapunov function (2.2) between the k + 1 and k sampling instances is

∆V (xk) = ζTk (A
T
a PAa −ET

a PEa)ζk + 2

nq∑
i=1

Qii

∫ qk+1,i

qk,i

ϕi(σ)dσ+ 2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

[ξiσ − ϕi(σ)] dσ, (2.10)

where ζk, Aa, and Ea are the same as in Theorem 20. Sector-bounded, slope-restricted, odd-monotonic

feedback-connected nonlinearities satisfy (2.5) and (2.6) at each sampling time k and all indices i = 1, . . . , nq

for ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr ∩ Φodd and satisfy

(qk+1,i − qk,i)[ϕk+1,i + ϕk,i]− ϕk,i
1

ξi
ϕk+1,i ≥ 0, (2.11)

(qk+1,i − qk,i)[ϕk+1,i + ϕk,i]− ϕk,i
1

ξi
ϕk+1,i ≤ 2qk+1,iϕk+1,i. (2.12)

The following notations are motivated by (2.11) and (2.12):

nq∑
i=1

2Lii

[
ϕk,iξ

−1
i ϕk+1,i − (qk+1,i − qk,i)(ϕk+1,i + ϕk,i)

]
= ζTk S4ζk, (2.13)

where

S4 ≜


0 (CA− C)TL (CA− C)TL

∗ (CB −D)TL+ L(CB −D) (CB −D)TL+ LD + ξ−1L

∗ ∗ DTL+ LD

 ,

and
nq∑
i=1

2L̃ii

[
qk,i(ϕk+1,i − ϕk,i)− qk+1,i(ϕk+1,i + ϕk,i)− ϕk,i

1

ξi
ϕk+1,i

]
= ζTk S5ζk, (2.14)

where

S5 ≜


0 (CA+ C)T L̃ (CA− C)T L̃

∗ (CB +D)T L̃+ L̃(CB +D) (CB −D)T L̃+ L̃D − ξ−1L̃

∗ ∗ DT L̃+ L̃D

 .

If the LMI G = AT
a PAa −ET

a PEa +U1 +U2 − S1 − S2 − S3 − S4 − S5 < 0 is feasible then ∆V (xk) < 0 is

satisfied for the class of feedback-connected nonlinearities ϕ ∈ Φ
[0,ξ]
sb ∩Φ

[0,µ]
sr ∩Φodd. All of matrix (decision)

variables introduced are of compatible dimensions. □

Remark 8. The inequality constraints over the odd monotonic nonlinearities (2.11) and (2.12) can be found

in [53, 110, 70]. The inequalities (2.11) and (2.12) are written in terms of quadratic functions of ζk, so that

the S-procedure is applied to combine the constraints with the negative definite condition over ∆V (xk).

Remark 9. (LMIs and FDI) The well-known KYP lemma replaces an LMI with an equivalent frequency-
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domain inequality (FDI) in terms of the system transfer function [123]. The FDI provides a graphical tool

to determine feasibility of the LMI for systems with one nonlinearity, i.e. np = nq = 1, such as used in the

graphical implementation of the Popov stability criterion. It is straightforward to apply the KYP lemma to

transform each LMI (2.3) and (2.9) into an FDI (not shown for space considerations).

Theorem 20 and 21 described LMI feasibility problems. That is, each criterion ask whether the set

{X ∈ Sn|Ψ(X) < 0, X ≥ 0} is empty or non-empty. The Lemma below shows the equivalence between two

sets of matrix decision variables.

Lemma 10. (Feasibility issues in the strict and non-strict LMIs) The set of symmetric matrices affine in

X, {X ∈ Sn|Ψ(X) < 0, X ≥ 0}, is nonempty if and only if the set of symmetric matrices, {X ∈ Sn|Ψ(X) <

0, X > 0} is nonempty.

Proof: The (only if) part is obvious. To prove the (if) part, the LMIs in the set can be rewritten as:

Ψ(X) = F0 +

N∑
i=1

Fixi, (2.15)

where X = XT ∈ Rn×n, N = n(n+1)
2 , and the Fi are of compatible dimension. Suppose that X0 ∈ {X ∈

Sn|Ψ(X) < 0, X ≥ 0}. With the definition Xδ ≜ X0 + δI, Xδ > 0 for any value of positive scalar δ > 0.

Now we will show that there exists a scalar δ > 0 such that Xδ is in the set {X ∈ Sn|Ψ(X) < 0, X > 0}.

Consider

Ψ(Xδ) = F0 +
N∑
i=1

Fi(xi + δi), (2.16)

where δi ∈ {0, δ} for each i = 1, . . . , N and the number of nonzero δi is n. Since the eigenvalues of Ψ(Xδ)

are continuous for δ → 0, these eigenvalues approach the eigenvalues of Ψ(X0) as δ → 0. In particular, for

sufficiently small δ the eigenvalues of Ψ(Xδ) have negative real part so that Ψ(Xδ) < 0. □

Remark 10. (Computation for strict and non-strict LMIs in the interior-point algorithm) From the results

of Lemma 10, any LMI solver that is guaranteed to converge for an LMI feasibility problem with strict

inequalities will converge for the above LMI feasibility problems.

2.3 Numerical Examples for Stability Analysis

This section provides numerical examples to illustrate the analysis results in Section 2.2. All LMI

computations were performed with MATLAB’s LMI Control Toolbox. The sector bounds ξi and slope
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Stability Criterion Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6

Circle (ϕ ∈ Φ
[0,ξ]
sb ) 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Tsypkin (ϕ ∈ Φ
[0,ξ]
sb ) 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Haddad et al. (ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr ) 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Kapila et al. (ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,∞]
sr ) 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Park et al. (ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,∞]
sr ) 1.7252 0.18358 0.21792 2.91387 0.03660 0.03716

Theorem 1 (ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr ) 2.4475 0.73082 0.30203 43.40412 19.18289 0.04613

Theorem 2 (ϕ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr ∩ Φodd) 2.5576 0.73082 0.83686 43.40412 19.18289 0.18975

Table 2.1: The maximal upper bound on the sector bound

restrictions µi in each element ϕi of the nonlinearities were taken to be the same. The maximum upper

bound on the ξ was computed, where µ was taken to be linear in ξ, as shown in each example. A large

enough value for ξ makes the LMI in Theorem 20 (or 21) infeasible. A small enough value for ξ makes

the LMI feasible provided that the system is nominally stable, that is, the system without nonlinearities

is stable. These two values provide upper and lower bounds for the value of ξ for which the LMI switches

from being feasible to being feasible. The maximum ξ for which the LMI in each criterion is feasible were

computed by the bisection method.

As discussed in the theory section, the new stability criteria were derived for a Lyapunov function that

has more degrees of freedom than past stability criteria and so have the potential for being less conservative.

Table 1 shows that the criteria in Theorems 1 and 2 are less conservative for the six numerical examples. As

expected, the stability margins are larger when more information is provided on the nonlinearities connected

with the LTI system, and Theorems 20 and 21 provide more accurate estimates of the upper bound on ξ or

µ. Although Theorems 20 and 21 apply to semiproper and strictly proper systems, the numerical examples

only include strictly proper systems to allow comparison to the other criteria in the literature, which assume

D ≡ 0.

1. The following example is from [85]:

µ = 2ξ :

G(z) =
−0.5z + 0.1

(z2 − z + 0.89)(z + 0.1)

2. The following numerical example has 5 states and 2 nonlinearities:
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µ = ξ :

A =



0.2948 0 0 0 0

0 0.4568 0 0 0

0 0 0.0226 0 0

0 0 0 0.3801 0

0 0 0 0 −0.3270


, B =



−1.1878 0.2341

−2.2023 0.0215

0.9863 −1.0039

−0.5186 −0.9471

0.3274 −0.3744


,

C =

−1.1859 1.4725 −1.2173 −1.1283 −0.2611

−1.0559 0.0557 −0.0412 −1.3493 0.9535

 , D = 02×2.

3. The following numerical example has a dense A-matrix and 2 nonlinearities:

µ = ξ :

A =


0.0469 −0.3992 −0.0835

0.3902 −0.5363 −0.2744

0.4378 −1.3576 0.4651

 , B =


−0.5673 −0.2785

0.1155 −0.0649

−2.1849 −0.5976

 ,

C =

 0.3587 −1.0802 −0.6802

−1.3833 −1.0677 1.1497

 , D = 02×2.

4. The following numerical example has two poles at the same location:

µ = 2ξ :

A =


0.4030 0 0

0 −0.1502 0

0 0 −0.1502

 , B =


−0.2494

0.2542

−0.2036

 ,

C =

[
0.9894 0.6649 0.4339

]
, D = 0.

5. The following numerical example has three poles at the same location:
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µ = 2ξ :

A =



0.4783 0 0 0

0 0.7871 0 0

0 0 0.7871 1

0 0 0 0.7871


, B =



−1.5174

1.2181

0.2496

−0.5181


,

C =

[
0.8457 −2.0885 1.2190 0.1683

]
, D = 0.

6. The following numerical example has a wide range of pole locations including two poles near 1:

µ = ξ :

A =



0.5359 0 0 0 0 0 0 0 0

0 0.9417 0 0 0 0 0 0 0

0 0 0.9802 0 0 0 0 0 0

0 0 0 0.5777 0 0 0 0 0

0 0 0 0 −0.1227 0 0 0 0

0 0 0 0 0 −0.0034 0 0 0

0 0 0 0 0 0 −0.5721 0 0

0 0 0 0 0 0 0 0.2870 0

0 0 0 0 0 0 0 0 −0.3599



, B =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



,

C =



1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1


, D = 04×4.

The stability margins for Example 5 indicate that Theorem 1 can reduce the conservatism compared

to literature results by more than 53,200%. The stability margins for Example 6 indicate that, for odd

nonlinearities, Theorem 2 can reduce the conservatism by more than 400% compared to Theorem 1

and even more when compared to literature results.
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2.4 Performance Analysis for Discrete-Time Lur’e Systems

To quantify input-output properties, consider the system

x(k + 1) = Ax(k) +Bpp(k) +Bww(k),

q(k) = Cqx(k) +Dqpp(k) +Dqww(k), (2.17)

z(k) = Czx(k) +Dzpp(k) +Dzww(k),

which has (2.1) as a subsystem and p(k) = −ϕ(q(k)) in the classes of nonlinearities defined previously.

The time difference of Lyapunov function, i.e. ∆V (x(k)), derived in Theorems 20 and 21 provides more

flexibility in computing estimates for input-output properties than a quadratic Lyapunov function. The

more decision variables, the sharper the bounds computed for analyzing performance of the system. The

sufficient conditions for guaranteed performance are found in many papers. The general frame of optimization

problems for three types of performance analysis of the system (2.17) are given below:

1. Decay rate

If the condition ∆V (x(k)) ≤ −2αV (x(k)) for all trajectories of the solution in (2.1), then the largest

lower bound on the decay rate is found by solving a generalized eigenvalue problem (GEVP) in the

decision variables X and α:

maximize α subject to A(X)− αB(X) ≤ 0, (2.18)

where X is the composition of the (matrix) decision variables introduced in Theorems 20 and 21, and

A(X) ≜ G < 0 and B(X) > 0 are affine functions of X. The actual construction of B(X) is omitted

due to limited space.

2. l2 and RMS gains

If the condition ∆V (x(k))+zTk zk−γ2wT
k wk ≤ 0 for all trajectories of the solution xk and wk in (2.17),

then the l2 and RMS gains of the system are less than γ, i.e.
||z||22
||w||22

≤ γ and RMS(z)
RMS(w) ≤ γ. An upper

bound on the l2 and RMS gains is computed by solving the following eigenvalue problem (EVP):

minimize γ2 subject to A(X, γ2) ≤ 0, (2.19)

where A is a jointly affine function of X and γ2. The actual construction of A(X, γ2) is omitted due

to limited space.
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3. Dissipativity

If the condition ∆V (x(k)) − 2wT
k zk + 2ηwT

k wk ≤ 0 for all trajectories of the solution xk and wk in

(2.17), then system has dissipation η, i.e.,
∑τ

k=0(w
T
k zk − ηwT

k wk) ≥ 0 holds for all trajectories of the

solution with the zero initial condition and all τ ≥ 0. The largest such η satisfying the inequality is

called its dissipativity. A lower bound on the dissipativity of the system (2.17) is computed by solving

by the following EVP:

maximize η subject to A(X, η) ≤ 0, (2.20)

where A is a jointly affine function of X and η. The actual construction of A(X, η) is omitted due to

limited space.

2.5 Summary

This chapter considers the analysis of stability and performance for the so-called Lur’e systems with

multiple nonlinearities, as well as various extensions. Even though the history of analysis of Lur’e problem

can be traced back to 1940s, this is the first publication to consider the Lyapunov function (2.2), for which

other Lyapunov functions in literature are special cases. The S-procedure was applied in the standard way

to construct sufficient conditions for globally asymptotic stability in term of LMI feasibility problems. If the

nonlinear operator, which is connected with a linear time invariant plant in a negative feedback loop, satisfies

other constraints in its input and output behavior, then conservatism can be further reduced. Future work

should be to investigate more general forms of constraints on the nonlinearities, such as ellipsoidal constraints

that contain linear and constant terms, and how these constraints can be imposed into the LMI to imply

negative definiteness of the time-difference Lyapunov function. Numerical algorithms could be developed

to consider rank conditions or reduced forms for the LMIs or methods to exploit structure within the LMI.

The numerical examples are consistent with theory that indicates that the sufficient conditions are less

conservative than the the other criteria in literature. The chapter also briefly presented sufficient conditions

for state and input-output performance. Since the new sufficient conditions for stability and performance

of Lur’e problem and its variants have more degrees of freedom in the LMI feasibility and optimization

problems, the conditions can be considered as supersets of the other conditions reported in the literature.

59



Chapter 3

Controller Synthesis Problems for
Lur’e Systems

A popular representation in robust control design is the linear fractional transformation (LFT), which

involves the interconnection of a nominal plant G, a controller K and an uncertainty ∆. Much of the robust

control literature considers analysis and controller synthesis for problems in which the nominal plant G is

linear time-invariant and the perturbations on the nominal plant are norm-bounded (either assumed to be

linear or nonlinear). Given the nominal plant G, the robust control problem is to design a controller K

that guarantees closed-loop stability and some specified performance in the presence of the perturbations

∆ belonging to a predetermined family of uncertainties Φ∆. The controller optimization is usually for the

worst-case or expected value for the performance objective.

Within the worst-case robust control literature, most of the literature assumes very little about the

perturbations other than being norm-bounded. This is not much of a limitation for linear time-invariant

perturbations, as the dynamic effect of the perturbations on the nominal plant can be shaped by using transfer

function weights. On the other hand, for nonlinear perturbations, there is usually a lot of information is

available that is not readily described by transfer function weights. For such systems, constraining the

nonlinear perturbations using only bounds on their norm can be very conservative.

This chapter considers systems described in terms of the standard nonlinear operator form (SNOF),

which is very similar to the LFT. The results of this section are very closely related to standard results in

the robust control literature, but presented in a manner that can be easily extended for more specific classes

of nonlinear operators that correspond to perturbations. These extensions are treated in Chapters 4 and ??.

This chapter has two objectives. The first objective is to derive LMI feasibility problems for the analysis

of a general description of Lur’e systems. The second objective is to formulate optimization problems

for controller design and to suggest numerical methods to solve these problems. The proposed feasibility

and optimization problems provide only sufficient conditions for quadratic stability, due to use of the S-

procedure. The optimization procedures generate control laws that simultaneously stabilize the overall

system and maximize bounds on the nonlinear perturbations.
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3.1 Introduction

Consider the nonlinear discrete-time system

x(k + 1) = f(x(k)) + g(k, x(k)) (3.1)

where x(k) ∈ X ⊆ Rn is the state at time k ∈ Z+, f : X → Rn is a time-invariant nominal part of the

system and g : Z+ ×D → Rn is a nonlinear time-varying perturbation function. Suppose that f(x) is twice

continuously differentiable. Equation (3.1) can be represented as

x(k + 1) = Ax(k) +

[
f(x(k))− ∂f

∂x
(0)x(k)

]
+ g(k, x(k)) (3.2)

= Ax(k) + f̃(x(k)) + g(k, x(k)) (3.3)

= Ax(k) +Bpϕ(k, x(k)) (3.4)

where

f̃(x(k)) = f(x(k))− ∂f

∂x
(0)x(k) (3.5)

is twice continuously differentiable and

f̃(0) = 0;
∂f̃

∂x
(0) = 0. (3.6)

The nonlinear function ϕ(k, x(k)) is assumed to be uncertain and satisfy the quadratic inequality for all

(k, x(k)) ∈ Z+ ×D

ϕT (k, x(k))ϕ(k, x(k)) ≤ α2xTCT
q Cqx, (3.7)

which can be written as x
ϕ


T −α2CT

q Cq 0

0 I


x
ϕ

 ≤ 0 (3.8)

where α > 0 is the bounding parameter on the uncertain perturbation function ϕ, and Cq is a constant

matrix with the compatible dimension. Suppose the nominal system has a uniformly asymptotically stable

equilibrium point at the origin. The natural approach to address the stability condition is to use a Lyapunov

function for the nominal system as a Lyapunov function candidate for the perturbed system. As a matter

of fact, the conclusions we can arrive at depend critically on whether the perturbation term vanishes at the

origin. If ϕ(k, 0) = 0 for all k ∈ Z+ then the perturbed system has an equilibrium point at the origin. In
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this case, we analyze the stability behavior of the origin as an equilibrium point of the perturbed system. If

ϕ(k, 0) ̸= 0 for some k ∈ Z+ then the origin will not be an equilibrium point of the perturbed system. In

this case, we study ultimate boundedness of the solutions of the perturbed system. We note that for any

given Cq, the inequality (3.7) defines a set of functions

Φ̄α
sb ≜ {ϕ : Z+ × Rn → Rn |ϕTϕ ≤ α2xTCT

q Cqx, for all (k, x) ∈ Z+ × Rn} (3.9)

Since the class Φ̄α
sb is a subset of the set of vanishing perturbations we can analyze the stability of the system

around the origin as an equilibrium point of the perturbed system. By introducing the following definition

of robust stability we have a tool for measuring the degree of stability of a system.

Definition 9. System (4) is robustly stable with degree α if the equilibrium x = 0 is globally asymptotically

stable for all ϕ(k, x(k)) ∈ Φ̄α
sb.

Let us consider a quadratic Lyapunov function

V (x) = xTPx (3.10)

with a symmetric positive definite matrix P denoted P > 0. By computing the time difference of the

Lyapunov function, a sufficient condition for stability is

∆V (xk) = V (xk+1)− V (xk) (3.11)

= xT
k (A

TPA− P )xk + xT
kA

TPBpϕk + ϕT
kB

T
p PAxk + ϕT

kB
T
p PBpϕk (3.12)

=

xk

ϕk


T ATPA− P ATPBp

BT
p PA BT

p PBp


xk

ϕk

 < 0. (3.13)

Using the S-procedure, the inequality (3.13) with the quadratic constraint (3.7) can be rewritten as:

ATPA− P + τα2CT
q Cq ATPBp

BT
p PA BT

p PBp − τI

 < 0, (3.14)

P > 0, (3.15)

τ ≥ 0. (3.16)

Recalling that the minimization under non-strict LMI constraints produces the same result as minimiza-
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tion under strict LMI constraints when both strict and non-strict LMI constraints are feasible, replacing

τ ≥ 0 by τ > 0 allows the optimization problem to be rewritten in the equivalent form:

AT P̃A− P̃ + α2CT
q Cq AT P̃Bp

BT
p P̃A BT

p P̃Bp − I

 < 0, P̃ > 0, (3.17)

where P̃ = 1
τ P . Now apply the Schur complement lemma to obtain the equivalent LMI:



−P 0 ATP CT
q

0 −I BT
p P 0

PA PBp −P 0

Cq 0 0 −γI


< 0, P > 0, (3.18)

which is an LMI in P and γ ≜ 1/α2 and where P̃ in (3.17) is replaced by P without loss of generality. To

establish robust stability under constraint (3.7) with maximal α, propose the eigenvalue problem:

minimize γ (3.19)

subject to P > 0 (3.20)

−P 0 ATP CT
q

0 −I BT
p P 0

PA PBp −P 0

Cq 0 0 −γI


< 0 (3.21)

With Q = P−1, the LMI constraints (3.21) are also equivalent to the LMI condition



−Q 0 QAT QCT
q

0 −I BT
p 0

AQ Bp −Q 0

CqQ 0 0 −γI


< 0. (3.22)

To derive a feasibility problem for the sufficient condition for stability of the closed-loop system, consider

the more general class of nonlinear functions: ϕ ∈ Φ
|α|
sb . This component-wise nonlinear mapping satisfies
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the inequality  x

ϕi


T −α2

iC
T
q,iCq,i 0

0 1


 x

ϕi

 ≤ 0 (3.23)

where the subscript i indicates the ith row of a matrix.

Proposition 8. (Sufficient condition for the stability of Lur’e system with ϕ ∈ Φ
|α|
sb ) Consider the system

of the form (3.4) with the memoryless nonlinear mapping ϕ ∈ Φ
|α|
sb which is continuous almost everywhere.

A sufficient condition for global asymptotic stabiltiy is the existence of a positive definite matrix Q = QT

and diagonal positive definite matrix T such that the following LMI is feasible:



−Q 0 QAT QCT
q

0 −T TBT
p 0

AQ BpT −Q 0

CqQ 0 0 −SαT


< 0, (3.24)

where Sα = diag{1/α2
1, · · · , 1/α2

np
}.

Proof: To apply the S-procedure, let us consider the sector condition given by (3.23) and rewrite it as

np∑
i=1

τi(3.23) =

x
ϕ


T −CT

q,iSαTCq,i 0

0 T


︸ ︷︷ ︸

U1

x
ϕ

 ≤ 0. (3.25)

Now, the matrix inequality G ≜ ∆V (xk)− U1 yields

ATPA− P̃ + CT
q SαTCq ATPBp

BT
p PA BT

p PBp − T

 < 0, (3.26)

where P = PT > 0 and T > 0 is diagonal. When applying the Schur complement lemma, we have



−P 0 ATP CT
q T

0 −T BT
p P 0

PA PBp −P 0

TCq 0 0 −SαT


< 0 (3.27)
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and equivalently 

−Q 0 QAT QCT
q

0 −T−1 T−1BT
p 0

AQ BpT
−1 −Q 0

CqQ 0 0 −SαT
−1


< 0. (3.28)

Now, replacing T−1 by T we have the inequality (3.24). □

Similar to the discrete-time system, let us consider the continuous-time system

ẋ(t) = Ax(t) +Bpϕ(t, x(t)) (3.29)

where x(t) ∈ X ⊆ Rn is the state at time t ∈ R+ and ϕ : R+ × X → Rn is a time-varying perturbation

function. It is assumed that the nonlinearity ϕ(t, x(t)) is a piecewise continuous function in both t and x in

the right-hand side of (3.29). Consider a quadratic Lyapunov function

V (x) = xTPx (3.30)

with a symmetric positive-definite matrix P denoted P > 0 and the sector-bounded nonlinear function

ϕ ∈ Φ̄α
sb. By computing the time derivative of the Lyapunov function (3.30), a sufficient condition for

stability is

V̇ (x) = xT (ATP + PA)x+ ϕTBT
p Px+ xTPBpϕ (3.31)

=

x
ϕ


T ATP + PA PBp

BT
p P 0


x
ϕ

 < 0. (3.32)

Using the S-procedure, the inequality (3.32) with the quadratic constraint (3.7) can be rewritten as:

ATP + PA+ τα2CT
q Cq PBp

BT
p P −τI

 < 0, (3.33)

P > 0, (3.34)

τ ≥ 0. (3.35)
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This is further equivalent to the existence of a matrix Q so that

Q > 0, (3.36)AQ+QAT + α2QCT
q CqQ Bp

BT
p −I

 < 0 (3.37)

where Q = τP−1 and τ > 0 without loss of generality.

From the Schur complement formula, (3.36) and (3.37) can be rewritten as

Q > 0, (3.38)
AQ+QAT Bp QCT

q

BT
p −I 0

CqQ 0 −γI

 < 0 (3.39)

where γ = 1/α2. Robust stability under constraint (3.7) with maximal α is established for the eigenvalue

problem:

minimize γ (3.40)

subject to Q > 0, (3.41)
AQ+QAT Bp QCT

q

BT
p −I 0

CqQ 0 −γI

 < 0. (3.42)

To derive a feasibility problem for the sufficient condition for the stability of the closed-loop system,

consider the more general class of nonlinear functions ϕ ∈ Φ
|α|
sb defined in (3.23).

Proposition 9. (Sufficient condition for the stability of Lur’e system with ϕ ∈ Φ
|α|
sb ) Consider the system

of the form (3.29) with the memoryless nonlinear mapping ϕ ∈ Φ
|α|
sb that is continuous almost everywhere.

A sufficient condition for global asymptotic stabiltiy is the existence of a positive definite matrix Q = QT

and diagonal positive definite matrix T such that the LMI


AQ+QAT BpT QCT

q

TBT
p −T 0

CqQ 0 −SαT

 < 0, (3.43)
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is feasible, where Sα = diag{1/α2
1, · · · , 1/α2

np
}.

Proof: Similar to the discrete-time case, the matrix inequality G ≜ V̇ (x(t))− U1 yields

ATP + PA+ CT
q SαTCq PBp

BT
p P −T

 < 0, (3.44)

where P = PT > 0 and T > 0 is diagonal. Applying the Schur complement lemma and taking a congruence

transformation results in 
AQ+QAT BpT

−1 QCT
q

T−1BT
p −T−1 0

CqQ 0 −SαT
−1

 < 0, (3.45)

Replacing T−1 by T gives the inequality (3.43). □

3.2 State-Feedback Control via LMI Optimization

3.2.1 Continuous-Time Lur’e Systems

To introduce a stabilizing state feedback controller to the system (3.29) such that closed-loop stability

is achieved is a feasibility problem and its maximum tolerance to the uncertain nonlinear perturbations is

achieved in an optimization problem, let us consider the system with affine control input described by

ẋ(t) = Ax(t) +Buu(t) +Bpϕ(t, x(t)) (3.46)

= (A+BuK)x(t) +Bpϕ(t, x(t)) (3.47)

where Bu ∈ Rn×nu is a constant matrix, u : Rn → Rnu is the linear feedback control law

u(t) = Kx(t) (3.48)

and K ∈ Rnu×n is a control gain matrix. That is, it is assumed that full information about the system states

are available–even through this assumption is not generally true in practical cases it gives a tool for potential

extensions of its developments. It can be further assumed that the pair (A,Bu) is controllable or at least

stabilizable. Now, let us consider the optimization problem in which the control objective is to achieve the

maximum sector-bounds of the nonlinear function ϕ ∈ Φ̄α
sb such that the closed-loop system is stable.

67



Theorem 22. Using quadratic function V (x) and computing its derivative V̇ (x), the design of the state

feedback controller u(t) = u(t) = Kx(t) that maximizes the quadratic robust stability margin α of the closed-

loop system (3.47) can be formulated as the EVP:

minimize γ (3.49)

subject to Q > 0 (3.50)
AQ+QAT +BuL+ LTBT

u Bp QCT
q

BT
p −I 0

CqQ 0 −γI

 < 0 (3.51)

where γ = 1/α2 and L = KQ such that K = LQ−1.

Proof: Replacing the system matrix A by A+BuK in (3.42) and defining L ≜ KQ, we have the inequality

(3.51) for Q and L. □

In addition, let us consider a sufficient condition for the stability of the closed-loop system (3.47) for a

general Lur’e system with the nonlinear function perturbation ϕ ∈ Φ
|α|
sb where the component-wise sector

condition is assumed to be known.

Theorem 23. Using quadratic function V (x) and computing its derivative V̇ (x), a sufficient condition for

the stability of the closed-loop system (3.47) with known sector condition Sα can be formulated as a feasibility

problem for Q = QT > 0 and T > 0:


AQ+QAT +BuL+ LTBT

u BpT QCT
q

TBT
p −T 0

CqQ 0 −SαT

 < 0, (3.52)

where Sα = diag{1/α2
1, · · · , 1/α2

np
} and L = KQ such that K = LQ−1.

Proof: The proof is trivial from the previous theorem. □

3.2.2 Discrete-Time Lur’e Systems

In order to apply the stabilizing state feedback to the perturbed system, and to solve a problem using

convex programming tools for LMIs, we consider the system with a control affine term

x(k + 1) = Ax(k) +Buu(k) +Bpϕ(k, x(k)) (3.53)
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where x(k) ∈ Rn is the state variable and u(k) ∈ Rm is the control input at sampling time k ∈ Z+.

A ∈ Rn×n and Bu ∈ Rn×m are constant matrices. It can be further assumed that the pair (A,Bu) is

controllable. Considering the linear state feedback control law

u(k) = Kx(k) (3.54)

where K is a control gain matrix of the compatible dimensions. Applying the feedback control law (3.54) to

the system (3.53) results in the closed-loop system:

x(k + 1) = Aux(k) +Bpϕ(k, x(k)) (3.55)

where

Au ≜ A+BuK

is the closed-loop system matrix. The system (3.53) is robustly stabilized by the state feedback control law

(3.54) if the closed-loop system (3.55) is robustly stable with degree α.

Theorem 24. Using quadratic function V (xk) and computing its derivative ∆V (xk), The design of the state

feedback controller that maximizes the quadratic robust stability margin α of the closed-loop system (3.53)

can be formulated as the eigenvalue problem (EVP):

minimize γ (3.56)

subject to Q > 0, (3.57)

−Q 0 QAT + LTBT
u QCT

q

0 −I BT
p 0

AQ+BuL Bp −Q 0

CqQ 0 0 −γI


< 0 (3.58)

where γ = 1
α2 and L = KQ such that K = LQ−1.

Proof: Replacing the system matrix A by A+BuK in (3.42) and defining L ≜ KQ, we have the inequality

(3.71) for Q and L. □

In addition, let us consider a sufficient condition for the stability of the closed-loop system (3.55) for a

general Lur’e system with the nonlinear function perturbation ϕ ∈ Φ
|α|
sb where the component-wise section

condition is assumed to be known.
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Theorem 25. Using quadratic function V (xk) and computing its derivative ∆V (xk), a sufficient condition

for the stability of the closed-loop system (3.55) with known section condition Sα can be formulated as a

feasibility problem for Q = QT > 0 and T > 0:



−Q 0 QAT + LTBT
u QCT

q

0 −T TBT
p 0

AQ+BuL BpT −Q 0

CqQ 0 0 −SαT


< 0, (3.59)

where Sα = diag{1/α2
1, · · · , 1/α2

np
} and L = KQ such that K = LQ−1.

Proof: The proof is trivial from the previous theorem. □

3.2.3 Illustrative Examples

We consider some numerical examples to show the applicability of the previously defined LMI synthesis

problems for a certain case of Lur’e systems where the feedback connected nonlinear mapping is classified

as ϕ ∈ Φ̄α
sb or ϕ ∈ Φ

|α|
sb .

Example 1. (Optimal state-feedback control for the system (3.53) with ϕ ∈ Φ̄α
sb) Consider the system (3.53)

whose state space realization is given by

A =



0.8000 −0.2500 0 1.0000

1.0000 0 0 0

0 0 0.2000 0.3000

0 0 1.0000 0


, Bu =



1

0

0

0


, Bp =



0

0

1

0


, Cq =

[
0.8000 −0.5000 0 1.0000

]
.

Let us consider the optimization problem where the control objective is to maximize the upper bound α on

the sector condition such that the closed-loop system (3.53) is stabilized by the state-feedback control law

u(k) = Kx(k). Then, the optimal solution for Q∗ and K∗ of the EVP in Theorem 24 is obtained as

Q∗ =



8.3243 6.8006 −0.8894 −3.2592

6.8006 10.5381 −0.9147 −0.1714

−0.8894 −0.9147 1.8296 0.2542

−3.2592 −0.1714 0.2542 2.5216


, K∗ =

[
0.1568 0.0426 −1.2500 −0.5852

]
,
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such that the maximum upper sector bound is given as α∗ = 2.4601 × 104. The simulation below is for the

system (3.53) with ϕ(·) = α∗ tanh(·).
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Figure 3.1: Trajectory of solution for the closed-loop
system
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Figure 3.2: State-feedback control law u(k) = Kx(k)

Example 2. (Feasible state-feedback control for the system (3.53) with ϕ ∈ Φ
|α|
sb ) Consider the system (3.53)

whose state space realization is given by

A =


0.0469 −0.3992 −0.0835

0.3902 −0.5363 −0.2744

0.4378 −1.3576 0.4651

 , Bu =


1 0

0 1

0 1

 , Bp =


−0.5673 −0.2785

0.1155 −0.0649

−2.1849 −0.5976

 ,

Cq =

 0.3587 −1.0802 −0.6802

−1.3833 −1.0677 1.1497

 .

Let us consider the optimization problem where the objective is to design a state-feedback control law u(k) =

Kx(k) that stabilizes the closed-loop system (3.53) where ϕ ∈ Φ
|α|
sb with α = [0.1, 0.2]T . Then, a solution for

Q and K of the EVP in Theorem 25 is obtained as

Q =


0.6089 −0.1635 0.5807

−0.1635 0.0439 −0.1560

0.5807 −0.1560 0.5539

 , K =

−0.1361 −0.5379 0.7482

−0.4108 0.4270 0.0410

 .

The simulation below is for the system (3.53) with ϕ(·) = α tanh(·).
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3.3 Observer-Based State-Feedback Control via LMI

Optimization

In the previous section, it has been assumed that all state variables of the system are available for feedback.

However, only part of the state variables are measurable or measured for feedback control in practice. In

such a case, to apply state-feedback control, one needs to construct a scheme to estimate the actual state

based on the available outputs, which is called an (closed) state observer (or estimator), so that the output

from the observer would give an estimate for the states of the system. Our objective, therefore, is to design a

state observer where the estimated state x̂ converges to the true state variable x such that the state-feedback

control with the estimated states, u(k) = Kx̂(k), stabilizes the actual system which is a special class of Lur’e

systems with the feedback connected nonlinear mapping ϕ ∈ Φ̄α
sb ∩ Φ̄µ

sr.

3.3.1 Discrete-Time Lur’e Systems

The system dynamics for the plant is given by

x(k + 1) = Ax(k)−Bpϕ(q(k))

y(k) = Cyx(k)

q(k) = Cqx(k).

(3.60)
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Figure 3.5: Observer-Based State-Feedback Control Figure 3.6: Error Dynamics
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Consider the following estimator which is introduced in [11]:

x̂(k + 1) = Ax̂(k) + L1(ŷ − y)−Bpϕ(q̂(k) + L2(ŷ − y))

ŷ(k) = Cyx̂(k)

q̂(k) = Cqx̂(k).

(3.61)

Then, the estimation error dynamics with the estimation error e ≜ x− x̂ becomes

e(k + 1) = (A+ L1Cy)e(k)−Bpϕ̂(z(k); q(k))

z(k) = (Cq + L2Cy)e(k),
(3.62)

where ϕ̂(z(k); q(k)) ≜ ϕ(q(k)) − ϕ(q̂(k) + L2(ŷ − y)) and z(k) ≜ q(k) − q̂(k) − L2(ŷ − y). A block diagram

for the error dynamics is given in Figure 3.6. Now, the error dynamics can be considered as a special class

of Lur’e systems.

Corollary 2. The feedback connected nonlinear function ϕ̂ has the following properties:

1. for any q(k), ϕ̂ vanishes at z(k) ≡ 0, i.e., ϕ̂(0; q(k)) ≡ 0 for all q(k) ∈ Rnq ;

2. if ϕ ∈ Φ̄α
sb ∩ Φ̄µ

sr then ϕ̂ ∈ Φ̄µ
sb.

Proof: From the definition of ϕ̂ and z(k), proof for the first property is trivial. For the second property,

since ϕ ∈ Φ̄µ
sr one can derive

0 ≤ ϕ̂T (z(k); q(k))ϕ̂(z(k); q(k)) = ϕ(q(k))− ϕ(q(k)− z(k))Tϕ(q(k))− ϕ(q(k)− z(k)) ≤ µ2zT (k)z(k) (3.63)

for all z(k) ∈ Z ⊂ Rnq with any fixed q(k) ∈ Rnq for each sampling time k ∈ Z+. Therefore, ϕ̂ ∈ Φµ
sb in this

sense. □

Now, from the results of Section 3.1, a sufficient condition for the asymptotic stability of the error

dynamics can be written as the following LMIs:

P > 0, (3.64)

−P 0 ATP + CT
y Y

T
1 CT

q + CT
y L

T
2

0 −I −BT
p P 0

PA+ Y1Cy −PBp −P 0

Cq + L2Cy 0 0 − 1
µ2 I


< 0, (3.65)
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where Y1 = PL1.

Theorem 26. (Maximization of the decay-rate of the estimation error dynamics) If the condition ∆V (x(k)) <

−(1− λ)V (x(k)) for all trajectories of the solution in the estimation error dynamics, then the largest lower

bound on the decay rate is found by solving a general eigenvalue problem (GEVP) in decision variables P ,

Y1, L2, and λ for a fixed value of µ:

minimize λ (3.66)

subject to P > 0, (3.67)

−λP 0 ATP + CT
y Y

T
1 CT

q + CT
y L

T
2

0 −I −BT
p P 0

PA+ Y1Cy −PBp −P 0

Cq + L2Cy 0 0 − 1
µ2 I


< 0, (3.68)

where Y1 = PL1 such that L1 = P−1Y1. One can easily see that the smaller value of λ such that λ ∈ (0, 1],

the faster rate of convergence.

Proof: The proof follows from the inequality (3.65) and λ ≡ 1 corresponds the asymptotic stability of the

error dynamics. □

Proposition 10. (Design process for observer-based state-feedback controller)

• Step 1: To determine the control gain Ks, which guarantees the optimal robust stability of the limit-

ing dynamics of the discrete-time linear time-invariant system interconnected with a certain class of

perturbations ϕ ∈ Φ̄α
sb ∩ Φ̄µ

sr, solve the EVP

minimize γ (3.69)

subject to Q > 0, (3.70)

−Q 0 QAT + LTBT
u QCT

q

0 −I −BT
p 0

AQ+BuL −Bp −Q 0

CqQ 0 0 −γI


< 0 (3.71)

where γ = 1
α2 and L = KsQ such that Ks = LQ−1.

• Step 2: To determine the estimation gains L1 and L2, which maximize the decay-rate of the estimation
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error dynamics, solve the GEVP

minimize λ (3.72)

subject to P > 0, (3.73)

−λP 0 ATP + CT
y Y

T
1 CT

q + CT
y L

T
2

0 −I −BT
p P 0

PA+ Y1Cy −PBp −P 0

Cq + L2Cy 0 0 − 1
µ2 I


< 0, (3.74)

where Y1 = PL1 such that L1 = P−1Y1 and µ = α is the optimal solution of the problem in Step 1

provided that the upper bound on the slope is the same as the maximum sector bound. Moreover, µ ≥ α

in general.

Proof: Using the properties of the feedback connected nonlinear function in the error dynamics and from

controller synthesis problem for the so-called Lur’e systems, the proof is trivial. □

Now, instead of using the design process in Proposition 10 which consists of successive EVP and GEVP,

consider an EVP with a fixed decay-rate for the closed-loop system. Then, the closed-loop system with the

observer-based state-feedback becomesx(k + 1)

e(k + 1)

 =

A+BuKs BuKs

0 A+ L1Cy


︸ ︷︷ ︸

Acl

x(k)
e(k)

−

Bp 0

0 Bp


︸ ︷︷ ︸

Bp,cl

 ϕ(q(k))

ϕ̄(z(k); q(k))


︸ ︷︷ ︸

ϕcl

(3.75)

q(k)
z(k)

 =

Cq 0

0 Cq + L2Cy


︸ ︷︷ ︸

Cq,cl

x(k)
e(k)

 . (3.76)

Therefore, the stability of the closed-loop system which is the feedback interconnection of the system, whose

transfer function is Gcl(s) ≜ Ccl(sI − Acl)
−1Bcl and the feedback connected set-valued nonlinear function

is characterized by ϕcl ∈ Φ̄µ
sb, can be seen as the feasibility of the following matrix inequality for some
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Figure 3.7: Closed-Loop System with State Observer

X = XT > 0 provided α = µ:



−X 0 AT
clX CT

q,cl

0 −I −BT
p,clX 0

XAcl −XBp,cl −X 0

Cq,cl 0 0 − 1
µ2 I


< 0. (3.77)

We should note that this is not a convex optimization (or feasibility) problem since there are bilinear

product terms of decision matrix variables. The following theorem shows that the non-LMI condition (3.77)

reduces to two LMI conditions with a conservative Lyapunov matrix.

Proposition 11. (Design scheme for observer-based state-feedback controller) Let consider the diagonal

block Lyapunov matrix X = diag{X1, X2} = XT > 0. Then the BMI (3.77) is feasible for a diagonal

block Lyapunov matrix X, L1, Ks, and L2 if and only if the following two LMI conditions for Y1 ≜ X−1
1 ,

W1 ≜ KsX
−1
1 , X2, W2 ≜ X2L1, and L2:

B̄⊥
u Π(B̄⊥

u )T < 0 and (ĒT )⊥Π((ĒT )⊥)T < 0, (3.78)
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where

Π ≜



−Y1 0 0 0

Y1A
T+

WT
1 BT

u

 0 Y1C
T
q 0

0 −X2 0 0 0

ATX2+

CT
y W

T
2

 0

 CT
q +

CT
y L

T
2


0 0 −I 0 −BT

p 0 0 0

0 0 0 −I 0 −BT
p X2 0 0AY1+

BuW1

 0 −Bp 0 −Y1 0 0 0

0

X2A+

W2Cy

 0 −X2Bp 0 −X2 0 0

CqY1 0 0 0 0 0 − 1
µ2 I 0

0

Cq+

L2Cy

 0 0 0 0 0 − 1
µ2 I



,

and

B̄T
u ≜

[
0 0 0 0 BT

u 0 0 0

]
, Ē ≜

[
0 I 0 0 0 0 0 0

]
.

Proof: Let us take a congruence transformation to (3.77) with transformation matrix T = diag{Y1, I, I, I, Y1, I, I, I, I}.

Then we have the equivalent LMI condition

Π + B̄uKsĒ + ĒTKT
s B̄

T
u < 0.

From the Finsler’s lemma or the elimination lemma for an unstructured, unknown variable Ks, one can

conclude that the feasibility of the BMI (3.77) is equivalent to the feasibilities of two LMIs in (3.78). □

3.3.2 Illustrative Examples

We consider some numerical examples to show the applicability of the previously defined LMI synthesis

problems for a certain case of Lur’e systems where the feedback connected nonlinear mapping is classified

as ϕ ∈ Φ̄α
sb.

Example 3. (Design scheme for observer-based state-feedback controller in Proposition 10) Consider the
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system (3.60) whose state space realization is given by

A =



0 1.0000 0 0

−0.2703 −0.0124 0.2703 0

0 0 0 1.0000

0.1075 0 0.0743 0


, Bu =



0

0.0216

0

0


, Bp =



0 0

0.2703 0

0 0

−0.1075 0.0332


,

Cy =

1 0 0 0

0 1 0 0

 , Cq =

−1 0 1 0

0 0 1 0

 .

Let us consider the optimization problem where the control objective is to maximize the upper bound α on

the sector condition and to maximize the decay-rate of the error dynamics (3.62) such that the closed-loop

system (3.60) is stabilized by the control law u(k) = Kx̂(k). Then, the optimal solution for Q∗, P ∗, K∗
s , L

∗
1,

and L∗
2 of the successive EVP and GEVP in Proposition 10 is obtained as

Q∗ =



0.2988 0.0000 0.1476 0.0000

0.0000 0.2988 0.0000 0.1476

0.1476 0.0000 0.1509 0.0000

0.0000 0.1476 0.0000 0.1509


, P ∗ =



109.3211 0.0000 0.0000 0.0000

0.0000 55.8375 0.0000 126.2874

0.0000 0.0000 103.2043 0.0000

0.0000 126.2874 0.0000 348.8080


,

K∗
s =

[
18.8558 0.5750 −8.1083 0.0000

]
, L∗

1 =



0.0000 −1.0000

0.2703 0.0124

0.0000 0.3621

−0.1075 0.0000


, L∗

2 =

1.0000 0.0000

0.0000 0.0000

 ,

such that the maximum upper bound on the sector and slope for the nonlinear function ϕ is given as α∗ =

µ∗ = 2.5281 and the optimal decay rate λ∗ = 0.2959 is achieved. The simulation in Figure 3.8 and Figure

3.9 is for the system (3.60) with ϕ(·) = α∗ tanh(·).

Example 4. (Design scheme for observer-based state-feedback controller in Proposition 11) Consider the

system (3.60) whose state space realization is the same as in Example 3 Let us consider the problem where

the control objective is to maximize the upper bound α on the sector condition such that the closed-loop

system (3.60) is stabilized by the control law u(k) = Kx̂(k). Then, the optimal solution for X∗
1 , X

∗
2 , K

∗
s ,
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Figure 3.8: Trajectory of solution for the closed-loop
system and the error dynamics
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Figure 3.9: State-feedback control law u(k) = Ksx̂(k)
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Figure 3.10: Trajectory of solution for the closed-loop
system and the error dynamics
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Figure 3.11: State-feedback control law u(k) = Ksx̂(k)

L∗
1, and L∗

2 of the EVP in Proposition 11 is obtained as

X∗
1 =



6.4747 0.0000 −6.3332 0.0000

0.0000 6.4747 0.0000 −6.3332

−6.3332 0.0000 12.8220 0.0000

0.0000 −6.3332 0.0000 12.8220


, X∗

2 =



3.2485 −0.0000 0.0000 0.0000

0.0000 2.5393 0.0000 0.4391

0.0000 0.0000 13.6026 0.0000

0.0000 0.4391 0.0000 14.5500


,

K∗
s =

[
18.8558 0.5750 −8.1083 0.0000

]
, L∗

1 =



0.0000 −1.0000

0.2703 0.0124

0.0000 0.0301

−0.1075 0.0000


, L∗

2 =

1.0000 0.0000

0.0000 0.0000

 ,

such that the maximum upper bound on the sector and slope for the nonlinear function ϕ is given as α∗ =

µ∗ = 2.5281. The simulation in Figure 3.10 and Figure 3.11 is for the system (3.60) with ϕ(·) = α∗ tanh(·).
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3.4 Output-Feedback Control via LMI Optimization

While the state observer-based state-feedback control gives an easy way to handle the so-called measure-

ment deficiency problems in feedback control, it is generally not applicable in the presence of uncertainties,

especially with the unmodeled dynamics. For robustness purpose, the static output-feedback (SOF) and

dynamic output-feedback (DOF) control problems are among the most important classes of questions in

control context. Moreover, the state-feedback control problem is a special case of SOF problem with Cy ≡ I.

In this section, the main objectives are to suggest LMI conditions for the existence of a stabilizing SOF and

DOF control laws and to give a tool to design such controllers for a certain class of Lur’e systems which have

the nonlinear mapping characterized by ϕ ∈ Φ̄α
sb or ϕ ∈ Φ

|α|
sb as a feedback connection. The results obtained

in SOF control problems can be trivially extended for the so-called differentiator-free control model which

will be introduced in Section 3.4.3.

3.4.1 Static Output-Feedback Control via LMI Optimization

Let us consider the SOF control problems for a certain class of Lur’e systems which is given by

x(k + 1) = Ax(k) +Buu(k) +Bpϕ(q(k))

y(k) = Cyx(k)

q(k) = Cqx(k),

(3.79)

where the feedback connected nonlinear function ϕ(·) is known to be in a specific class Φ̄α
sb or Φ

|α|
sb . Fur-

thermore, the triplet realization (A,Bu,Cy) is assumed to be stabilizable and detectable without loss of

generality.

LMI Optimization Problems for Discrete-Time Lur’e Systems with ϕ ∈ Φ̄α
sb

Necessary and sufficient conditions for static output-feedback can be formulated in terms of coupled

Lyapunov matrix inequalities which follows a quadratic Lyapuonv function approach. From Lyapunov

stability theory, it has been known that the closed-loop linear time-invariant continuous-time system which

is given by

x(k + 1) = Ax(k) +Buu(k)

y(k) = Cyx(k)
(3.80)

is GUAS with an output-feedback control law u(t) = Koy(t) if and only if the matrix A + BuKoCy is

Hurwitz, or equivalently, there exists a gain matrix Ko such that the following matrix inequality holds for
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some X = XT > 0:

(A+BuKoCy)X +X(A+BuKoCy)
T < 0. (3.81)

We should note that in the LMI (3.81), there are bilinear terms which are composed of the multiplications

of the unknown (decision) matrices X and Ko and constant system matrices and so, to check the solvability

or feasibility of the LMI (3.81) is a non-convex problem and known to be NP-hard [41, 16] in general.

Lemma 11. (Coupled linear matrix inequality formulation [41]) There exists a stabilizing static output-

feedback control gain matrix Ko for X > 0 if and only if X satisfies the following two matrix inequalities:

B⊥
u (AX +XAT )(B⊥

u )T < 0, (3.82)

(CT
y )

⊥(ATY + Y A)((CT
y )

⊥)T < 0, (3.83)

where XY = Y X = I and (·)⊥ indicates a full rank matrix that is orthogonal to (·).

Proposition 12. (Parameterization of static output-feedback control gains [41]) All stabilizing static output

control gain matrices are parameterized by

Ko = −R−1BT
uXWCT

y (CyWCT
y )

−1 + S1/2Z(CyWCT
y )

−1/2, (3.84)

where

Ψ = X−1AT +AX−1 (3.85)

R−1 > B†
u[Ψ−Ψ(B⊥

u )T (B⊥
u Ψ(B⊥

u )T )−1B⊥
u Ψ](B†

u)
T (3.86)

W−1 = XBuR
−1BT

uX −XA−ATX (3.87)

S = R−1 −R−1BT
uXW [W−1 − CT

y (CyWCT
y )

−1Cy]
−1W−1XBuR

−1 > 0, (3.88)

in which X is any positive definite matrix satisfying two LMIs (3.82) and (3.83), and Z is any matrix with

||Z|| < 1. In addition, || · || can be any matrix norms and (·)† indicates the pseudo-inverse of (·). This control

gain parameterization is based on the solution of the Riccati equation for LQR problem. For more details,

see [41].

Finding X = XT > 0 (or Y = Y T > 0) which satisfies the two matrix inequalities (3.82) and (3.83)

is also a non-convex problem, since these are not convex in X (or Y ). Some alternative computational

methods based on iterative sequential solutions of the two LMI problems with respect to X and Y have been
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proposed to handle this non-convex problem, where the purpose of the feasibility problem to find a stabilizing

static output-feedback gain matrix Ko. However, those approaches do not guarantee the convergence of the

algorithms.

For a certain class of state-space representation used for describing the system, a sufficient LMI condition

for the original non-convex feasibility problem (3.176)(3.81) has been derived in [24].

Proposition 13. Let us consider a particular state-space representation for the system where the system

matrices A,Bu, Cy (Dyu ≡ 0) are given and Cy is full row rank. Then if there exist the matrices X,M,N

such that

AX +XAT +BuNCy + CT
y N

TBT
u < 0

X > 0 (3.89)

MCy = CyX

hold for some X,M,N , then a stabilizing static output-feedback control gain Ko is NM−1, i.e., the feedback

control signal

u(k) = NM−1y(k)

stabilizes the discrete-time linear time-invariant system whose realization is the triplet (A,Bu, Cy). In other

words, the existence of the matrices satisfying (3.89) is sufficient for the feasibility of (3.81) with the same

Lyapunov matrix X, where the quadratic Lyapunov function is V (ξ) = ξTXξ, and Ko = NM−1.

Proposition 14. Let us consider a particular state-space representation for the system where the system

matrices A,Bu, Cy (Dyu ≡ 0) are given and Bu is full column rank. Then if there exist the matrices Y,M,N

such that

Y A+ATY +BuNCy + CT
y N

TBT
u < 0

Y > 0 (3.90)

BuM = Y Bu

hold for some Y,M,N , then a stabilizing static output-feedback control gain Ko is M−1N , i.e., the feedback

control signal

u(k) = M−1Ny(k)

stabilizes the discrete-time linear time-invariant system whose realization is the triplet (A,Bu, Cy). In other
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words, the existence of the matrices satisfying (3.90) is sufficient for the feasibility of (3.81) with the same

Lyapunov matrix X, where the quadratic Lyapunov function is V (ξ) = ξTY ξ, and Ko = M−1N .

The proofs for the previous two propositions are given in [24], which requires simple linear algebra.

Replacing A by A + BuKoCy in the LMI constraint (3.22), the following optimization problem is con-

structed for a robust static output-feedback controller synthesis:

minimize γ (3.91)

subject to Q > 0, (3.92)

−Q 0 QAT +QCT
y K

T
o B

T
u QCT

q

0 −I BT
p 0

AQ+BuKoCyQ Bp −Q 0

CqQ 0 0 −γI


< 0. (3.93)

The LMI constraint (3.93) can be rewritten in the same form as (3.81):

(Ā+ B̄uKoC̄y)Q̄+ Q̄(Ā+ B̄uKoC̄y)
T < 0, (3.94)

where

Ā ≜



− 1
2I 0 0 0

0 −1
2I 0 0

A Bp −1
2I 0

Cq 0 0 −1
2γI


, B̄u ≜



0

0

Bu

0


, C̄y ≜

[
Cy 0 0 0

]
, (3.95)

Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


. (3.96)

Now, the next theorem follows Lemma 11.

Theorem 27. There exists a stabilizing static output-feedback control gain matrix Ko for linear time-

invariant discrete-time plant interconnected with a nonlinear mapping ϕ ∈ Φ̄α
sb with the upper sector bound
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α ≜ 1√
γ if and only if there exists Q = QT > 0 such that



I 0 0 0

0 I 0 0

0 0 B⊥
u 0

0 0 0 I





−Q 0 QAT QCT
q

0 −I BT
p 0

AQ Bp −Q 0

CqQ 0 0 −γI





I 0 0 0

0 I 0 0

0 0 (B⊥
u )T 0

0 0 0 I


< 0, (3.97)



(CT
y )

⊥ 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I





−P 0 ATP CT
q

0 −I BT
p P 0

PA PBp −P 0

Cq 0 0 −γI





((CT
y )

⊥)T 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


< 0, (3.98)

where PQ = QP = I.

From the results in Proposition 12, we can conclude the following theorem.

Theorem 28. All stabilizing static output-feedback control gain matrices Ko for linear time-invariant

discrete-time plant interconnected with a nonlinear mapping ϕ ∈ Φ̄α
sb with the upper sector bound α ≜ 1√

γ

are parameterized by

Ko = −R−1B̄T
u Q̄WC̄T

y (C̄yWC̄T
y )

−1 + S1/2Z(C̄yWC̄T
y )

−1/2, (3.99)

where

Ψ = Q̄−1ĀT + ĀQ̄−1 (3.100)

R−1 > B̄†
u[Ψ−Ψ(B̄⊥

u )T (B̄⊥
u Ψ(B̄⊥

u )T )−1B̄⊥
u Ψ](B̄†

u)
T (3.101)

W−1 = Q̄B̄uR
−1B̄T

u Q̄− Q̄Ā− ĀT Q̄ (3.102)

S = R−1 −R−1B̄T
u Q̄W [W−1 − C̄T

y (C̄yWC̄T
y )

−1C̄y]
−1W−1Q̄B̄uR

−1 > 0, (3.103)

in which X is any positive definite matrix satisfying two LMIs (3.97) and (3.98), and Z is any matrix with

||Z|| < 1. In addition, || · || can be any matrix norm and (·)† indicates the pseudo-inverse of (·).

For a certain class of state-space representation used for describing the system, a sufficient LMI condition

for the original non-convex feasibility problem (4.20) can be derived and a suboptimal robust static output-

feedback controller synthesis also can be constructed.
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Theorem 29. Let us consider a particular state-space representation for the system where the system matri-

ces A,Bu, Cy (Dyu ≡ 0) are given and Cy is full row rank which implies that C̄y is also full row rank. Then

the following convex optimization problem gives a tool for designing a robust static output-feedback controller

to maximize the robustness of the system under a certain class of perturbation (or uncertainty) ϕ ∈ Φα
sb:

minimize γ (3.104)

subject to Q > 0, (3.105)

ĀQ̄+ Q̄ĀT + B̄uNC̄y + C̄T
y N

T B̄T
u < 0, (3.106)

where Ā, B̄u, C̄y are the ones defined earlier and γ = 1
α2 . Moreover, a static output-feedback control gain

Ko is given by NM−1 with the full rank matrix M satisfying MC̄y = C̄yQ̄, or equivalently MCy = CyQ.

Therefore, the static output-feedback control signal

u(k) = NM−1y(t)

stabilizes the system (3.79) with the degree of robustness α∗ = 1√
γ∗ where γ∗ indicates the optimal solution

of the above optimization problem.

Theorem 30. Let us consider a particular state-space representation for the system where the system ma-

trices A,Bu, Cy (Dyu ≡ 0) are given and Bu is full column rank which implies that B̄u is also full row rank.

Then the following convex optimization problem gives a tool for designing a robust static output-feedback

controller to maximize the robustness of the system under a certain class of perturbation (or uncertainty)

ϕ ∈ Φα
sb:

minimize γ (3.107)

subject to P > 0, (3.108)

P̄ Ā+ ĀT P̄ + B̄uNC̄y + C̄T
y N

T B̄T
u < 0, (3.109)

where P̄ = diag{P, I, P, I} and Ā, B̄u, C̄y are the ones defined earlier, and γ = 1
α2 . Moreover, a static

output-feedback control gain Ko is given by M−1N with the full rank matrix M satisfying B̄uM = P̄ B̄u, or

equivalently BuM = PBu. Therefore, the static output-feedback control signal

u(k) = M−1Ny(t)
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stabilizes the system (3.79) with the degree of robustness α∗ = 1√
γ∗ where γ∗ indicates the optimal solution

of the above optimization problem.

LMI Optimization Problems for Discrete-Time Lur’e Systems with ϕ ∈ Φ
|α|
sb

All of the results in the previous section can be reformulated for the Lur’e system whose feedback

interconnected nonlinear function is a more general class of sector conditions, ϕ ∈ Φ
|α|
sb , which is supposed

to be defined in componentwise mapping sense. Replacing A by A+BuKoCy in the LMI constraint (3.24),

the following feasibility problem is constructed for a static output-feedback controller synthesis: there exist

a positive definite matrix Q = QT > 0, a positive definite and diagonal matrix T , and Ko such that



−Q 0 QAT +QCT
y K

T
o B

T
u QCT

q

0 −T TBT
p 0

AQ+BuKoCyQ BpT −Q 0

CqQ 0 0 −SαT


< 0. (3.110)

The LMI constraint (3.110) can be rewritten in the same form as (3.81):

(Ā+ B̄uKoC̄y)Q̄+ Q̄(Ā+ B̄uKoC̄y)
T < 0, (3.111)

where

Ā ≜



− 1
2I 0 0 0

0 −1
2I 0 0

A Bp − 1
2I 0

Cq 0 0 −1
2Sα


, B̄u ≜



0

0

Bu

0


, C̄y ≜

[
Cy 0 0 0

]
, (3.112)

Q̄ ≜



Q 0 0 0

0 T 0 0

0 0 Q 0

0 0 0 T


. (3.113)

With these definitions for Ā, B̄, C̄, and Q̄, all of the LMI conditions for the Lur’e systems with its

feedback connected nonlinear function ϕ ∈ Φ̄α
sb can be applied to the stability of the Lur’e systems with its

feedback connected nonlinear function ϕ ∈ Φ
|α|
sb . The detailed algebraic computations and derivations of the

LMIs are left for the readers to derive.
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Figure 3.12: LFT representation for DOF Control Figure 3.13: LFT representation for Equivalent SOF
Control

3.4.2 Extension for Dynamic Output-Feedback Control

For the case where the order of the dynamic output-feedback controller is less than or equal to the order

of the nominal system, i.e., nK ≤ n, the design problem for such DOF controls can be reformulated as

an equivalent SOF problem. Let us consider a state space realization of the dynamical output-feedback

controller given by

xK(k + 1) = AKxK(k) +BKy(k)

u(k) = CKxK(k) +DKy(k),
(3.114)

and whose transfer function K(z) = CK(zI−AK)−1BK+DK . Then an augmented closed-loop Lur’e system

with the output feedback control law given by

u(z) = K(z)y(z), (3.115)
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where u(z) and y(z) are the z-transformations of u(k) and y(k), respectively, becomes

x̄(k + 1) = Āx̄(k) + B̄uu(k) + B̄pϕ(k, x(k))

ȳ(k) = C̄yx̄(k),
(3.116)

where the output-feedback control law is given as

u(k) = Kdof ȳ(k), (3.117)

where

Kdof ≜

DK CK

BK AK


and

x̄ ≜

 x

xK

 , ȳ ≜

 y

xK

 , Ā ≜

A 0

0 0

 , B̄u ≜

Bu 0

0 I

 , B̄p ≜

Bp

0

 , C̄y ≜

Cy 0

0 I

 , C̄q ≜
[
Cq 0

]
.

(3.118)

Therefore, all of the results for SOF control problems can be extended for DOF control problems when

nK ≤ n with transformed state space realization,

Ḡ(z) ≜


Ā B̄u B̄p

C̄y 0 0

C̄q 0 0

 .

3.4.3 Static Output-Feedback Control Based on Differentiator-Free Control

Model

In the adaptive output-feedback control literature [78], it is well known that there exists k∗ such that the

transfer function of the plant

yp(s) = WP (s)u(s) = kp
Dp(s)

Np(s)
u(s) (3.119)
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together with a so-called differentiator-free controller of ideal adaptive and control parameters, which is

given by

ζ1(k + 1) = Fζ1(k) + gu(k); ζ1(0) = 0, ζ2(k + 1) = Fζ2(k) + gyp(k); ζ2(0) = 0

u(k) = Ko,fζ(k); ζ(k) ≜
[
yp(k) ζT1 (k) ζT2 (k)

]T
and Ko,f ≜

[
Ko K1 K2

] (3.120)

matches the reference model

ym(s) = Wm(s)r(s) = km
Dm(s)

Nm(s)
r(s). (3.121)

For a stabilizing controller design, the reference input r(t) is a constant, the origin, and the ideal control

gain k∗r becomes the unit. Motivated by this output-feedback control structure, our control objective is to

find a constant control gain vector k =
[
ko kT1 kT2

]T
such that the origin of the closed-loop system with the

output-feedback controller u(t) = kT ζ(t) is globally asymptotically stable.

Augmented Controller Synthesis for Discrete-Time Systems

Introducing the differentiator-free control model is promising for the controller synthesis problem to

optimize the performance of the closed-loop system. Let us consider the following nominal system dynamics

x(k + 1) = Ax(k) +Buu(k)

y(k) = Cyx(k)
(3.122)

with a differentiator-free control model given by

ζ1(k + 1) = Fζ1(k) + gu(k); ζ1(0) = 0 (3.123)

ζ2(k + 1) = Fζ2(k) + gyp(k); ζ2(0) = 0 (3.124)

ζ(k) ≜
[
yp(k) ζT1 (k) ζT2 (k)

]T
(3.125)

Ko,f ≜
[
Ko K1 K2

]
(3.126)

u(k) = Ko,fζ(k), (3.127)

where ζ1, ζ2 ∈ Rn−1 and the realization (F, g) is the minimal state-space realization of ς(z)
Λ(z) with the Schur

polynomial Λ(z) = zn−1 + λn−2z
n−2 + · · ·+ λ1z + λ0 = det(zI − F ).

Comment 4. (Flexibility of the differentiator-free control model) For two pseudo state variables ζ1, ζ2 of

the differentiator-free control model, the same system matrices (F, g) are introduced. If different realizations
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are introduced for each pseudo dynamics, i.e.,

(sI − F1)
−1g1 =

ς1(z)

Λ1(z)
, (sI − F2)

−1g2 =
ς2(z)

Λ2(z)
(3.128)

then there is more flexibility in output-feedback controller design. However, for convenience, F = F1 = F2

and g = g1 = g2 are assumed in the remainder.

Now, the overall system can be represented by the following augmented system dynamics:

xf (k + 1) = Afxf (k) +Bu,fu(k)

yf (k) = Cfxf (k)

y(k) = Cy,fxf (k),

(3.129)

where

Af ≜


A 0 0

0 F 0

gCy 0 F

 , Bu,f ≜


Bu

g

0

 , Cf ≜


Cy 0 0

0 I 0

0 0 I

 , Cy,f ≜
[
Cy 0 0

]
. (3.130)

Proposition 15. (Controllability and Observability) The triplet realization (Af , Bu,f , Cy,f ) of the augmented

system (3.129) is controllable and/or observable if and only if the triplet realization (A,Bu, Cy) of the original

system (3.129) is controllable and/or observable.

Proof: The triplet realization (A,Bu) of a system is controllable if and only if

rank [A− λI Bu] = n ∀λ ∈ C

This controllability test is called Popov-Belevitch-Hautus (PBH) tests [54, 10]. It is easy to see that the

matrix

[Af − λI Bu,f ]

has full row rank for all λ ∈ C if and only if the matrix

[A− λI Bu]

does for all λ ∈ C. The proof for observability is the dual part of the proof for controllability. □
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Corollary 3. (Stability Analysis) The augmented system is stable if there exists Q = QT > 0 such that the

following matrix inequality holds:

AT
f Q

−1Af −Q−1 < 0. (3.131)

Further, the original system is stable if and only if the augmented system is stable.

Proof: The stability condition (3.131) is from the Lyapunov function V (ξ) = ξTQ−1ξ. Moreover, since the

eigenvalues of Af are the union of the eigenvectors of A and F , Af is Shur stable if and only if is A, provided

that F is also Schur. □

Stabilizing controller design: convex optimization (feasibility) problems

Lemma 12. (Stabilizing Static Output-Feedback Controller Synthesis) The static output-feedback control law

u(k) = Ko,fyf (k) (or u(k) = Ko,fζ(k)) stabilizes the system (3.122) if Ko,f satisfies the matrix inequality

(Af +Bu,fKo,fCf )
TQ−1(Af +Bu,fKo,fCf )−Q−1 < 0 (3.132)

for some Lyapunov matrix Q−1 > 0. Further, the matrix inequality (3.132) is equivalent with the following

inequality:  −Q Q(Af +Bu,fKo,fCf )
T

(Af +Bu,fKo,fCf )Q −Q

 < 0. (3.133)

Proof: The Lyapunov function V (ξ) = ξTQ−1ξ is considered to analyze the stability of the origin of the

system (3.129). Further, using the Schur complement lemma and congruence transformation one has the

equivalent matrix inequality in Ko,f and Q = QT > 0. □

Extensions to Lur’e Systems with the feedback interconnected nonlinear function ϕ ∈ Φ̄α
sb

Introducing the differentiator-free control model is promising for the controller synthesis problem to

optimize the performance of the closed-loop system. Consider the nominal system dynamics

x(k + 1) = Ax(k) +Bpϕ(k, x(k)) +Buu(k)

y(k) = Cyx(k)
(3.134)
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with a differentiator-free control model given by

ζ1(k + 1) = Fζ1(k) + gu(k) (3.135)

ζ2(k + 1) = Fζ2(k) + gyp(k) (3.136)

ζ(k) ≜
[
yp(k) ζT1 (k) ζT2 (k)

]T
(3.137)

Kf ≜
[
Ko K1 K2

]
(3.138)

u(k) = Kfζ(k). (3.139)

Now, the overall system can be represented by the following augmented system dynamics:

xf (k + 1) = Afxf (k) +Bp,fϕ(k, x(k)) +Bu,fu(k)

q(k) = Cq,fxf (k)

y(k) = Cy,fxf (k)

yf (k) = Cfxf (k),

(3.140)

where

Af ≜


A 0 0

0 F 0

gCy 0 F

 , Bp,f ≜


Bp

0

0

 , Bu,f ≜


Bu

g

0

 , Cq,f ≜
[
Cq 0 0

]
, Cy,f ≜

[
Cy 0 0

]
, Cf ≜


Cy 0 0

0 I 0

0 0 I

 .

(3.141)

Corollary 4. (Stability Analysis) The stability condition for the system (3.140) can be written as a feasibility

condition for a Lyapunov matrix Q−1 which is an eigenvalue problem:

Q = QT > 0,



−Q 0 QAT
f QCT

q,f

0 −I BT
p,f 0

AfQ Bp,f −Q 0

Cq,fQ 0 0 −γI


< 0, (3.142)

where γ ≜ 1/α2. As linear time-invariant systems, the original system is stable if and only if the augmented

system is stable.

Proof: The proof is nothing but an extension of the stability condition for the original Lur’e system (3.134)

to the augmented Lur’e system (3.140). □
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Stabilizing controller design: convex optimization (feasibility) problems

Since state-feedback control is a special case of static output-feedback control, we will only focus on finding

static output-feedback control law without loss of generality.

Lemma 13. (Stabilizing Static Output-Feedback Controller Synthesis) Replacing Af by Af + Bu,fKo,fCf

in the LMI constraint (3.142), if there exists a static output-feedback gain matrix Ko,f satisfying (3.142) for

some Q = QT > 0 then the closed-loop system is stabilized by that control law u(k) = Ko,fyf (k). The LMI

constraint can be rewritten in the canonical form for the static output-feedback control problem:

(Āf + B̄u,fKo,f C̄y,f )Q̄+ Q̄(Āf + B̄u,fKo,f C̄y,f )
T < 0, (3.143)

where

Āf ≜



−1
2I 0 0 0

0 − 1
2I 0 0

Af Bp,f −1
2I 0

Cq,f 0 0 − 1
2γI


, B̄u,f ≜



0

0

Bu,f

0


, C̄y,f ≜

[
Cf 0 0 0

]
, Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


.

(3.144)

Proof: The proof is nothing but an extension of the existence condition for a stabilizing static output-

feedback control law of the original Lur’e system (3.134) to the augmented Lur’e system (3.140). □

Remark 11. (Extensions to Lur’e Systems with the feedback interconnected nonlinear function ϕ ∈ Φ
|α|
sb )

The results for the Lur’e system with the feedback interconnected nonlinear function ϕ ∈ Φ̄α
sb can be triv-

ially extended to Lur’e Systems with the feedback interconnected nonlinear function ϕ ∈ Φ
|α|
sb . The detailed

algebraic computations and derivations of the LMIs are left for the readers to derive.

3.4.4 Dynamic Output-Feedback Control via LMI Optimization

Discrete-Time Lur’e Systems with ϕ ∈ Φ̄α
sb

The critical change of variables defined in the continuous-time cases [21] can be applied to the discrete-time

cases. The goal is to design a dynamical output-feedback controller

K(z) ≜ CK(zI −AK)−1BK +DK (3.145)
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that stabilizes the closed-loop system and is described by

xK(k + 1) = AKxK(k) +BKy(k)

u(k) = CKxK(k) +DKy(k).
(3.146)

Consider the nominal system

x(k + 1) = Ax(k) +Buu(k) +Bpϕ(k, x(k))

y(k) = Cyx(k),
(3.147)

where x(k) ∈ X ⊂ Rn is the state variable of the system at time k ∈ Z+ and ϕ : Z+ × X → Rn
p is a time

varying perturbation function. With the plant and controller defined above, the closed-loop system admits

the realization

x̄(k + 1) = Aclx̄(k) +Bclϕ̄(k, x̄(k)) (3.148)

where

x̄ ≜

 x

xK

 , Acl ≜

A+BuDKCy BuCK

BKCy AK

 , Bcl ≜

Bp

0

 , ϕ̄(k, x̄(k)) ≡ ϕ(k, x(k)) ∀k ∈ Z+. (3.149)

To establish robust stability under the constraint

x̄
ϕ̄


T −α2C̄T

q C̄q 0

0 I


x̄
ϕ̄

 ≤ 0 (3.150)

with maximal α, the following EVP is solved:

minimize γ (3.151)

subject to Q > 0 (3.152)

−Q 0 QAclT QC̄T
q

0 −I BT
cl 0

AclQ Bcl −Q 0

C̄qQ 0 0 −γI


< 0, (3.153)
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where α ≜ 1√
γ is the robust stability margin and

C̄q ≜
[
Cq 0

]
(3.154)

is a constant matrix with the compatible dimensions. Moreover, for any given C̄q, the inequality (3.150)

defines a class of piecewise continuous functions

Φ̄α
sb ≜ {ϕ : Z+ × Rn+nK → Rn+nK |ϕTϕ ≤ α2x̄T C̄T

q C̄qx̄, for all (t, x̄) ∈ Z+ × Rn+nK}. (3.155)

Recall that P ∈ R(n+nK)×(n+nK) is a symmetric matrix. Define the matricesX and Y as n×n submatrices

of P and P−1, by

P ≜

 Y N

NT ∗

 , P−1 ≜

 X M

MT ∗

 . (3.156)

From the definition of the inverse matrix, we infer

PΠ1 = Π2 with (3.157)

Π1 ≜

 X I

MT 0

 , Π2 ≜

I Y

0 NT

 . (3.158)

Define the change of controller variables introduced in [21]:

Â ≜ NAKMT +NBKCyX + Y BuCKMT + Y (A+BuDKCy)X (3.159)

B̂ ≜ NBK + Y BuDK (3.160)

Ĉ ≜ CKMT +DKCyX (3.161)

D̂ ≜ DK . (3.162)

Note that if M and N have full low rank and Â, B̂, Ĉ, D̂,X, Y are given, we can always compute controller

matrices AK , BK , CK , and DK . If M and N are square (nK = n) and invertible matrices, then AK , BK , CK ,

and DK are unique. For full-order design, we can assume that M and N have full row rank. Hence the

variables AK , BK , CK , and DK can be replaced by their one-to-one correspondences Â, B̂, Ĉ, and D̂ without

loss of generality. When performing a congruence transformation with diag(Π2, I,Π2, I) on the inequality
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(3.153), the following inequality is derived:



−ΠT
2 QΠ2 0 ΠT

2 QAT
clΠ2 ΠT

2 QC̄T
q

0 −I BT
p Π2 0

ΠT
2 AQΠ2 ΠT

2 Bp −ΠT
2 QΠ2 0

HQΠ2 0 0 −γI


< 0 (3.163)

which is equivalent to



−X −I 0 XAT + (BuĈ)T ÂT XCT
q

−I −Y 0 (A+BuD̂Cy)
T ATY + (B̂Cy)

T CT
q

0 0 −I BT
p BT

p Y 0

AX +BuĈ (A+BuD̂C) Bp −X −I 0

Â Y A+ (B̂Cy) Y Bp −I −Y 0

CqX Cq 0 0 0 −γI


< 0. (3.164)

The LMI (3.164) is clearly affine in Â, B̂, Ĉ, D̂,X, and Y . Thus we have proved that the solvability or

feasibility of this LMI is necessary for the existence of a robust stabilizing controller which resists the sector-

bounded (or norm-bounded), possibly time-varying, perturbations. Thus the design of the (dynamic) full-

order output feedback controller that maximizes the quadratic robust stability margin α of the closed-loop

system can be formulated as the EVP:

minimize γ (3.165)

subject to

X I

I Y

 > 0, (3.166)



−X −I 0 XAT + (BuĈ)T ÂT XCT
q

−I −Y 0 (A+BuD̂Cy)
T ATY + (B̂Cy)

T CT
q

0 0 −I BT
p BT

p Y 0

AX +BuĈ (A+BuD̂Cy) Bp −X −I 0

Â Y A+ (B̂Cy) Y Bp −I −Y 0

CqX Cq 0 0 0 −γI


< 0

(3.167)
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where since the requirement P > 0 must be satisfied, the constraint

X I

I Y

 > 0 (3.168)

should always be included in the list of synthesis LMIs, either explicitly or as part of some other LMI

constraints. After solving the synthesis optimization problem above, the controller construction proceeds as

follows: find nonsingular matrix M to satisfy

MNT = I −XY (3.169)

and define the controller by

DK = D̂

CK = (Ĉ −DKCyX)M−T

BK = N−1(B̂ − Y BuDK)

AK = N−1
(
Â−NBKCyX − Y BuCKMT − Y (A+BuDKCy)X

)
M−T .

(3.170)

This gives a formal description of all problems to which we can apply the controller parameter transfor-

mation in order to obtain the synthesis LMIs. Note that the necessity part of the proof does not restrict the

order of the controller and that the construction in the sufficiency part leads to a controller that is of the

same order as the plant.

3.4.5 Illustrative Examples

We consider some numerical examples to show the applicability of the previously defined LMI synthesis

problems for a certain case of Lur’e systems which is given as (3.79) where the feedback connected nonlinear

mapping is classified as ϕ ∈ Φ̄α
sb for the optimization problems previously formulated or ϕ ∈ Φ

|α|
sb for the

feasibility problems previously formulated.

Example 5. (Optimal SOF control for the system (3.79) with ϕ ∈ Φ̄α
sb) Consider the system (3.79) whose
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state space realization is given by

A =



0.9996 0.0000 0.0000 0.0000

0.0002 0.9998 0.0000 0.0000

0.0002 0.0000 0.9994 0.0000

0.0000 0.0000 0.0001 0.9999


, Bu =



0.0000

0.0200

0.0000

0.0200


, Bp =



0.0200

0.0000

0.0000

0.0000


,

Cy =

1.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000

 , Cq =

[
0 −0.0100 0 −0.0100

]
.

Let us consider the optimization problem where the control objective is to maximize the upper bound α on

the sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law

u(k) = Koy(k). Then, the optimal solutions K∗ for the optimization problems in Theorem 27, 29, and 30

are obtained as

Theorem 27 : K∗ =

[
−0.00554519341685 0.00288799826175

]
,

Theorem 28 : K∗ =

[
−0.01302109408254 −0.29231658319437

]
,

Theorem 29 : K∗ =

[
−0.00133373405726 −0.00799964157676

]
,

Theorem 30 : K∗ =

[
−0.00530655880274 0.00222723380322

]
.

Example 6. (Optimal SOF control for the system (3.79) with ϕ ∈ Φ̄α
sb) Consider the system (3.79) whose

state space realization is given by

A =


0.9722 −0.0103 −0.0370

−0.0338 0.9664 −0.0233

0.0183 0.0398 0.9506

 , Bu =


0.0046

0.0078

0.0129

 , Bp =


−0.0034 −0.0258

0.0159 0.0192

0.0083 0.0128

 ,

Cy =

−0.4100 0.4400 0.6800

−1.7700 0.5000 −0.4000

 , Cq =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

 .

Let us consider the optimization problem where the control objective is to maximize the upper bound α on

the sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law

u(k) = Koy(k). Then, the optimal solutions K∗ for the optimization problems in Theorem 27, 29, and 30
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are obtained as

Theorem 27 : K∗ = 102 ×
[

−1.67396832729383 −0.38942209046374

]
,

Theorem 28 : K∗ =

[
−5.62391896169544 1.47109250263480

]
,

Theorem 29 : K∗ =

[
−64.01393096811263 14.73009846418861

]
,

Theorem 30 : K∗ =

[
−15.82846011893918 3.57952990338737

]
.

Example 7. (Optimal SOF control for the system (3.79) with ϕ ∈ Φ̄α
sb) Consider the system (3.79) whose

state space realization is given by

A =


0.0469 0.0000 0.0000

0.0000 −0.1512 0.0000

0.0000 0.0000 0.1512

 , Bu =


0.2365 −0.9876

−1.5164 1.2181

0.2496 −0.5181

 , Bp =


−0.2494 0.2341

0.2542 0.0215

−0.2036 −0.3744

 ,

Cy =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

 , Cq =

1.0000 0.0000 1.0000

0.0000 1.0000 1.0000

 .

Let us consider the optimization problem where the control objective is to maximize the upper bound α on

the sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law

u(k) = Koy(k). Then, the optimal solutions K∗ for the optimization problems in Theorem 27, 29, and 30

are obtained as

Theorem 27 : K∗ =

−0.01938448484711 −0.02871614200279

−0.02871614200279 −0.01185342501961

 ,

Theorem 28 : K∗ =

 0.04190432483494 0.01148477459598

−0.11549610629164 −0.05097686400942

 ,

Theorem 29 : K∗ =

−0.14258812542474 −0.12686178592710

0.12820257392364 0.27846823294168

 ,

Theorem 30 : K∗ =

 0.04791671972032 −0.12540884561053

−0.33039453130135 −0.23684835212644

 .

Example 8. (Optimal DOF control for the system (3.116) or (3.147) with ϕ ∈ Φ̄α
sb) Consider the system

(3.116) or (3.147) whose state space realization for the nominal plant is the same as in Example 5. Let
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us consider the optimization problem where the control objective is to maximize the upper bound α on the

sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law u(z) =

K(z)y(z) where ξ(z) is the z-transform of ξ(k) for each ξ in{u, y,K}. Then, the optimal solutions Ko(z)

for the optimization problems in Section 3.4.2 and 3.4.4 are obtained as

Section 3.4.2 : Ko(z) =

 AK BK

CK Dk

 ;

AK =



0.00000000000004 −0.00000000000002 0.00000000000003 −0.00000000000006

−0.00000000000004 0.00000000000011 −0.00000000000004 0.00000000000008

0.00000000000001 −0.00000000000002 0.00000000000004 −0.00000000000004

−0.00000000000003 0.00000000000011 −0.00000000000004 0.00000000000005


,

BK =



−0.00000000482683 −0.00000004832344

−0.00000005476478 0.00000046669972

−0.00000000314110 −0.00000002877317

0.00000000405537 0.00000018313272


,

CK =

[
−0.00000009254012 0.00000058061119 −0.00000005652954 0.00000037704576

]
,

DK =

[
−0.12463151573796 −0.00041376802662

]
.
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Section 3.4.4 : Ko(z) =

 AK BK

CK Dk

 ;

AK =



−0.09438308068412 −0.64758523926930 −0.00230545695179 −0.00024376280078

−0.68119470507844 −0.11276229377833 −0.00266195332435 0.00098217901763

−0.36869938691084 0.19774166820556 0.00015087641080 −0.00007797185095

−47.06343894684123 −10.24014681053870 −0.14349557136522 0.08069214977010


,

BK =



−0.00117518986784 −0.11714899136500

0.06569434370426 −1.71655962342927

−0.07142219208562 −0.60188578881433

−56.56650343686050 −125.16716273829300


,

CK =

[
12.33330341910328 −3.71599785603426 0.01420494573434 −0.00203461338737

]
,

DK =

[
−0.00144086465809 −27.27591728963192

]
.

Example 9. (Optimal DOF control for the system (3.116) or (3.147) with ϕ ∈ Φ̄α
sb) Consider the system

(3.116) or (3.147) whose state space realization for the nominal plant is the same as in Example 6. Let

us consider the optimization problem where the control objective is to maximize the upper bound α on the

sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law u(z) =

K(z)y(z) where ξ(z) is the z-transform of ξ(k) for each ξ in{u, y,K}. Then, the optimal solutions Ko(z)

for the optimization problems in Section 3.4.2 and 3.4.4 are obtained as

Section 3.4.2 : Ko(z) =

 AK BK

CK Dk

 ;

AK = 102 ×


0.00000000000548 0.00000000000088 0.00000000000073

0.00000000000088 0.00000000000014 0.00000000000012

0.00000000000073 0.00000000000012 0.00000000000010

 ,

BK = 102 ×


−0.00000202270988 −0.00000136477133

−0.00000032548647 −0.00000021910356

−0.00000027105445 −0.00000018282697

 ,

CK = 102 ×
[
0.00000137154146 0.00000021836004 0.00000018351858

]
,

DK = 102 ×
[
−2.10988117920826 −0.77746531450058

]
.

102



Section 3.4.4 : Ko(z) =

 AK BK

CK Dk

 ;

AK =


−0.01612395466721 −0.00479276552508 0.00688942417057

0.95342728765310 0.85955992922295 0.01944695054919

−7.79414061121223 −7.16554494648548 −0.26162587289086

 ,

BK =


0.11521191111547 0.08615317152045

0.43763488357333 0.08970208601816

−4.80743529087313 −1.60981658615619

 ,

CK =

[
15.59181171535629 9.61926447352134 −3.12719806437947

]
,

DK = 102 ×
[
−1.27292064065320 −0.15203017584326

]
.

Example 10. (Optimal DOF control for the system (3.116) or (3.147) with ϕ ∈ Φ̄α
sb) Consider the system

(3.116) or (3.147) whose state space realization for the nominal plant is the same as in Example 7. Let

us consider the optimization problem where the control objective is to maximize the upper bound α on the

sector condition such that the closed-loop system (3.79) is stabilized by the output-feedback control law u(z) =

K(z)y(z) where ξ(z) is the z-transform of ξ(k) for each ξ in{u, y,K}. Then, the optimal solutions Ko(z)

for the optimization problems in Section 3.4.2 and 3.4.4 are obtained as

Section 3.4.2 : Ko(z) =

 AK BK

CK Dk

 ;

AK =


0.00153264721512 0.00739742518440 −0.00074014941071

0.00739742518440 0.16700774306169 0.03209087166099

−0.00074014941071 0.03209087166099 0.01004390072236

 ,

BK =


0.00133426941877 0.00368129857959

0.04466024627003 0.00418820864814

0.00973663652653 −0.00546618881788

 ,

CK =

0.00133426941877 0.04466024627003 0.00973663652653

0.00368129857959 0.00418820864814 −0.00546618881788

 ,

DK =

−0.04365449948212 −0.08999104228215

−0.08999104228215 −0.09456809489039

 .
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Control Schemes Ex 5 & 8 Ex 6 & 9 Ex 7 & 10
Theorem 27 & 28 21.8420 1.5325 2.0607

Theorem 29 4.1535 0.4367 1.2322
Theorem 30 37.4841 0.3882 1.4358
Section 3.4.2 25.4709 1.5325 2.0754
Section 3.4.4 22.1679 1.7502 2.0540

Table 3.1: The maximal upper sector-bound achieved by the output-feedback control schemes

Section 3.4.4 : Ko(z) =

 AK BK

CK Dk

 ;

AK = 103 ×


0.00005539158542 0.00000017085965 −0.00000000122581

0.02689099890390 0.00008548551544 −0.00000001002758

9.99905232328686 0.03224763285586 0.00010649556568

 ,

BK =


0.00020788964672 0.00031606307571

0.10014135234422 0.15416936092571

37.09397281334177 57.45846222071164

 ,

CK =

39.89768712841692 0.26594096699122 0.00027787750491

31.72975576809898 0.20751916077895 0.00020206180352

 ,

DK =

0.15523936011026 0.14587516460479

0.14587516460479 0.18346177851977

 .

0 500 1000 1500
−25

−20

−15

−10

−5

0

5

10

time (sec)

x(
t)

Trajectory of state variables

x
1

x
2

x
3

x
4

0 500 1000 1500
−0.05

0

0.05

0.1

0.15

time (sec)

u(
t)

Output−feedback control signal

Figure 3.14: Example 5: Theorem 27
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Figure 3.16: Example 5: Theorem 29
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Figure 3.24: Example 9: Section 3.4.2
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Figure 3.27: Example 7: Theorem 28
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Figure 3.29: Example 7: Theorem 30
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Figure 3.30: Example 10: Section 3.4.2
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Figure 3.31: Example 10: Section 3.4.4

3.5 Computational Issues in SOF Controller Synthesis Problems

3.5.1 Introduction

The main objective of this section is to introduce the numerical algorithms to solve the stabilizing static

output-feedback control problem and to discuss associated computational issues. Given a triplet state-

space realization of a system (A,Bu, Cy) with compatible dimensions, an interesting problem is to find a

static output-feedback control gain Ko, if any, such that the closed-loop system is asymptotically stable.

The existence of such a stabilizing static output-feedback control gain Ko is equivalent to the feasibility

condition of two convex constraints involving a positive definite matrix and its inverse [40, 41]. This problem

can be formulated as a problem to locate a common point in two convex sets and there are many papers in

control and optimization literatures that tackle the problem, where alternating or successive projection (or

proximity) mappings are considered with convex constraints that have been specified in different ways at

each paper [43, 59, 15].
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Figure 3.32: Successive Projections: rel int C1 ∩
rel int C2 = ∅

Figure 3.33: Successive Projections: rel int C1 ∩
rel int C2 ̸= ∅
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3.5.2 Successive Projection Algorithm

Projection onto A Convex Set

The method of projection is applied to the problem of finding points in a convex set of minimum distance

from a point in another convex set, and vice versa.

Definition 10. (Projection mappings) Given a closed convex set C ⊂ Rn, let P be the mapping which

projects each point x in another convex set D ⊂ Rn onto C such that Px ∈ D is the closet point in D to

x. Then the mapping P is called the projection mapping or proximity mapping for the set C. Consider two

closed convex sets or two convex sets whose interiors are non-empty and one of them is possibly open such

that their intersection is non-empty. Then the composition of two successive projection mappings has at least

one fixed point and this point is a point of a set closest to the other set.

Proposition 16. (Composition of projection mappings [117]) Let S be a projection mapping of a metric

space C ∈ Rn onto itself. Then it has the following properties:

i. d(Sx1, Sx2) ≤ d(x1, x2),

ii. If x is not a fixed point of S, then the mapping S is strictly non-expansive in the following sense:

d(Sx, S2x) ≤ d(x, Sx),

iii. For each x the sequence of mappings Snx has a cluster point. Then for each given x in a matric space,

the sequence of mappings Snx converges to a fixed point of S.

The function d(·, ·) on the cross product space C × C indicates the distance between two points (or sets) in a

metric space, which is equal to the metric norm of the difference of two points (or the metric norm of the

difference of two closest points to each set).

Proof: It can be easily seen that a successive n mapping Sn of a projection operator S has contraction

mapping properties [26] such that it has the properties described above. See [117] for more details. □

Now, the successive projection mapping is applied to tackle alternating projection mappings for two

convex sets in a matric space.

Lemma 14. (Projection mappings for two convex sets [117]) Consider (i) two closed convex sets or (ii) two

convex sets whose interiors are non-empty and one of them is possibly open such that their intersection is

non-empty. Let Pj denote the projection mapping for a convex set Cj for each j = 1, 2. Then any fixed point

of their composition mapping PiPj is a closest point of Ci to Cj for (i, j) ∈ {(1, 2), (2, 1)}. Further, such
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fixed point of PiPj is on the boundary of Ci for (i, j) ∈ {(1, 2), (2, 1)} in the case (i), and in the intersection

of two convex sets in the case (ii).

Proof: Let S = PiPj be a projection mapping of a subset Ci in a metric space onto itself for (i, j) ∈

{(1, 2), (2, 1)}. With this definition for the alternating projection mapping, the proof is trivial, which follows

Proposition 16. The details are given in [117]. □

Alternating Projection and Its Convergence to a point in the intersection of some convex sets

Suppose that the interiors of two convex sets C1, C2 ∈ Rn are non-empty and let PCi denote projection

on the set Ci for each i = 1, 2. In addition, it is assumed that a starting point x0
1 ∈ C1 is given. Then the

alternating or successive projection mappings are defined as x
(k)
2 = PC2(x

(k)
1 ) and x

(k+1)
1 = PC1(x

(k)
2 ) for

each iteration index k = 0, 1, . . . such that two sequences of points {x(k)
i } are generated for i = 1, 2. There

have been many research papers that have proven convergence of the alternating or successive projection

mappings in the literature and whose basic idea should be considered as von Neumann’s work in 1930s [116].

Lemma 15. (Convergence of alternating projection algorithm in Hilbert Spaces) If two convex sets C1 and C2

have the non-empty intersection, i.e., C1∩C2 ̸= ∅, then the sequence of points {y(k)} := {x(0)
1 , x

(1)
2 , x

(1)
1 , x

(2)
2 , . . .}

has a cluster point in C1 ∩ C2. In other words, the composition of successive mappings S := PCiCj for

(i, j) ∈ {(1, 2), (2, 1)} gives a point in the intersection of two convex sets, provided that their intersection is

non-empty.

Proof: Since two closed and convex sets C1 and C2 in a Hilbert space have non-empty intersection, there

exists a point x∗ in their intersection, i.e., x∗ ∈ C1 ∩ C2. Further, since x
(k)
2 = PC2(x

(k)
1 ) and C2 is a convex

set in a Hilbert space, we have

⟨x(k)
1 − x

(k)
2 , x− x

(k)
2 ⟩ ≤ 0 ∀x ∈ C2,

where ⟨·, ·⟩ denotes the inner product of two elements in a Hilbert space. Thus, we can observe that

||x(k)
1 − x∗||2 = ||x(k)

1 − x
(k)
2 + x

(k)
2 − x∗||2 (3.171)

= ||x(k)
1 − x

(k)
2 ||2 + ||x(k)

2 − x∗||2 + 2⟨x(k)
1 − x

(k)
2 , x

(k)
2 − x∗⟩ (3.172)

≥ ||x(k)
1 − x

(k)
2 ||2 + ||x(k)

2 − x∗||2. (3.173)

Similarly, we also have

⟨x(k)
2 − x

(k+1)
1 , x− x

(k+1)
1 ⟩ ≤ 0 ∀x ∈ C1,
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so that

||x(k)
2 − x∗||2 ≥ ||x(k)

2 − x
(k+1)
1 ||2 + ||x(k+1)

1 − x∗||2. (3.174)

Now, we have the following inequalities:

||x(k)
1 − x∗||2 ≥ ||x(k)

2 − x∗||2 ≥ ||x(k+1)
1 − x∗||2 ≥ ||x(k+1)

2 − x∗||2 ≥ · · · (3.175)

Therefore, one can conclude that the sequence {y(k)} is bounded and monotonic as well as are {x(k)
1 } and

{x(k)
2 }. This implies that there exists an accumulation point ȳ such that

lim
k→∞

y(k) = lim
k→∞

x
(k)
1 = lim

k→∞
x
(k)
2 = ȳ.

Since the convex sets C1 and C2 are closed, one can observe that ȳ ∈ C1 ∩ C2. □

3.5.3 Computational Issues in Fixed-Order Output-Feedback Controller

Design

Necessary and sufficient conditions for static output-feedback can be formulated in terms of coupled

Lyapunov matrix inequalities by following a quadratic Lyapuonv function approach. From Lyapunov stability

theory, it has been known that the closed-loop linear time-invariant continuous time system is GUAS if and

only if the matrix A + BuKoCy is Hurwitz, or equivalently, there exists a gain matrix Ko such that the

following matrix inequality holds for some X = XT > 0:

(A+BuKoCy)X +X(A+BuKoCy)
T < 0. (3.176)

To handle this BMI problem, the so-called coupled linear matrix inequality formulation has been introduced–

see Section 3.4.1. That is, introduce the following two matrix inequalities to solve:

B⊥
u (AX +XAT )(B⊥

u )T < 0, (3.177)

(CT
y )

⊥(ATY + Y A)((CT
y )

⊥)T < 0, (3.178)

where XY = Y X = I–these are also introduced in (3.82) and (3.83).
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Definition 11. Define the two convex sets for X and Y , respectively:

C1 = {X ∈ Sn|X > 0, (3.82)} (3.179)

C2 = {Y ∈ Sn|Y > 0, (3.83)} , (3.180)

where XY = Y X = I.

In this section, we will show three numerical algorithms to find a feasible solution X (or Y ) such that the

inequalities (3.177) and (3.178) hold. The existence of such a feasible solution is equivalent to the existence

of a static output-feedback control gain Ko that stabilizes the system whose realization is (A,Bu, Cy).

The first algorithm is called the min/max algorithm whose properties are not very mathematically clear,

but heuristically has shown good convergence, and the other two algorithms are based on the alternating

projection mapping in Hilbert space such that their properties including convergence are clearly understood.

The Min/Max Algorithm

Proposition 17. (The Min/Max Algorithm) Let us consider the following successive optimization problem

to approximate the best solution at each step, which has been suggested in [40, 43]:

Xk = arg min {lu : X ∈ C1, I ≤ Y
1/2
k XY

1/2
k ≤ luI}

Yk+1 = arg max {ll : Y ∈ C2, llI ≤ X
1/2
k Y X

1/2
k ≤ I}

Semi-Definite Programming (SDP) Approach

The following lemma shows that the successive projection mappings can be formulated as the alternating

two projection problems where one needs to solve a SDP problem at each projection step.

Lemma 16. Let C1 and C2 be the convex sets described by LMIs. Then the projection Xk = PC1(Yk) and

Yk+1 = PC2(Xk) can be characterized as the unique solutions to the following SDP problems:

Xk = PC1(Yk) = arg minX∈C1
||Yk −X||F ,

Yk+1 = PC2(Xk) = arg minY ∈C2
||Y −Xk||F ,

where || · ||F indicates the Frobenius norm.

The next two algorithms suggest different SDP problem formulations for the alternating projections.
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Proposition 18. ([15]) Let C1 be the convex set described by LMIs. Then the projection Xk = PC1Yk can

be computed as the unique solution to the following SDP problem:

Xk = arg min

Tr(S) : X ∈ C1,

 S Y −1
k −X

Y −1
k −X S

 ≥ 0, S ∈ S̄n+

 ,

for a given Yk ∈ C2. Similarly, the projection Yk+1 = PC2Xk can be computed as the unique solution to the

following SDP problem:

Yk+1 = arg min

Tr(S) : Y ∈ C2,

 S Y −X−1
k

Y −X−1
k S

 ≥ 0, S ∈ S̄n+

 ,

for a given Xk ∈ C1.

Proposition 19. (A cone complementary problem [59]) The idea is to associate the static output-feedback

control problem with the following semi-definite programming problem:

minTr(XY ) (3.181)

subject to (X,Y ) ∈ C1 × C2 ∩MX,Y , (3.182)

where

MX,Y ≜ {(X,Y ) ∈ Sn
+ × Sn

+|

X I

I Y

 ≥ 0}.

One should notice that the objective function of the above SDP problem is non-convex. To solve this problem,

the following Linearization Algorithm has been introduced in [59]:

1. Choose the initial guess (X0, Y0) ∈ C1 × C2 ∩MX,Y and set the iteration index k as 0.

2. Solve the SDP problem to move one step forward:

(Xk+1, Yk+1) = arg min {Tr(XYk +XkY ) : (X,Y ) ∈ C1 × C2 ∩MX,Y } . (3.183)

3. If the stopping criterion

|tk+1 − tk| < ϵ (3.184)

is satisfied for a specified error tolerance ϵ > 0, then escape the iteration loop. Otherwise, go to step 2

with the increased iteration index k = k + 1.
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Chapter 4

Robust Controller Synthesis Problems
for Lur’e Systems

4.1 Introduction

The previous chapter developed controller synthesis problems in which the nominal plant part of Lur’e

system was assumed to be completely known. Since no single fixed model can provide an input-output

map exactly like the true plant, a realistic representation requires a set of maps. Such a set of uncertain

mappings are characterized by its input-output relations so that the uncertainty ∆ in Figures 4.1 and 4.2 can

be considered as a set-valued function. The approach in this chapter is to parameterize the uncertain mapping

∆ and the unknown nonlinear mapping ϕ separately as shown in Figures 4.1 and 4.2. Note that sometimes

these two uncertain feedback connected mappings, which both can be parameterized as set-valued functions,

might be combined as block components in an augmented mapping. Two different types of uncertainties ∆

are considered–norm-bounded (or matching) and polytopic parameter-dependent uncertainties.

Note that the LMI formulations for the static output-feedback control problems in continuous-and

discrete-time systems are equivalent in the sense that the LMIs in continuous-time systems can be trans-

formed as the LMIs in discrete-time systems and vice versa.

Equivalence of LMI formulations for continuous and discrete time systems

Necessary and sufficient conditions for static output-feedback can be formulated in terms of coupled

Lyapunov matrix inequalities by using a quadratic Lyapuonv function. From Lyapunov stability theory, it

has been known that the closed-loop linear time-invariant continuous-time system is GUAS if and only if

the matrix A + BuKoCy is Hurwitz, or equivalently, there exists a gain matrix Ko such that the matrix

inequality holds for some X = XT > 0 (or Y = Y T > 0):

(A+BuKoCy)X +X(A+BuKoCy)
T < 0 (or, Y (A+BuKoCy) + (A+BuKoCy)

TY < 0) (4.1)

Corollary 5. (Equivalent formulation of an LMI for discrete-time systems as continuous-time systems via
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Figure 4.1: LFT and SNOF for Robust Control for
Uncertain Lur’e Systems with External Input-Output

Figure 4.2: LFT and SNOF for Robust Control for
Uncertain Lur’e Systems
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the Schur complement lemma) Similarly to the stability condition for continuous-time systems, for discrete-

time systems the closed-loop linear time-invariant discrete-time system is GUAS if and only if the matrix

A+BuKoCy is Schur, i.e., the eigenvalues of A+BuKoCy are in the open unit circle in the complex variable

domain. Equivalently, there exists a control gain matrix Ko such that

(A+BuKoCy)
TX−1(A+BuKoCy)−X−1 < 0 (4.2)

for some X = XT > 0. We have the following two equivalent inequalities with X−1 = Y :

 −Y (A+BuKoCy)
TY

Y (A+BuKoCy) −Y

 < 0 (4.3)

and

(Ad +Bu,dKoCy,d)Xd +Xd(Ad +Bu,dKoCy,d)
T < 0, (4.4)

where

Ad ≜

− 1
2I 0

A −1
2I

 , Bu,d ≜

 0

Bu

 , Cy,d ≜
[
Cy 0

]
, Xd ≜

X 0

0 X

 . (4.5)

Proof: Using the Schur complement lemma and a congruence transformation, it is easy to see the equivalence

between the matrix inequalities. □

Note that the LMI (4.4) has bilinear terms composed of the multiplications of the unknown (decision)

matrices X and Ko and constant system matrices, so checking the solvability of the LMI (4.4) is a non-convex

problem and known to be NP-hard [41, 16] in general. As shown in Section 3.5, this problem can be handled

with the well-known successive or alternating projection methods–see Section 3.5.

4.2 Static Output-Feedback Control via LMI Optimization for a

Certain Class of Lur’e Systems under Matching

Uncertainties

In this section, the uncertainty satisfying the so-called matching condition is considered. The LMI

formulations derived in this section are very flexible in the following senses:

i. With a known norm-bound on the uncertain mapping ∆, say 1/γθ, the problem to maximize the upper

bound on the sector-condition for the nonlinear mapping ϕ ∈ Φ̄α
sb can be represented as a convex
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optimization problem, and vice versa.

ii. The problem to achieve a performance objective for a Lur’e system can be represented as a convex

optimization problem, provided that the norm-bound on the uncertain mapping ∆ and the upper bound

on the sector-condition for the nonlinear mapping ϕ ∈ Φ̄α
sb or ϕ ∈ Φ

|α|
sb are known or at least conservatively

approximated.

4.2.1 SOF Control via LMI Optimization for a Certain Class of Lur’e Systems

under Matching Uncertainties–Case I

In the Absence of Feedback-Connected Nonlinearities

In order to apply the stabilizing SOF to the perturbed system with uncertainties, and to solve SOF

controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = (A+∆A(θa(k)))x(k) + (Bu +∆Bu(θb(k)))u(k)

y(k) = Cyx(k),
(4.6)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input at time k ∈ Z+, and A ∈ Rn×n, Bu ∈ Rn×m,

and Cy ∈ Rny×n are known constant matrices. In addition, θr(k) ∈ Θr represents the parametric uncertainty

of the system and the subset Θr ⊂ Rnθr is assumed to be compact for each r = a, b. It is assumed that the

triplet nominal realization of the system (A,Bu, Cy) is stabilizable and detectable, and both the uncertainty

mappings ∆A : Θa → Rn×n and ∆Bu : Θb → Rn×m are continuous in θr ∈ Θr which is Lebesgue measurable

for each r = a, b.

Assumption 1. (Matching condition) Assume that the parametric uncertainty can be represented as

[∆A ∆Bu] = E0F (θ) [EA EB ] , (4.7)

where ||F (θ)||2 ≤ 1/γθ with a fixed value of γθ > 0 for all θ ∈ Θ ⊂ Rnθ .

Note that in a number of papers in literature, matching conditions have different representations where

matching conditions are weakened in some degree and/or combined with additional assumptions.

Lemma 17. The system (4.6) is GUAS if and only if there exists a gain matrix Ko such that the following
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matrix inequality holds for some X = XT > 0:

(Ad +Bu,dKoCy,d)Xd +Xd(Ad +Bu,dKoCy,d)
T + E0,dF (θ)(EA,d + EB,dKoCy,d)Xd

+Xd(EA,d + EB,dKoCy,d)
TFT (θ)ET

0,d < 0 ∀θ ∈ Θ,
(4.8)

where ||F (θ)|| ≤ 1/γθ for all θ ∈ Θ. The definitions for Ad, Bu,d, Cy,d, Xd are given in (4.4) and

E0,d ≜

 0

E0

 , EA,d ≜
[
EA 0

]
, EB,d ≜ EB.

Further, (4.8) is feasible for some X > 0 and Ko if and only if there exist X > 0 (or its inverse Y ) and Ko

that satisfy the matrix inequality

(Â+ B̂KoĈy)X̂ + X̂(Â+ B̂KoĈy)
T < 0, (4.9)

or

Ŷ (Â+ B̂KoĈy) + (Â+ B̂KoĈy)
T Ŷ < 0, (4.10)

where

Â ≜


Ad 0 E0,d

EA,d − 1
2γθI 0

0 0 − 1
2γθI

 , B̂ ≜


Bu,d

EB,d

0

 , Ĉy ≜
[
Cy,d 0 0

]
, (4.11)

and

X̂ ≜


Xd 0 0

0 I 0

0 0 I

 , Ŷ ≜


Yd 0 0

0 I 0

0 0 I

 . (4.12)

Proof: Replacing (A,Bu) in (4.4) by (A+∆A(θ(k)), Bu+∆Bu(θ(k))) and assuming the matched uncertainty

(4.7) for (∆A,∆Bu), Lemma ?? implies the equivalent matrix inequality for Ko, X = XT > 0, and ϵ > 0 to

(4.8):

γθ
(
(Ad +Bu,dKoCy,d)Xd +Xd(Ad +Bu,dKoCy,d)

T
)
+ϵE0,dE

T
0,d+

1

ϵ
Xd(EA,d+EB,dKoCy,d)

T (EA,d+EB,dKoCy,d)Xd < 0.

(4.13)

By the congruence transformation with the transformation matrix diag{ϵI, ϵI} and replacing Xd/ϵ with Xd,

the unknown positive scalar variable ϵ is eliminated. Further, the equivalent inequality to (4.8) and (4.13)
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follows from the Schur complement lemma:


(Ad +Bu,dKoCy,d)Xd +Xd(Ad +Bu,dKoCy,d)

T Xd(EA,d + EB,dKoCy,d)
T E0,d

(EA,d + EB,dKoCy,d)Xd −γθI 0

ET
0,d 0 −γθI

 < 0. (4.14)

Moreover, the matrix inequality (4.14) can be rewritten as (4.9). The congruence transformation with the

transformation matrix Ŷ gives (4.10). □

The inequality (4.9) (or (4.10)) is not jointly convex in X (or Y ) and Ko. As shown before in Section

3.4.1, this feasibility problem for X (or Y ) and Ko can be reduced as two linear matrix inequalities where

X and its inverse Y appear in different convex constraints so that this problem can be solved through some

alternating or successive projection algorithms–see Section 3.5.

Corollary 6. (Coupled linear matrix inequality formulation) There exists a stabilizing SOF control gain

matrix Ko such that u(k) = Koy(k) staiblizes the system (4.6) if and only if X and Y satisfies the following

two matrix inequalities:


B⊥

u,d 0 0

0 E⊥
B,d 0

0 0 I



AdXd +XdA

T
d XdE

T
A,d E0,d

EA,dXd −γθI 0

ET
0,d 0 −γθI



(B⊥

u,d)
T 0 0

0 (E⊥
B,d)

T 0

0 0 I

 < 0 (4.15)

and 
(CT

y,d)
⊥ 0 0

0 I 0

0 0 I



AT

d Yd + YdAd ET
A,d YdE0,d

EA,d −γθI 0

ET
0,dYd 0 −γθI



((CT

y,d)
⊥)T 0 0

0 I 0

0 0 I

 < 0, (4.16)

where XY = Y X = I and (·)⊥ indicates a full-rank matrices which is orthogonal to (·).

Proof: The feasiblity of the matrix inequality (4.9) (or (4.10)) for some X (or Y ) and Ko is equivalent to

the feasiblity of the matrix inequality

B̂⊥(ÂX̂ + X̂ÂT )(B̂⊥)T < 0,
(
or (ĈT

y )
⊥(ÂT Ŷ + Ŷ Â)((ĈT

y )
⊥)T < 0

)
. (4.17)

The above two matrix inequalities can be rewritten as (4.15) and (4.16), respectively. □
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In the Presence of Feedback-Connected Nonlinearities

Consider the following discrete-time system where the nominal linear time-invariant system is intercon-

nected with a certain class of nonlinear operators:

x(k + 1) = Ax(k) +Bpϕ(k, x(k)) +Buu(k)

y(k) = Cyx(k),
(4.18)

where the nonlinear operator ϕ is in the class Φ̄α
sb. As shown before, the stability condition for the above

system can be written as a feasibility condition for a Lyapunov matrix Q−1 which is an eigenvalue problem:

Q = QT > 0,



−Q 0 QAT QCT
q

0 −I BT
p 0

AQ Bp −Q 0

CqQ 0 0 −γI


< 0, (4.19)

where γ ≜ 1/α2.

Replacing A by A + BuKoCy in the LMI constraint (4.19), if there exists a SOF control gain matrix

Ko satisfying (4.19) for some Q = QT > 0 then the closed-loop system is stabilized by the control law

u(k) = Koy(k). The corresponding LMI constraint can be rewritten in the same form as (4.8):

(Ā+ B̄uKoC̄y)Q̄+ Q̄(Ā+ B̄uKoC̄y)
T < 0, (4.20)

where

Ā ≜



− 1
2I 0 0 0

0 −1
2I 0 0

A Bp −1
2I 0

Cq 0 0 −1
2γI


, B̄u ≜



0

0

Bu

0


, C̄y ≜

[
Cy 0 0 0

]
, (4.21)

Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


. (4.22)

In order to apply the stabilizing SOF to the perturbed system with uncertainties, and to solve SOF
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controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = (A+∆A(θ(k)))x(k) +Bpϕ(k, x(k)) + (Bu +∆Bu(θ(k)))u(k)

y(k) = Cyx(k)
(4.23)

where x(k) ∈ Rn is the state variable and u(k) ∈ Rm is the control input at time k ∈ Z+, and A ∈ Rn×n and

Bu ∈ Rn×m are known constant matrices. In addition, θ(k) ∈ Θ represents the parametric uncertainty of

the system and the subset Θ ⊂ Rnθ is assumed to be closed and compact. Assume that the triplet nominal

realization of the system (A,Bu, Cy) is stabilizable and detectable, and both the uncertainty mappings

∆A : Θ → Rn×n and ∆Bu : Θ → Rn×m are continuous in θ ∈ Θ which is Lebesgue measurable.

Corollary 7. The necessary and sufficient stability conditions for the closed-loop system with a SOF control

law u(k) = Koy(k) is written as a feasibility problem for Q = QT > 0:

(Ā+ B̄uKoC̄y)Q̄+ Q̄(Ā+ B̄uKoC̄y)
T + Ē0F (θ)ĒABQ̄+ Q̄ĒT

ABF
T (θ)ĒT

0 < 0, θ ∈ Θ, (4.24)

where

Ā ≜



−1
2I 0 0 0

0 − 1
2I 0 0

A Bp −1
2I 0

Cq 0 0 − 1
2γI


, B̄u ≜



0

0

Bu

0


, C̄y ≜

[
Cy 0 0 0

]
, (4.25)

and

Ē0 ≜



0

0

E0

0


, ĒAB ≜

[
EA + EBKoCy 0 0 0

]
, Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


. (4.26)

Further, the elimination of structured uncertain matrix lemma implies the equivalent matrix inequality for

Ko, Q = QT > 0 and ϵ > 0:

γθ ((Ā+ B̄uKoC̄y)Q̄+ Q̄(Ā+ B̄uKoC̄y)
T
)
+ ϵĒoĒ

T
o Q̄ĒT

AB

ĒABQ̄ −ϵI

 < 0, (4.27)

provided ∥F (θ)∥ ≤ 1/γθ for all θ ∈ Θ.

Proof: After small algebraic computation and by following the same procedure as the LTI system without

feedback-connected nonlinearities, it is easy to derive the matrix inequalities. □
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Lemma 18. The system (4.23) is quadratically stabilized with a SOF control law u(k) = Koy(k) if and only

if there exists a gain matrix Ko such that the following matrix inequality holds for some Q = QT > 0 (or

P = PT > 0) and ϵ > 0 :

( ¯̄A+ ¯̄BKo
¯̄C) ¯̄Q+ ¯̄Q( ¯̄A+ ¯̄BKo

¯̄C)T < 0, (4.28)

or

¯̄P ( ¯̄A+ ¯̄BKo
¯̄C) + ( ¯̄A+ ¯̄BKo

¯̄C)T ¯̄P < 0, (4.29)

where

¯̄A ≜


Ā 0 Ēo

ĒA −1
2γθI 0

0 0 −1
2γθI

 , ¯̄B ≜


B̄u

EB

0

 , ¯̄C ≜
[
C̄y 0 0

]
, ¯̄Q ≜


Q̄ 0 0

0 ϵI 0

0 0 ϵI

 , ¯̄P ≜


P̄ 0 0

0 1
ϵ I 0

0 0 1
ϵ I

 ,

ĒA ≜
[
EA 0 0 0

]
,

with QP = I such that Q̄P̄ = I and ¯̄Q ¯̄P = I

Proof: Replace (A,Bu) in (4.20) by (A+∆A(θ(k)), Bu+∆Bu(θ(k))) and assuming the matched uncertainty

(4.7) for (∆A,∆Bu). Then, after small algebraic computation and by following the same procedure as the

LTI system without feedback-connected nonlinearities, it is easy to derive the matrix inequalities. □

Theorem 31. (Coupled linear matrix inequality formulation) There exists a stabilizing SOF control gain

matrix Ko such that u(k) = Koy(k) stabilizes the system (4.23) if and only if Q and P satisfies the following

two matrix inequalities:

¯̄B⊥( ¯̄A ¯̄Q+ ¯̄Q ¯̄A)( ¯̄B⊥)T < 0, (4.30)

( ¯̄CT )⊥( ¯̄P ¯̄A+ ¯̄A ¯̄P )(( ¯̄CT )⊥)T < 0, (4.31)

where QP = PQ = I such that ¯̄Q ¯̄P = ¯̄P ¯̄Q = I and (·)⊥ indicates a full-rank matrix that is orthogonal to (·).

Proof: The proof follows directly from the previous lemma. □
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4.2.2 SOF Control via LMI Optimization for a Certain Class of Lur’e Systems

under Matching Uncertainties–Case II

In the Absence of Feedback-Connected Nonlinearities

In order to apply the stabilizing SOF to the perturbed system with uncertainties, and to solve SOF

controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = (A+∆A(θa(k)))x(k) +Buu(k)

y(k) = (Cy +∆Cy(θc(k)))x(k)
(4.32)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input at time k ∈ Z+, and A ∈ Rn×n, Bu ∈ Rn×m,

and Cy ∈ Rny×n are known constant matrices. In addition, θr(k) ∈ Θr represents the parametric uncertainty

of the system and the subset Θr ⊂ Rnθr is assumed to be compact for each r = a, c. Assume that the

triplet nominal realization of the system (A,Bu, Cy) is stabilizable and detectable, and both the uncertainty

mappings ∆A : Θa → Rn×n and ∆Cy : Θc → Rny×n are continuous in θr ∈ Θr and θr is Lebesgue

measurable for each r = a, c.

Assumption 2. (Matching condition) Assume that the parametric uncertainty can be represented as

∆A

∆Cy

 =

EA

EC

F (θ)E0, (4.33)

where ||F (θ)||2 ≤ 1/γθ for all θ ∈ Θ ⊂ Rnθ .

Note that in a number of papers in the literature, matching conditions have different representations with

which matching conditions are weakened in some degree and/or combined with additional assumptions.

Lemma 19. The system (4.32) is GUAS if and only if there exists a gain matrix Ko such that the matrix

inequality holds for some X = XT > 0:

(Ad+Bu,dKoCy,d)Xd+Xd(Ad+Bu,dKoCy,d)
T+(EA,d+Bu,dKoEC,d)F (θ)E0,dXd+XET

0,dF
T (θ)(EA,d+Bu,dKoEC,d)

T < 0 ∀θ ∈ Θ,

(4.34)

where ||F (θ)|| ≤ 1/γθ for all θ ∈ Θ. The definitions for Ad, Bu,d, Cy,d, Xd are given in (4.4) and

E0,d ≜ [E0 0] , EA,d ≜

 0

EA

 , EC,d ≜ EC .
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Further, (4.34) is feasible for some X > 0 and Ko if and only if there exists X > 0 (or its inverse Y ) and

Ko that satisfy the matrix inequality

(Â+ B̂uKoĈ)X̂ + X̂(Â+ B̂uKoĈ)T < 0, (4.35)

or

Ŷ (Â+ B̂uKoĈ) + (Â+ B̂uKoĈ)T Ŷ < 0, (4.36)

where

Â ≜


Ad EA,d 0

0 −1
2γθI 0

E0,d 0 −1
2γθI

 , B̂u ≜


Bu,d

0

0

 , Ĉ ≜
[
Cy,d EC,d 0

]
, X̂ ≜


Xd 0 0

0 I 0

0 0 I

 , Ŷ ≜


Yd 0 0

0 I 0

0 0 I

 .

(4.37)

Proof: Replace (A,Cy) in (4.4) by (A+∆A(θ(k)), Cy +∆Cy(θ(k))) and assuming the matched uncertainty

(4.33) for (∆A,∆Cy). Then one needs small changes with the results given in the previous section. See the

previous section for details. □

The inequality (4.35) (or (4.36)) is not jointly convex in X (or Y ) and Ko. However, as discussed before,

this feasiblity problem for X (or Y ) and Ko can be reduced as two linear matrix inequalities where X and its

inverse Y appear in different convex constraints so that this problem can be solved through some alternating

or successive projection algorithms–see Section 3.5.

Corollary 8. (Coupled linear matrix inequality formulation) There exists a stabilizing SOF control gain

matrix Ko such that u(k) = Koy(k) staiblizes the system (4.32) if and only if X and Y satisfies the two

matrix inequalities:


B⊥

u,d 0 0

0 I 0

0 0 I



AdXd +XdA

T
d EA,d XdE

T
0,d

ET
A,d −γθI 0

E0,dX 0 −γθI



(B⊥

u,d)
T 0 0

0 I 0

0 0 I

 < 0; (4.38)


(CT

y,d)
⊥ 0 0

0 (ET
C,d)

⊥ 0

0 0 I



AT

d Yd + YdAd YdEA,d ET
0,d

ET
A,dYd −γθI 0

E0,d 0 −γθI



((CT

y,d)
⊥)T 0 0

0 ((ET
C,d)

⊥)T 0

0 0 I

 < 0, (4.39)

where XY = Y X = I and (·)⊥ indicates a full rank matrix orthogonal to (·).
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Proof: The feasiblity of the matrix inequality (4.35) (or (4.36)) for some X (or Y ) and Ko is equivalent to

the feasibility of the matrix inequality

B̂⊥
u (ÂX̂ + X̂ÂT )(B̂⊥

u )T < 0,
(
or (ĈT )⊥(ÂT Ŷ + Ŷ Â)((ĈT )⊥)T < 0

)
. (4.40)

The above two matrix inequalities can be rewritten as (4.38) and (4.39), respectively. □

In the Presence of Feedback-Connected Nonlinearities

Similar to Case I, in order to apply the stabilizing SOF to the perturbed system with uncertainties, and

to solve SOF controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = (A+∆A(θ(k)))x(k) +Bpϕ(k, x(k)) +Buu(k)

y(k) = (Cy +∆Cy(θ(k)))x(k)
(4.41)

where x(k) ∈ Rn is the state variable and u(k) ∈ Rm is the control input at time k ∈ Z+, and A ∈ Rn×n,

Bu ∈ Rn×m, and Cy ∈ Rny×n are known constant matrices. In addition, θ(k) ∈ Θ represents the parametric

uncertainty of the system and the subset Θ ⊂ Rnθr is assumed to be closed and compact. Assume that the

triplet nominal realization of the system (A,Bu, Cy) is stabilizable and detectable, and both the uncertainty

mappings ∆A : Θ → Rn×n and ∆Cy : Θ → Rny×n are continuous in θ ∈ Θ, and θ is Lebesgue measurable.

Corollary 9. The necessary and sufficient stability conditions for the closed-loop system with a SOF control

law u(k) = Koy(k) is written as a feasibility problem for Q = QT > 0:

(Ā+B̄uKoC̄y)Q̄+Q̄(Ā+B̄uKoC̄y)
T+(ĒA+B̄uKoEC)F (θ)Ē0Q̄+Q̄ĒT

0 F
T (θ)(ĒA+B̄uKoEC)

T < 0, θ ∈ Θ,

(4.42)
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where

Ā ≜



− 1
2I 0 0 0

0 −1
2I 0 0

A Bp − 1
2I 0

Cq 0 0 −1
2γI


, B̄u ≜



0

0

Bu

0


, C̄y ≜

[
Cy 0 0 0

]
, (4.43)

ĒA ≜



0

0

EA

0


, Ē0 ≜

[
E0 0 0 0

]
, Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


. (4.44)

Further, using the elimination of structured uncertain matrix lemma we have the following equivalent matrix

inequality for Q = QT > 0 and ϵ > 0:

γθ ((Ā+ B̄uKoC̄y)Q̄
1
ϵ +

1
ϵ Q̄(Ā+ B̄uKoC̄y)

T
)
+ 1

ϵ2 Q̄ĒoĒ
T
o Q̄ ĒA + B̄uKoEC

(ĒA + B̄uKoEC)
T −I

 < 0 θ ∈ Θ, (4.45)

Proof: See the previous section for details. One needs small changes with the results given in the previous

section. □

Lemma 20. The system (4.41) is quadratically stabilized with a SOF control law u(k) = Koy(k) if and only

if there exists a gain matrix Ko such that the following matrix inequality holds for some Q = QT > 0 (or

P = PT > 0) and ϵ > 0 :

( ¯̄A+ ¯̄BKo
¯̄C) ¯̄Q+ ¯̄Q( ¯̄A+ ¯̄BKo

¯̄C)T < 0, (4.46)

or

¯̄P ( ¯̄A+ ¯̄BKo
¯̄C) + ( ¯̄A+ ¯̄BKo

¯̄C)T ¯̄P < 0, (4.47)

where

¯̄A ≜


Ā 0 ĒA

0 − 1
2γθI 0

Ē0 0 − 1
2γθI

 , ¯̄B ≜


B̄u

0

0

 , ¯̄C ≜
[
C̄y EC 0

]
, ¯̄Q ≜


Q̄ 0 0

0 ϵI 0

0 0 ϵI

 , ¯̄P ≜


P̄ 0 0

0 1
ϵ I 0

0 0 1
ϵ I

 ,

with QP = I such that Q̄P̄ = I and ¯̄Q ¯̄P = I

Proof: Replace (A,Bu) in (4.20) by (A+∆A(θ(k)), Cy+∆Cy(θ(k))) and assuming the matched uncertainty
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(4.33) for (∆A,∆Cy). Then one needs small changes with the results given in the previous section. See the

previous section for details. □

Theorem 32. (Coupled linear matrix inequality formulation) There exists a stabilizing SOF control gain

matrix Ko such that u(k) = Koy(k) stabilizes the system (4.41) if and only if Q and P satisfies the two

matrix inequalities:

¯̄B⊥( ¯̄A ¯̄Q+ ¯̄Q ¯̄A)( ¯̄B⊥)T < 0, (4.48)

( ¯̄CT )⊥( ¯̄P ¯̄A+ ¯̄A ¯̄P )(( ¯̄CT )⊥)T < 0, (4.49)

where QP = PQ = I such that ¯̄Q ¯̄P = ¯̄P ¯̄Q = I and (·)⊥ indicates a full rank matrix orthogonal to (·).

Proof: The proof directly follows from the previous lemma. □

4.3 Static Output-Feedback Control via LMI Optimization for a

Certain Class of Lur’e Systems in the Presence of Polytopic

Uncertainties

This section considers the polytopic parameter-dependent uncertain model. The LMI formulations derived

in this section are based on the assumption where the parametric uncertainties θi (or their auxiliary variables

ρi(θ)) are all normalized such that θi ∈ [0, 1] (or ρi(θ) ∈ [0, 1], ∀θ) for each index i. This normalization of the

size of the parametric uncertainties can be achieved by introducing the constant weight blocks in the LFT

representation for the system and those are augmented into the nominal LTI plant whose transfer function

is G(s) in Figures 4.1 and 4.2. The SOF controller synthesis problems are formulated with the consideration

of (i) a single (or common) and (ii) parameter-dependent Lyapunov functions. The second type of Lyapunov

function is known as its anonym PLDF. The degree of conservatism introduced in each method is compared

with different SOF control schemes.

4.3.1 Parameter-Dependent Lyapunov Function (PLDF) and Its Applications

For analysis and controller synthesis problems for polytopic uncertain models, the simplest approach

consists of looking for a common quadratic Lyapunov function that proves stability of the polytope of

matrices and provides a sufficient condition that amounts to solving matrix inequalities of a Lyapunov matrix
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X (or Y = X−1) and the output-feedback control gain Ko at each vertex of PLDI realization of uncertain

models. The main disadvantage in searching for a single quadratic Lyapunov function for a certain class

of uncertain system models is the conservatism of the analysis and synthesis problems. As pointed out in

many papers in the literature [28, 115, 14, 118, 74, 104, 56, 103], the Lyapunov function

V (x, xδ, xϕ) ≜ xTPx+ xT
δ P∆xδ + xT

ϕPΦxϕ (4.50)

is less conservative for analysis and controller synthesis problems for the system in Figures 4.1 and 4.2 where

the set-valued uncertain mapping ∆ and nonlinear mapping Φ are dynamic in general. If the set-valued

uncertain mapping ∆ is in the set of LTI operators such that the FDI

∆(ejω) + ∆∗(ejω) ≥ 0

holds for all ω ∈ [0, 2π], that is,

∆ = ∆(z) ≜

 A∆ B∆

C∆ D∆


is positive real, then the feasibility of its equivalent LMI condition

AT
∆P∆A∆ − P∆ AT

∆P∆B∆ − CT
∆

BT
∆P∆A∆ − C∆ −D∆ −DT

∆

 ≤ 0

for P∆ = PT
∆ > 0 guarantees the stability of the closed-loop system in Figure 4.2 and 4.1, provided −G(z)

is positive real and ϕ ≡ 0. As introduced in Section 1.1.2 of Chapter 1, the FDI and LMI conditions for the

positive realness of −G(z) are formulated in terms of the Lyapuov matrix P for the nominal LTI plant. In

particular, noting that the positive realness implies the passivity of the transfer function, such P∆ and P are

said to prove passivity or positive realness of the LTI perturbation ∆(z) and the nominal LTI plant −G(z),

respectively. Note that the closed-loop system that consists of the negative-feedback interconnection of two

passive operators is stable. Furthermore, if the set-valued nonlinear mapping ϕ or the set-valued uncertain

mapping ∆ is static, then the last two terms in (4.50) are replaced by their integrals

∫ t

0

xT
δ P∆xδdτ and

∫ t

0

xT
ϕPΦxϕdτ,

respectively. To consider such Lyapunov functions corresponds to the so-called IQC [96, 74, 104]. Note that

the Lyapunov function (4.50) depends on the uncertainties characterized ∆ and Φ as well as the nominal
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LTI plant. Thus, the analysis and controller synthesis problems based on the Lyapunov function (4.50) are

less conservative.

Now, consider the uncertain system

x(k + 1) = A(θ(k))x(k), (4.51)

and the Lyapunov matrix that are convex in the parametric uncertainty vector θ = [θi, · · · , θnθ
]T ∈ Rnθ ,

i.e.,

X(θ(k)) =
J∑

j=1

ρj(θ(k))Pj , (4.52)

where
∑J

j=1 ρj(θ(k)) = 1, ρj(θ(k)) ∈ [0, 1] for all θ(k) ∈ Θ ⊂ Rnθ , and Pj = PT
j is real for each index

j = 1, . . . , J . In addition, suppose that θ ∈ Θ and Θ is a convex hull of a finite set of vertices Θv, that is,

Θ = Co(Θv). It is well known that if the matrix inequality

W (θ(k), θ(k + 1)) ≜ AT (θ(k))X(θ(k + 1))A(θ(k))−X(θ(k)) < 0 (4.53)

holds for all θ(k), θ(k+1) ∈ Θ ⊂ Rnθ at each sampling time k ∈ Z+, then the origin of the uncertain system

(4.51) is GUAS. Since the parameter-dependent matrix W (θ(k), θ(k + 1)) is not jointly convex in θ(k) and

θ(k + 1), it is not sufficient to check the feasibility of (4.53) in the set of finite vertices Θv. The purpose is

to find an equivalent LMI condition to (4.53) such that it is jointly convex in θ(k) and θ(k + 1). The next

lemma shows that the importance of the convexity of a function f in δ where δ is assumed to in a convex

hull ∆.

Lemma 21. Let a scalar-valued function f : ∆ → R be convex and ∆ is a convex hull such that ∆0 is a set

of its vertices, i.e., ∆ = Co(∆0). Then f(δ) ≤ γ for all δ ∈ ∆ if and only if f(δ) ≤ γ for all δ ∈ ∆0.

Proof: The (only if) part is trivial, since ∆0 ⊂ ∆. To prove the (if) part, from the definition of a convex

hull, δ ∈ ∆ can be rewritten as a convex combination of vertices, i.e., δ =
∑

i αiδi where
∑

i δi = 1, δi ∈ [0, 1],

and δi ∈ ∆0 ∀i. Since the function f is convex on ∆,

f(δ) = f(
∑
i

αiδi) ≤
∑
i

αif(δi) ≤ γ.

□

The next lemma shows how to handle the troublesome bilinear dependency of the matrix inequalities on the

unknown parametric uncertainty by introducing new decision variables. The details are given [71] and here
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a brief introduction for the idea will be introduced and applied to our problems to find a SOF control gain

matrix Ko.

Lemma 22. (Equivalence conditions with Schur stability) The following statements are equivalent:

(i) the system matrix A is Schur stable;

(ii) there exists a Lyapunov matrix P = PT > 0 such that

ATPA− P < 0; (4.54)

(iii) there exist matrices P = PT > 0 and G of compatible dimensions such that

 P ATGT

GA G+GT − P

 > 0. (4.55)

(iv) there exists a positive definite matrix Q = QT > 0 such that

Q1/2ATQ−1AQ1/2 −Q < 0, (4.56)

or equivalently −Q QAT

AQ −Q

 < 0, (4.57)

(v) there exist matrices Q = QT and H of compatible dimensions such that

H +HT −Q HTA

AH Q

 > 0. (4.58)

Proof: The equivalence between the first two statements is well known. To prove (iii) ⇒ (ii), let suppose

that the inequality (4.55) holds for some P = PT > 0 and G. Then, since P > 0 the matrix inequality

(G− P )P−1(G− P )T ≥ 0 holds for such matrices P and G. We can easily see that

0 < (4.55) ≤

 P ATGT

GA GP−1GT

⇒


P AT

A P−1

 > 0 ⇔ P −ATPA > 0

 . (4.59)
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To prove (ii) ⇒ (iii), let suppose that the inequality (4.54) holds for some P = PT > 0. Then setting

G = GT = P for (4.54) one has the inequality (4.55). The equivalence of the inequalities (4.54), (4.56), and

(iv) follows from congruence transformations. In addition, by following the similar procedure in (4.59), the

equivalence between the feasibilities of the inequalities (iv) and (v) is shown. □

Lemma 23. (Polytopic parameter dependent systems) The origin of the uncertain system (4.51) is GUAS

for any time-varying uncertain vector θ(k) ∈ Θ ⊂ Rnθ if either of the following inequalities holds for the

specified decision variables:

(i) there exists a Lyapunov matrix P (θ(k)) = PT (θ(k)) =
∑J

j=1 ρj(θ(k))Pj > 0 such that

AT (θ(k))P (θ(k + 1))A(θ(k))− P (θ(k)) < 0, ∀θ ∈ Θ; (4.60)

(ii) there exist matrices P (θ(k)) = PT (θ(k)) =
∑J

j=1 ρj(θ(k))Pj > 0 and G of compatible dimensions such

that  P (θ(k)) AT (θ(k))GT

GA(θ(k)) G+GT − P (θ(k + 1))

 > 0, ∀θ ∈ Θ (4.61)

or equivalently,  Pj AT
j G

T

GAj G+GT − Pi

 > 0, ∀i, j = 1, . . . , J ; (4.62)

Note that the inequality (4.61) is convex in the uncertain parameter vector θ(k), so that it is enough

to check its feasibility in the vertices of the PLDI (4.62).

(iii) there exists the inverse of a Lyapunov matrix, say Q(θ(k)) = QT (θ(k)) =
∑J

j=1 ρj(θ(k))Qj > 0, such

that  Q(θ(k)) Q(θ(k + 1))AT (θ(k))

A(θ(k))Q(θ(k + 1)) Q(θ(k + 1))

 > 0, ∀θ ∈ Θ; (4.63)

(iv) there exist matrices Q(θ(k)) = QT (θ(k)) =
∑J

j=1 ρj(θ(k))Qj > 0 and H of compatible dimensions such

that H +HT −Q(θ(k)) HTAT (θ(k))

A(θ(k))H Q(θ(k + 1))

 > 0, ∀θ ∈ Θ (4.64)

or equivalently, H +HT −Qj HTAT
j

AjH Qi

 > 0, ∀i, j = 1, . . . , J. (4.65)
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Note that the inequality (4.64) is convex in the uncertain parameter vector θ(k), so that it is enough

to check its feasibility in the vertices of the PLDI (4.65).

Proof: Using the Schur complement lemma, the matrix inequality

W̄ (θ(k), θ(k + 1)) ≜

 −X(θ(k)) AT (θ(k))X(θ(k + 1))

X(θ(k + 1))A(θ(k)) −X(θ(k + 1))

 < 0 (4.66)

is equivalent to (4.53). From Lemma 22, the matrix inequality

W̄G(θ(k), θ(k + 1)) ≜

 X(θ(k)) AT (θ(k))X(θ(k + 1))

X(θ(k + 1))A(θ(k)) G+GT −X(θ(k + 1))

 > 0 (4.67)

is equivalent to (4.66) and (4.53). Now, replacing X(·) by P (·), the other parts are nothing but an extension

of Lemma 22. □

Comment 5. Note that there is no product terms of Pj and Aj and this property plays a crucial role in

controller synthesis problems, which is addressed in the remainder of this section.

4.3.2 SOF Control via LMI Optimization for a Certain Class of Lur’e Systems

under Polytopic Uncertainties–Case I

In the Absence of Feedback-Connected Nonlinearities

In order to apply the stabilizing output-feedback to the perturbed system with uncertainties, and to solve

SOF controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = A(θ(k))x(k) +Buu(k)

y(k) = Cy(θ(k))x(k),
(4.68)

where x(k) ∈ Rn is the state variable and u(k) ∈ Rnu is the control input at time k ∈ Z+. In addition,

θ(k) ∈ Θ represents the parametric uncertainty of the system and the subset Θ ⊂ Rnθ is assumed to be

closed and compact. Assume that the mappings A : Θ → Rn×n and Cy : Θ → Rny×n are continuous in

θ(k) ∈ Θ which is Lebesgue measurable for all k ∈ Z+.

Definition 12. (Polytopic LDIs [100]) Of particular interest will be the systems in which the realization
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matrices of the system are affinely dependent on the parametric uncertainty function θ : Z+ → Θ:

A(θ)

Cy(θ)

 ∈ ΩAC ≜ Co


 A1

Cy,1

 , · · · ,

AnJ

Cy,J


 = Co(Ωv

AC), ∀θ ∈ Θ, (4.69)

where J = 2nθ and the uncertain parameter θ is assumed to be time-varying in general and the time-

dependence notation is dropped for convenience. In other words,

Π(θ) =
J∑

i=1

ρi(θ)Πi for each Π ∈ {A,Cy}, (4.70)

where
∑J

i=1 ρi(θ) = 1 and ρi(θ) ∈ [0, 1] for all θ ∈ Θ and each index i = 1, . . . , J . Then, the system (4.68)

is referred to as a convex parameter-dependent model.

Now, consider the SOF controller synthesis problem for the system (4.68) with (i) a single (or common) and

(ii) parameter-dependent Lyapunov functions.

A. With a common (simultaneous) Lyapunov function

For a certain class of state-space representation used for describing the system, a sufficient LMI condition

for the original non-convex feasibility problem for SOF control, which has been derived in [24], was introduced

in Section 3.4.1.

Proposition 20. (Robust stabilizing SOF control) Consider a particular state-space representation for the

system where the uncertain system realization (A(θ), Cy(θ)), which is represented as a PLDI (4.69), and Bu

is assumed to be full column rank. If there exist the matrices Y,M,N such that the following two matrix

inequalities and one matrix equality constraint

Y Ai +AT
i Y +BuNCy,i + CT

y,iN
TBT

u < 0

Y > 0 (4.71)

BuM = Y Bu

are feasible for all i = 1, . . . , J , then a stabilizing SOF control gain Ko is M−1N , i.e., the feedback control

signal

u(k) = M−1Ny(k)

stabilizes the system (4.68) whose uncertain model is represented by the PLDI in (4.69). In other words, the

existence of the matrices satisfying (4.71) is sufficient for the GUAS of the system (4.68) with a common
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Lyapunov matrix Y , where the quadratic Lyapunov function is V (ξ) = ξTY ξ, and Ko = M−1N .

Proof: The proofs for the previous two propositions are given in [24], which requires simple linear algebra.

□

Proposition 21. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko for X = XT > 0 and Y = Y T > 0 if and only if X and Y satisfy the following two

matrix inequalities for all i = 1, . . . , J :

B⊥
u (AiX +XAT

i )(B
⊥
u )T < 0, (4.72)

(CT
y,i)

⊥(AT
i Y + Y Ai)((C

T
y,i)

⊥)T < 0, (4.73)

where XY = Y X = I and (·)⊥ indicates a full rank matrix orthogonal to (·).

The importance of this result lies in the fact that robust quadratic stability can be concluded from a finite

test of matrix inequalities whenever the uncertainty polytope consists of a finite number of vertices. The

next lemma gives a more general, but complex, tool to design a SOF controller while lemma itself is about

the existence of a stabilizing static feedback control law. The next proposition is also a variation of the SOF

scheme, which was derived in [41], introduced in Section 3.4.1.

B. With parameter-dependent Lyapunov function (PDLF)

Consider a PLDF (4.52) for SOF controller synthesis problems of the system (4.68). From the results

in Section 4.3.1, similarly to the case with a common Lyapunov function, two SOF control schemes can be

derived.

Lemma 24. (Robust stabilizing SOF control) Consider a particular state-space representation for the system

where the uncertain system realization (A(θ(k)), Cy(θ(k))), which is represented as a PLDI (4.69), and Bu

is assumed to be full column rank. If there exist the matrices P (θ(k)) =
∑J

j=1 ρj(θ(k))Pj, G, M , and N

such that the following matrix inequalities and a matrix equality

 Pj AT
j G

T + CT
y,jN

T
g BT

u

GAj +BuNgCy,j G+GT − Pi

 > 0

Pj , Pi > 0 (4.74)

BuMg = GBu

are feasible for all i, j = 1, . . . , J , then a stabilizing SOF control gain Ko is M−1
g Ng, i.e., the feedback control
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signal

u(k) = M−1
g Ngy(k)

stabilizes the system (4.68) whose uncertain model is represented by the PLDI (4.69). In other words,

the existence of the decision matrix variables satisfying (4.74) is sufficient for the GUAS of the system

(4.68) with time-varying parameter dependent Lyapunov matrix P (θ(k)) =
∑T

j=1 ρj(θ(k))Pj, where the

quadratic Lyapunov function is V (ξ(k)) = ξ(k)TP (θ(k))ξ(k), and the output-feedback gain matrix factorized

as Ko = M−1
g Ng.

Proof: Replacing A(θ(k)) by A(θ(k)) +BuKoCy(θ(k)) in (4.61) and (4.62), one can conclude that if there

exist Pj = PT
j > 0 for j = 1, . . . , J , G, and Ko such that

 Pj AT
j G

T + CT
y,jK

T
o B

T
uG

T

GAj +GBuKoCy,j G+GT − Pi

 > 0 (4.75)

holds for all i, j = 1, . . . , J , then u(k) = Koy(k) is a stabilizing control law. When Bu is full column rank,

the feasibility of (4.75) reduces as (4.74). □

The next lemma gives a more general, but complex, tool to design a SOF controller while lemma itself is

about the existence of a stabilizing static feedback control law.

Lemma 25. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko such that the closed loop system (4.68) is stabilized with the control law u(k) = Koy(k)

if and only if there exist the matrices G, G−1, P = PT =
∑J

j=1 ρj(θ(k))Pj > 0, and H such that the following

matrix inequalities hold for all i, j = 1, . . . , J :


I 0 0

0 B⊥
u 0

0 0 I



H +HT − P−1

j HTAT
j 0

AjH G−1 +G−T G−1

0 G−T P−1
i



I 0 0

0 (B⊥
u )T 0

0 0 I

 > 0, (4.76)

(CT
y,j)

⊥ 0

0 I


 Pj AT

j G
T

GAj G+GT − Pi


((CT

y,j)
⊥)T 0

0 I

 > 0, (4.77)

where (·)⊥ indicates a full rank matrix orthogonal to (·).
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Proof: The matrix inequality (4.75) can be rewritten as the following two equivalent

Ḡ
(
Aj(Pj , Pi, G) + B̄uKoC̄y,j

)
+
(
AT

j (Pj , Pi, G) + C̄T
y,jK

T
o B̄

T
u

)
ḠT > 0 ∀i, j; (4.78)(

Aj(Pj , Pi, G) + B̄uKoC̄y,j

)
Ḡ−T + Ḡ−1

(
AT

j (Pj , Pi, G) + C̄T
y,jK

T
o B̄

T
u

)
> 0 ∀i, j, (4.79)

where

Aj(Pj , Pi, G) ≜

 1
2Pj 0

Aj I − 1
2G

−1Pi

 , Ḡ ≜

I 0

0 G

 , B̄u ≜

 0

Bu

 , C̄y,j ≜
[
Cy,j 0

]
. (4.80)

Using the coupled LMI formulation for stabilizing SOF control, there exists a SOF control gain Ko satisfying

the inequality (4.75) with some Pj , Pi, and G if and only if Pj , Pi, and G satisfy the following two inequalities

for each index pair (i, j):

B̄⊥
u

(
Aj(Pj , Pi, G)Ḡ−T + Ḡ−1AT

j ((Pj , Pi, G)
)
(B̄⊥

u )T > 0, (4.81)

(C̄T
y,j)

⊥ (ḠAj(Pj , Pi, G) +AT
j (Pj , Pi, G)ḠT

)
((C̄T

y,j)
⊥)T > 0. (4.82)

The second matrix inequality (4.82) can be rewritten as (4.77). The first matrix inequality (4.81) can be

rewritten as I 0

0 B⊥
u


Pj AT

j

Aj G−1 +G−T −G−1PiG
−T


I 0

0 (B⊥
u )T

 > 0. (4.83)

Applying the Schur complement lemma and taking a congruence transformation results in the equivalent

matrix inequality: 
I 0 0

0 B⊥
u 0

0 0 I



Pj AT

j 0

Aj G−1 +G−T G−1

0 G−T P−1
i



I 0 0

0 (B⊥
u )T 0

0 0 I

 > 0. (4.84)

With simple algebraic manipulation, the inequality (4.84) can be rewritten as


I 0 0

0 B⊥
u 0

0 0 I



Pj 0 0

0 I 0

0 0 I




P−1
j P−1

j AT
j 0

AjP
−1
j G−1 +G−T G−1

0 G−T P−1
i



Pj 0 0

0 I 0

0 0 I



I 0 0

0 (B⊥
u )T 0

0 0 I

 > 0, (4.85)
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which is equivalent to the inequality


Pj 0 0

0 B⊥
u 0

0 0 I




P−1
j P−1

j AT
j 0

AjP
−1
j G−1 +G−T G−1

0 G−T P−1
i



Pj 0 0

0 (B⊥
u )T 0

0 0 I

 > 0. (4.86)

Now, taking a congruence transformation with the transformation matrix diag{P−1
j , I, I}, an equivalent LMI

condition for P−1
j , P−1

i , and G−1 is derived:


I 0 0

0 B⊥
u 0

0 0 I




P−1
j P−1

j AT
j 0

AjP
−1
j G−1 +G−T G−1

0 G−T P−1
i



I 0 0

0 (B⊥
u )T 0

0 0 I

 > 0. (4.87)

To remove the product terms of Aj and Pj , the results of Lemma 22 are adapted. □

Robust quadratic stability can be concluded from a finite test of matrix inequalities whenever the uncertainty

polytope consists of a finite number of vertices and further, if the uncertain parameter θ is time-invariant

then the subscript i is replaced by j.

In the Presence of Feedback-Connected Nonlinearities

In order to apply the stabilizing output-feedback to the perturbed system with uncertainties, and to solve

SOF controller synthesis problems using LMIs, consider the system with a control affine term and feedback

connected nonlinearity ϕ ∈ Φ̄α
ab

x(k + 1) = A(θ(k))x(k) +Buu(k) +Bpϕ(k, x(k))

y(k) = Cy(θ(k))x(k),
(4.88)

where x(k) ∈ Rn is the state and u(k) ∈ Rnu is the control input at time k ∈ Z+. In addition, θ(k) ∈ Θ

represents the parametric uncertainty of the system and the subset Θ ⊂ Rnθ is assumed to be closed and

compact. It is assumed that the mappings A : Θ → Rn×n and Cy : Θ → Rny×n satisfy the PLDI (4.69).

A. With a common (simultaneous) Lyapunov function

Recalling the stability condition for a Lur’e system with the maximum sector bound α = 1√
γ in (4.19),
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we have the following matrix inequality for the system (4.88) provided no feedback control, i.e., u(k) ≡ 0:



P 0 AT (θ(k))P CT
q

0 I BT
p P 0

PA(θ(k)) PBp P 0

Cq 0 0 γI


> 0. (4.89)

Now, replacing A(θ(k)) by A(θ(k))+BuKoCy(θ(k)) in the LMI constraint (4.89) and assuming the PLDI

relation (4.69), if there exists a SOF control gain matrix Ko satisfying (4.89) for some P = PT > 0 then

the closed-loop system is stabilized by that control law u(k) = Koy(k). The LMI constraint (4.89) can be

rewritten in the standard form of SOF control problem as (4.2):

P̄ (Āj + B̄uKoC̄y,j) + (Āj + B̄u,jKoC̄y)
T P̄ < 0, (4.90)

where

Āj ≜



− 1
2I 0 0 0

0 −1
2I 0 0

Aj Bp − 1
2I 0

Cq 0 0 −1
2γI


, B̄u ≜



0

0

Bu

0


, C̄y,j ≜

[
Cy,j 0 0 0

]
, (4.91)

P̄ ≜



P 0 0 0

0 I 0 0

0 0 P 0

0 0 0 I


. (4.92)

Similarly to the case without the feedback connected nonlinear mapping, for a certain class of state-space

representation used for describing the system, a sufficient LMI condition can be derived and a more general,

but complex, tool to design a SOF controller with the condition for existence of such a stabilizing static

feedback control law is also formulated.

Lemma 26. (Robust stabilizing SOF control) Consider a particular state-space representation for the system

where the uncertain system realization (A(θ), Cy(θ)), which is represented as a PLDI (4.69), and Bu is

assumed to be full column rank. If there exist the matrices P , M , and N such that the following two matrix
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inequalities and one matrix equality constraint

P̄ Āj + ĀT
j P̄ + B̄uNC̄y,j + C̄T

y,jN
T B̄T

u < 0

P > 0 (4.93)

BuM = PBu

are feasible, then a stabilizing SOF control gain Ko is M−1N , i.e., the feedback control signal

u(k) = M−1Ny(k)

stabilizes the system (4.88) whose uncertain model is represented by the PLDI (4.69). In other words, the

existence of the matrices satisfying (4.93) is sufficient for the GUAS of the system (4.88) with the same

Lyapunov matrix P , where the quadratic Lyapunov function is V (ξ) = ξTPξ, and Ko = M−1N .

Lemma 27. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko for P = PT > 0 if and only if P satisfies the following two matrix inequalities for

all j = 1, . . . , J :

B̄⊥
u (ĀjP̄

−1 + P̄−1ĀT
j )(B̄

⊥
u )T < 0, (4.94)

(C̄T
y,j)

⊥(ĀT
j P̄ + P̄ Āj)((C̄

T
y,j)

⊥)T < 0, (4.95)

where (·)⊥ indicates a full rank matrix orthogonal to (·).

Robust quadratic stability can be concluded from a finite test of matrix inequalities whenever the uncertainty

polytope consists of a finite number of vertices.

B. With parameter-dependent Lyapunov function (PDLF)

Consider a PLDF (4.52) for SOF controller synthesis problems of the system (4.88). Two different SOF

controller design schemes previously introduced are also considered.

Theorem 33. (Robust stabilizing SOF control) Consider a particular state-space representation for the

system (4.88) where the uncertain system realization (A(θ(k)), Cy(θ(k))), which is represented as a PLDI

(4.69), and Bu is assumed to be full column rank. Then if there exist the matrices P (θ(k)) =
∑J

j=1 θj(k)Pj,
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G, M , and N such that the following matrix inequalities and matrix equality



Pj 0 AT
j G

T + CT
y,jN

T
g BT

u CT
q

0 I BT
p G

T 0

GAj +BuNgCy,j GBp G+GT − Pi 0

Cq 0 0 γI


> 0

Pj > 0 (4.96)

BuMg = GBu

are feasible for all i, j = 1, . . . , J , then a stabilizing SOF control gain Ko is M−1
g Ng, i.e., the feedback control

signal

u(k) = M−1
g Ngy(k)

stabilizes the system (4.88) whose uncertain model is represented by the PLDI (4.69). In other words, the

existence of the decision matrix variables satisfying (4.96) is sufficient for the GUAS of the system (4.88)

with parameter dependent Lyapunov matrix P (θ(k)), where the quadratic Lyapunov function is V (ξ(k)) =

ξ(k)TP (θ(k))ξ(k), and the output-feedback gain matrix which is factorized as Ko = M−1
g Ng.

Proof: Replacing A(θ(k)) by A(θ(k)) + BuKoCy(θ(k)) in (4.89), and H by G, one can conclude that if

there exist Pj = Pj > 0 for each j = 1, . . . , J , G, and Ko such that the matrix inequality



Pj 0 AT
j G

T + CT
y,jK

T
o B

T
uG

T+ CT
q

0 I BT
p G

T 0

GAj +GBuKoCy,j GBp G+GT − Pi 0

Cq 0 0 γI


> 0 (4.97)

holds for all i, j = 1, . . . , J , then u(k) = Koy(k) is a stabilizing control law. The inequality (4.97) reduces

as the constraints in (4.96), which consist of linear matrix inequalities and equality, provided that Bu has

full column rank. □

Theorem 34. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko if and only if there exist the matrices G, G−1, Q(θ(k)) = QT (θ(k)) =
∑J

j=1 ρj(θ(k))Qj >
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0, and H such that the following matrix inequalities hold for all i, j = 1, . . . , J :



I 0 0 0 0

0 I 0 0 0

0 0 B⊥
u,j 0 0

0 0 0 I 0

0 0 0 0 I





H +HT − P−1
j 0 HTAT

j HCT
q 0

0 I BT
p 0 0

AjH Bp G−1 +G−T 0 G−1

CqH 0 0 γI 0

0 0 G−T 0 P−1
i





I 0 0 0 0

0 I 0 0 0

0 0 (B⊥
u,j)

T 0 0

0 0 0 I 0

0 0 0 0 I


> 0,

(4.98)

(CT
y )

⊥ 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I





Pj 0 AT
j G

T CT
q

0 I BT
p G

T 0

GAj GBp G+GT − Pi 0

Cq 0 0 γI





((CT
y )

⊥)T 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


> 0,

(4.99)

where (·)⊥ indicates a full rank matrix orthogonal to (·).

Proof: For the proof of this theorem, simple algebra is only required. Detailed computations are left for

the reader to derive. □

4.3.3 SOF Control via LMI Optimization for a Certain Class of Lur’e Systems

under Polytopic Uncertainties–Case II

In the Absence of Feedback-Connected Nonlinearities

In order to apply the stabilizing output-feedback to the perturbed system with parameteric uncertainties,

and to solve SOF controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = A(θ(k))x(k) +Bu(θ(k))u(k)

y(k) = Cyx(k),
(4.100)

where x(k) ∈ Rn is the state and u(k) ∈ Rnu is the control input at time k ∈ Z+. In addition, θ(k) ∈ Θ

represents the parametric uncertainty of the system and the subset Θ ⊂ Rnθ is assumed to be closed and

compact. It is assumed that the mappings A : Θ → Rn×n and Bu : Θ → Rn×nu are continuous in θ ∈ Θ

which is Lebesgue measurable.

141



Definition 13. (Polytopic LDIs [100]) Of particular interest will be the systems in which the realization

matrices of the system are affinely dependent on the parametric uncertainty function θ : Z+ → Θ.

[
A(θ) Bu(θ)

]
∈ ΩAB ≜ Co

{[
A1 Bu,1

]
, · · · ,

[
AJ BJ

]}
= Co(Ωv

AB) ,∀θ ∈ Θ, (4.101)

where J = 2nθ and the uncertain parameter θ is assumed to be time-varying in general and the time-

dependence notation is dropped for convenience. In other words,

Π(θ) =
J∑

i=1

ρj(θ)Πi for each Π ∈ {A,Bu}, (4.102)

where
∑J

i=1 ρi(θ) = 1, ρi(θ) ∈ [0, 1] for all θ ∈ Θ and each i = 1, . . . , J . Then, the system (4.100) is referred

to as a convex parameter-dependent model.

Now, consider the SOF controller synthesis problem for the system (4.100) with (i) a single (or common)

and (ii) parameter-dependent Lyapunov functions. All of the LMI formulations for SOF control are similar

to the results in Section 4.3.2.

A. With a common (simultaneous) Lyapunov function

For a certain class of state-space representation used for describing the system, a sufficient LMI condition

for the original non-convex feasibility problem for SOF control, which has been derived in [24], was introduced

in Section 3.4.1.

Proposition 22. (Robust stabilizing SOF control [24]) Consider a particular state-space representation for

the system (4.100) where the uncertain system realization (A(θ(k)), Bu(θ(k))), which is represented as a

PLDI (4.101), and Cy is assumed to be full row rank. If there exist the matrices X,M,N such that the

following two matrix inequalities and one matrix equality constraint

AiX +XAT
i +Bu,iNCy + CT

y N
TBT

u,i < 0

X > 0 (4.103)

MCy = CyX

are feasible for all i = 1, . . . , J , then a stabilizing SOF control gain Ko is NM−1, i.e., the feedback control

signal

u(k) = NM−1y(k)
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stabilizes the system (4.100) whose uncertain model is represented by the PLDI (4.101). In other words, the

existence of the matrices satisfying (4.103) is sufficient for the GUAS of the system (4.100) with the same

Lyapunov matrix X, where the quadratic Lyapunov function is V (ξ) = ξTXξ, and Ko = M−1N .

The next lemma gives a more general, but complex, tool to design a SOF controller while lemma itself is

about the existence of a stabilizing static feedback control law.

Proposition 23. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko for X = XT > 0 and Y = Y T > 0 if and only if X and Y satisfy the following two

matrix inequalities for all i = 1, . . . , J :

B⊥
u,i(AiX +XAT

i )(B
⊥
u,i)

T < 0, (4.104)

(CT
y )

⊥(AT
i Y + Y Ai)((C

T
y )

⊥)T < 0, (4.105)

where XY = Y X = I and (·)⊥ indicates a full rank matrix orthogonal to (·).

B. With parameter-dependent Lyapunov function (PDLF)

Consider a PLDF (4.52) for SOF controller synthesis problems of the system (4.100). From the results

in Section 4.3.1, similarly to the case with a common Lyapunov function, two SOF control schemes can be

derived.

Theorem 35. (Robust stabilizing SOF control) Consider a particular state-space representation for the

system (4.100) where the uncertain system realization (A(θ(k)), Bu(θ(k))), which is represented as a PLDI

(4.101), and Cy is assumed to be full row-rank. If there exist the matrices Q(θ(k)) =
∑J

j=1 ρj(θ(k))Qj, G,

Mg, and Ng such that the following matrix inequalities and a matrix equality

 G+GT −Qj GTAT
j + CT

y N
T
g BT

u,j

AjG+Bu,jNgCy Qi

 > 0

Qj > 0 (4.106)

MgCy = CyG

are feasible for all i, j = 1, . . . , J , then a stabilizing SOF control gain Ko is NgM
−1
g , i.e., the feedback control

signal

u(k) = NgM
−1
g y(k)

stabilizes the system (4.100) whose uncertain model is represented by the PLDI (4.101). In other words,
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the existence of the decision matrix variables satisfying (4.106) is sufficient for the GUAS of the system

(4.100) with parameter dependent Lyapunov matrix Q−1(θ(k)), where the quadratic Lyapunov function is

V (ξ(k)) = ξ(k)TQ−1(θ(k))ξ(k), and the output-feedback gain matrix which is factorized as Ko = NgM
−1
g .

Proof: Replacing A(θ(k)) by A(θ(k)) +Bu(θ(k))KoCy in (4.63) and (4.64), and H by G, one can conclude

that if there exist Qj = Qj > 0, G, and Ko such that

 G+GT −Qj GTAT
j +GTCT

y K
T
o B

T
u,j

AjG+Bu,jKoCyG Qi

 > 0 (4.107)

hold then u(k) = Koy(k) is a stabilizing control law. The inequality (4.107) reduces as the constraints in

(4.106), which consist of linear matrix inequalities and equality, provided that Cy has full row rank. □

The next theorem gives a more general, but complex, tool to design a SOF controller while lemma itself is

about the existence of a stabilizing static feedback control law.

Theorem 36. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko if and only if there exist the matrices G, G−1, Q(θ(k)) = QT (θ(k)) =
∑J

j=1 ρj(θ(k))Qj >

0, and H such that the following matrix inequalities hold for all i, j = 1, . . . , J :

I 0

0 B⊥
u,j


G+GT −Qj GTAT

j

AjG Qi


I 0

0 (B⊥
u,j)

T

 > 0, (4.108)


(CT

y )
⊥ 0 0

0 I 0

0 0 I



G−1 +G−T AT

j H
T G−T

HAj H +HT −Q−1
i 0

G−1 0 Q−1
j



((CT

y )
⊥)T 0 0

0 I 0

0 0 I

 > 0, (4.109)

where (·)⊥ indicates a full rank matrix orthogonal to (·).

Proof: The matrix inequality (4.107) can be rewritten as the two equivalent inequalities which are equivalent

each other:

(
Aj(Qj , Qi, G

−1) + B̄u,jKoC̄y

)
Ḡ+ ḠT

(
AT

j (Qj , Qi, G
−1) + C̄T

y K
T
o B̄

T
u,j

)
> 0 ∀i, j; (4.110)

Ḡ−T
(
Aj(Qj , Qi, G

−1) + B̄u,jKoC̄y

)
+
(
AT

j (Qj , Qi, G
−1) + C̄T

y K
T
o B̄

T
u,j

)
Ḡ−1 > 0 ∀i, j, (4.111)
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where

Aj(Qj , G
−1) ≜

I − 1
2QjG

−1 0

Aj
1
2Qi

 , Ḡ ≜

G 0

0 I

 , B̄u,j ≜

 0

Bu,j

 , C̄y ≜
[
Cy 0

]
. (4.112)

The coupled LMI formulation for stabilizing SOF control implies that there exists a SOF control gain Ko

satisfying the inequality (4.107) with some Qj , Qi, and G if and only if Qj , Qi, and G satisfy the following

two inequalities for each index pair (i, j):

B̄⊥
u,j

(
Aj(Qj , G

−1)Ḡ+ ḠTAj(Qj , G
−1)
)
(B̄⊥

u,j)
T < 0, (4.113)

(C̄T
y )

⊥ (Ḡ−TAj(Qj , G
−1) +Aj(Qj , G

−1)Ḡ−1
)
((C̄T

y )
⊥)T < 0. (4.114)

The first matrix inequality (4.113) can be rewritten as (4.130). The second matrix inequality (4.114) can be

rewritten as (CT
y )

⊥ 0

0 I


G−1 +G−T −G−TQjG

−1 AT
j

Aj Qi


((CT

y )
⊥)T 0

0 I

 > 0. (4.115)

The Schur complement lemma results in the equivalent matrix inequality


(CT

y )
⊥ 0 0

0 I 0

0 0 I



G−1 +G−T AT

j G−T

Aj Qi 0

G−1 0 Q−1
j



((CT

y )
⊥)T 0 0

0 I 0

0 0 I

 > 0. (4.116)

With simple algebraic manipulation, the inequality (4.116) can be rewritten as


(CT

y )
⊥ 0 0

0 I 0

0 0 I



I 0 0

0 Qi 0

0 0 I



G−1 +G−T AT

j Q
−1
i G−T

Q−1
i Aj Q−1

i 0

G−1 0 Q−1
j



I 0 0

0 Qi 0

0 0 I



((CT

y )
⊥)T 0 0

0 I 0

0 0 I

 > 0,

(4.117)

which is equivalent to the inequality


(CT

y )
⊥ 0 0

0 Qi 0

0 0 I



G−1 +G−T AT

j Q
−1
i G−T

Q−1
i Aj Q−1

i 0

G−1 0 Q−1
j



((CT

y )
⊥)T 0 0

0 Qi 0

0 0 I

 > 0. (4.118)

Taking a congruence transformation with the transformation matrix diag{I,Q−1
i , I}, an equivalent LMI
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condition for Q−1
j , Q−1

i , and G−1 is derived:


(CT

y )
⊥ 0 0

0 I 0

0 0 I



G−1 +G−T AT

j Q
−1
i G−T

Q−1
i Aj Q−1

i 0

G−1 0 Q−1
j



((CT

y )
⊥)T 0 0

0 I 0

0 0 I

 > 0. (4.119)

Lemma 22 can be used to derive another equivalent linear matrix inequality (4.131) with the introduction

of a new matrix decision variable H. □

In the Presence of Feedback-Connected Nonlinearities

In order to apply the stabilizing output-feedback to the perturbed system with uncertainties, and to solve

SOF controller synthesis problems using LMIs, consider the system with a control affine term

x(k + 1) = A(θ(k))x(k) +Bu(θ(k))u(k) +Bpϕ(k, x(k))

y(k) = Cyx(k),
(4.120)

where x(k) ∈ Rn is the state variable and u(k) ∈ Rnu is the control input at time k ∈ Z+. In addition,

θ(k) ∈ Θ represents the parametric uncertainty of the system and the subset Θ ⊂ Rnθ is assumed to be

closed and compact. It is assumed that the mappings A : Θ → Rn×n and Bu : Θ → Rn×nu are continuous

in θ(k) ∈ Θ which is Lebesgue measurable for all k ∈ Z+ and satisfy the PLDI (4.101).

A. With a common (simultaneous) Lyapunov function

Recalling the stability condition for a Lur’e system with the maximum sector value α = 1√
γ in (4.19), we

have the following matrix inequality for the system the system (4.120), provided no feedback control, i.e.,

u(k) ≡ 0: 

−Q 0 QAT (θ(k)) QCT
q

0 −I BT
p 0

A(θ(k))Q Bp −Q 0

CqQ 0 0 −γI


< 0. (4.121)

Replacing A(θ(k)) by A(θ(k)) + Bu(θ(k))KoCy in the LMI constraint (4.121) and assuming that the

PLDI relation (4.101), if there exists a SOF control gain matrix Ko satisfying (4.121) for some Q = QT > 0

then the closed-loop system is stabilized by that control law u(k) = Koy(k). The LMI constraint (4.121)

146



can be rewritten in the same form as (3.176):

(Āj + B̄u,jKoC̄y)Q̄+ Q̄(Āj + B̄u,jKoC̄y)
T < 0, (4.122)

where

Āj ≜



− 1
2I 0 0 0

0 −1
2I 0 0

Aj Bp − 1
2I 0

Cq 0 0 −1
2γI


, B̄u,j ≜



0

0

Bu,j

0


, C̄y ≜

[
Cy 0 0 0

]
, (4.123)

Q̄ ≜



Q 0 0 0

0 I 0 0

0 0 Q 0

0 0 0 I


. (4.124)

Similarly to the case without feedback-connected nonlinear mapping, for a certain class of state-space

representation used for describing the system, a sufficient LMI condition can be derived and a more general,

but complex, tool to design a SOF controller with the condition for existence of such control law is also

formulated.

Theorem 37. (Robust stabilizing SOF control) Consider a particular state-space representation for the

system (4.120) where the uncertain system realization (A(θ(k)), Bu(θ(k))), which is represented as a PLDI

(4.101), and Cy is assumed to be full row rank. If there exist the matrices X,M,N such that the following

two matrix inequalities and one matrix equality constraint

ĀjQ̄+ Q̄AT
j + B̄u,jNC̄y + C̄T

y N
T B̄T

u,i < 0

Q̄ > 0 (4.125)

MCy = CyQ

are feasible, then a stabilizing SOF control gain Ko is NM−1, i.e., the feedback control signal

u(k) = NM−1y(k)

stabilizes the system (4.120) whose uncertain model is represented by the PLDI (4.101). In other words, the
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existence of the matrices satisfying (4.103) is sufficient for the GUAS of the system (4.120) with the same

Lyapunov matrix Q̄, where the quadratic Lyapunov function is V (ξ) = ξT Q̄−1ξ, and Ko = M−1N .

Theorem 38. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko for Q = QT > 0 if and only if Q satisfies the following two matrix inequalities for

all j = 1, . . . , J :

B̄⊥
u,j(ĀjQ̄+ Q̄ĀT

j )(B̄
⊥
u,j)

T < 0, (4.126)

(C̄T
y )

⊥(ĀT
j Q̄

−1 + Q̄−1Āj)((C̄
T
y )

⊥)T < 0, (4.127)

where (·)⊥ indicates a full rank matrix orthogonal to (·).

B. With parameter-dependent Lyapunov function (PLDF)

Now consider a PLDF (4.52) for SOF controller synthesis problems of the system (4.120). Two different

previously introduced SOF controller design schemes are also considered.

Theorem 39. (Robust stabilizing SOF control) Consider a particular state-space representation for the

system (4.120) where the uncertain system realization (A(θ(k)), Bu(θ(k))) which is represented as a PLDI

(4.101) and Cy is assumed to be full row rank. If there exist the matrices Q(θ(k)) =
∑J

j=1 ρj(θ(k))Qj, G,

Mg, and Ng such that the following matrix inequalities and a matrix equality



G+GT −Qj 0 GTAT
j + CT

y N
T
g BT

u,j GCT
q

0 I BT
p 0

AjG+Bu,jNgCy Bp Qi 0

CqG 0 0 γI


> 0

Qj > 0 (4.128)

MgCy = CyG

are feasible for all i, j = 1, . . . , J , then a stabilizing SOF control gain Ko is N−1
g Mg, i.e., the feedback control

signal

u(k) = N−1
g Mgy(k)

stabilizes the system (4.120) whose uncertain model is represented by the PLDI (4.101). In other words,

the existence of the decision matrix variables satisfying (4.128) is sufficient for the GUAS of the system

(4.120) with parameter dependent Lyapunov matrix Q−1(θ(k)), where the quadratic Lyapunov function is
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V (ξ(k)) = ξ(k)TQ−1(θ(k))ξ(k), and the output-feedback gain matrix which is factorized as Ko = N−1
g Mg.

Proof: Replacing A(θ(k)) by A(θ(k)) +Bu(θ(k))KoCy in (4.121) and from the results in (iv) of Lemma 23

with replacing H by G, one can conclude that if there exist Qj = QT
j > 0, G, and Ko such that the matrix

inequality 

G+GT −Qj 0 GTAT
j +GCT

y K
T
o B

T
u,j+ GCT

q

0 I BT
p 0

AjG+Bu,jKoCyG Bp Qj 0

CqG 0 0 γI


> 0 (4.129)

holds for all i, j = 1, . . . , J , then u(k) = Koy(k) is a stabilizing control law. The inequality (4.129) reduces

as the constraints in (4.128) which consist of linear matrix inequalities and equality, provided that Cy has

full row rank. □

Theorem 40. (Robust stabilizing SOF control–Coupled LMI formulation) There exists a stabilizing SOF

control gain matrix Ko if and only if there exist the matrices G, G−1, Q(θ(k)) = QT (θ(k)) =
∑J

j=1 ρj(θ(k))Qj >

0, and H such that the following matrix inequalities hold for all i, j = 1, . . . , J :



I 0 0 0

0 I 0 0

0 0 B⊥
u,j 0

0 0 0 I





G+GT −Qj 0 GTAT
j GTCT

q

0 I BT
p 0

AjG Bp Qi 0

CqG 0 0 γI





I 0 0 0

0 I 0 0

0 0 (B⊥
u,j)

T 0

0 0 0 I


> 0,

(4.130)

(CT
y )

⊥ 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I





G−1 +G−T 0 AT
j H

T CT
q G−T

0 I BT
p H

T 0 0

HAj HBp H +HT −Q−1
i 0 0

Cq 0 0 γI 0

G−1 0 0 0 Q−1
j





((CT
y )

⊥)T 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I


> 0,

(4.131)

where (·)⊥ indicates a full rank matrix orthogonal to (·).

Proof: The proof is very similar to the one for Theorem 36.
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SOF Control Schemes α∗

Theorem 37 0.1412
Theorem 38 0.1641
Theorem 39 0.1433
Theorem 40 0.1641

Table 4.1: The maximal upper sector-bound achieved by the output-feedback control schemes

4.3.4 Illustrative Examples

We consider an illustrative example to show the applicability of the previously defined LMI synthesis

problems for a certain case of polytopic uncertain Lur’e systems where the feedback connected nonlinear

mapping is classified as ϕ ∈ Φ̄α
sb. Consider the system (4.120) whose uncertain system realization is defined

by the polytopic LDI:

A1 =


1.0996 −0.1103 0.0000

0.1103 1.0996 0.0000

0.0000 0.0000 0.9512

 , A2 =


0.8886 −0.7485 0.0000

0.7485 0.8886 0.0000

0.0000 0.0000 1.1052

 , A3 =


0.9087 −0.2811 0.0000

0.2811 0.9087 0.0000

0.0000 0.0000 1.2214

 ,

Bu,1 = Bu,2 = Bu,3 =


0.0238 −0.0216

0.0441 0.0843

0.0632 0.0398

 , Bp =


−0.1600 −1.2900

0.8100 0.9600

0.4100 0.6500

 ,

and

Cy,1 = Cy,2 = Cy,3 =


1 0 0

0 1 0

0 0 1

 , Cq =

1 0 0

0 1 0

 .

Suppose that the control objective is to maximize the upper bound α on the sector condition for the

feedback-connected nonlinear mapping ϕ ∈ Φ̄α
sb such that the closed-loop system (4.120) is stabilized by the

output-feedback control law u(k) = Koy(k). Then the optimal solutions K∗
o for the optimization problems

in Theorem 37, 38, 39, and 40 are obtained as

Theorem 37 :K∗
o =

−71.9574 −21.0591 19.3357

55.9335 3.1531 −27.0185

 , Theorem 38 : K∗
o =

−30.5649 0.9110 −0.6719

23.5970 −9.3111 −6.5752

 ,

Theorem 39 :K∗
o =

−67.2531 −24.0286 15.7645

53.2382 4.3839 −25.4228

 , Theorem 40 : K∗
o =

−9.4265 5.8384 −12.0600

6.6509 −12.2241 3.3370

 .
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Figure 4.3: Theorem 37
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Figure 4.4: Theorem 38
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Figure 4.6: Theorem 40

Figures 4.3, 4.4, 4.5, and 4.6 show the stability of the closed-loop systems with the output-feedback control

laws u(k) = K∗
oy(k) that are obtained from four different optimization problems in Theorems 37, 38, 39,

and 40. In the simulation, it is assumed that the feedback connected nonlinear functions satisfy the sector

condition ϕ ∈ Φ̄α∗

sb where the different upper bounds α∗ are given in Table 4.1.

4.4 Parameter Dependent State-Feedback Control via LMI

Optimization for Lur’e Systems with Uncertainties

The main idea in this section is to combine the parameter-dependent control Lyapunov functions, which

give a number of control gain matrices, with the well-known adaptive scheme to tune the absolute weights

of each control gain matrices. That is, the overall control law is a linear combination of a number of state
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Figure 4.7: Parameter-Dependent State-Feedback
Control for LTI systems

Figure 4.8: Parameter-Dependent State-Feedback
Control for Lur’e systems

feedbacks weighted by the time-varying parameters which are tuned by following the pre-determined adaptive

laws.

4.4.1 Continuous-Time LTI Systems with Time-Invariant Parametric

Uncertainty

Consider the continuous-time linear parameter-varying (LPV) systems given by

ẋ(t) = A(θ)x(t) +Buu(t) (4.132)

where the system matrix A depends on a time-invariant parameter θ ∈ Θ ⊂ Rnθ and Θ is assumed to be

compact. For example, if each element of the time-varying parameter vector θ = (θ1, · · · , θnθ
)T lies in a

bounded interval, θi ∈ [θi, θi], then a compact set Θ is a cube whose vertices can be defined by a finite set

Θv ≜
{
θv ∈ Θ|θv = (θv,1, · · · , θv,nθ

)T , where θv,i ∈ {θi, θi} for i = 1, . . . , nθ

}
. (4.133)
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In other words, Θ = Co(Θv). Further, the LPV system (4.132) is described by a polytopic parameter

dependent uncertain system such that there exists an unknown time-invariant vector-valued function ρ :

Θ → R2nθ

+ satisfying

A(θ) =
2nθ∑
i=1

ρi(θ)Ai,
2nθ∑
i=1

ρi(θ) = 1. (4.134)

That is, A(θ) ∈ Co{A1, · · · , A2nθ } for all θ(t) ∈ Θ. The control objective is to design a state-feedback

controller u(t) = K(θ)x(t) such that the closed-loop system

ẋ(t) = (A(θ) +BuK(θ))x(t) (4.135)

is stable for all θ ∈ Θ. K(θ) indicates a parameter dependent control gain matrix to be determined. Since

θ is assumed to be unknown and nonmeasurable, (4.135) can be considered as a closed-loop system with

an ideal linear parameter dependent control law u(t) = K(θ)x(t). To estimate the unknown time-invariant

parameter-dependent control gain matrix K(θ), consider the following closed-loop system dynamics with the

state-feedback control law where the control gain matrices are weighted by the parameter adaptation:

ẋ(t) =
(
A(θ) +BuK(θ̂(t))

)
x(t) (4.136)

=

(
A(θ) +Bu

2nθ∑
i=1

ρ̂i(t)Ki

)
x(t) (4.137)

=

(
2nθ∑
i=1

ρi(Ai +BuKi) +
2nθ∑
i=1

ρ̃i(t)(BuKi)

)
x(t), (4.138)

where

ρ̂(θ̂(t)) ≜
[
ρ̂i(θ̂(t)), · · · , ρ̂2nθ (θ̂(t))

]T
(4.139)

is a parameter adaptation vector to be determined and its estimation error is ρ̃(θ̃(t)) ≜ ρ̂(θ̂(t)) − ρ(θ) and

shortly ρ̃(t) = ρ̂(t)− ρ.

Theorem 41. (Adaptive laws with the predetermined state feedback control gains) Suppose that the para-

metric uncertainty ρ (or θ) is unknown and nonmeasurable, but is a constant ρ0 (or θ0). If an adaptation

parameter-dependent control gain matrix given in (4.137) satisfies the following matrix inequality for all

i = 1, . . . , 2nθ :

(Ai +BuKi)Q+Q(Ai +BuKi)
T < 0 (4.140)
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for some Q = QT > 0, with the following adaptive law

˙̂ρi(t) = −γix
T (t)

(
Q−1BuKi +KT

i B
T
uQ

−1
)
x(t) for i = 1, . . . , 2nθ , (4.141)

where γi indicates the adaptation gain for each index i, then the origin of the closed-loop system is GUAS.

Proof: To analyze the stability of the closed-loop system with a parameter estimation based state-feedback

control law u(t) = K(θ̂(t))x(t), consider the Lyapunov function:

V (x(t), ρ̃(t)) = xT (t)Q−1x(t) +
1

2
ρ̃T (t)Γ−1ρ̃(t), (4.142)

where Q = QT > 0 and Γ = diag{γi, · · · , γ2nθ } > 0. Its time-derivative becomes

d

dt
V (x(t), ρ̃(t)) = xT (t)Q−1

(
2nθ∑
i=1

ρi(Ai +BuKi) +

2nθ∑
i=1

ρ̃i(t)(BuKi)

)
x(t) (4.143)

+ xT (t)

(
2nθ∑
i=1

ρi(Ai +BuKi) +
2nθ∑
i=1

ρ̃i(t)(BuKi)

)T

Q−1x(t) + ρ̃T (t)Γ−1 ˙̃ρ(t). (4.144)

Therefore, if Ki and Q satisfy the inequality (4.140), and the adaptive law for ρ̂(t) is given by (4.141), then

there exists Π = ΠT > 0 such that

d

dt
V (x(t), ρ̃(t)) = −xT (t)Πx(t) ≤ 0 ∀x(t) ∈ Rn. (4.145)

This implies that, since the Lyapunov function V (x(t), ρ̃(t)) is positive semi-definite and non-increasing

along the vector field, x(t) and ρ̃(t) are bounded in the following sense:

V (x(t), ρ̃(t)) =

∥∥∥∥∥
[
x(t) ρ̃(t)

]T∥∥∥∥∥
2

(Q,Γ)

≜ ∥x(t)∥2Q + ∥ρ̃(t)∥2Γ ≤ V ((x(0), ρ̃(0))). (4.146)

Further, since V̈ is bounded such that V̇ is uniformly continuous it follows from Barbalat’s lemma [115, 56]

that x → 0 as t → ∞. Note that nothing can be concluded about the convergence of ρ̃(t), except that it is

bounded. □

The basic assumption in Theorem 41 is that the LTI plant is free of noise disturbances, unmodeled dynamics

and unknown nonlinearities. Because these assumptions will be easily violated in real applications, it is also

of interest to investigate the stability of the closed-loop system with the adaptive scheme for ρ (or θ) in the

presence of disturbances and unmodeled dynamics. Moreover, in the presence of input saturation constraints
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the global stabilizing property of an unlimited control input does not hold anymore in general. One can only

conclude the local stability for a specific domain of attraction. There are some modifications for the adaptive

law which that help us to derive such a region of attraction, with which an instability pheonomenon due to

the so-called parameter drift can be prevented.

Definition 14. (Projection operator [88]) Let consider the scalar-valued smooth convex function f : R → R

given by

f(θ) =
∥θ∥2 − θ20

ϵθθ20
,

which is a special form of ellipsoidal functions, where θ0 denotes the norm bound imposed on the unknown

parameter vector θ and ϵθ > 0 is the user-defined convergence tolerance. Define a convex compact set with

a smooth boundary given by

Ωc = {θ ∈ Rn
θ | f(θ) ≤ c}, 0 ≤ c ≤ 1,

whose convexity is guaranteed by the convexity of the function f since sublevel sets of a convex function are

convex for any value of c–but, the converse is not true, i.e., a function can have all its sublevel sets convex,

but not be a convex function. Provided that the true value of the parameter θ∗ ∈ Ω0, the projection operator

given by

Proj(θ, y) =

{
y − f(θ)⟨ ∇f

∥∇f∥ , y⟩
∇f

∥∇f∥ if f(θ) ≥ 0 and ∇fT y > 0

y else
(4.147)

prevents the potential parameter drift. Furthermore, the projection operator has the following property:

⟨θ − θ∗,Proj(θ, y)− y⟩ ≤ 0. (4.148)

Remark 12. (Projection-type adaptive law) From the property of the projection operator defined earlier, if

the parameter estimation θ starts inside the compact convex set Ω1 then it never leaves Ω1 when the adaptive

law is given by θ̇(t) = Proj(θ(t), y(t)). More specifically, the boundaries of outer set of Ω1 is defined by the

inequality ∥θ∥2 ≤ (1 + ϵθ)θ
2
0 so that ϵθ specifies the maximum tolerance one allows the parameter estimation

to exceed in terms of the maximum conservative value preselected by the users.

Example 11. The example is taken from [1]. Suppose that

A1 =


1 −1 0

1 1 0

0 0 0.5

 , A2 =


1.5 −7 0

7 1.5 0

0 0 1

 , A3 =


−0.5 −3 0

3 −0.5 0

0 0 2

 ,
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and

B1 = B2 = B3 =


0.2477 −0.1645

0.4070 0.8115

0.6481 0.4083

 ,

such that A(θ) = ρ1(θ)A1 + ρ2(θ)A2 + ρ3(θ)A3 with the true parameters ρ1 = 0.1, ρ2 = 0.7, and ρ3 = 0.2.

Then, the solutions of the LMI condition (4.140) are given by

Q =


168.2410 30.0532 117.7142

30.0532 387.2462 60.7599

117.7142 60.7599 444.5127

 ,

and

K1 =

7.5209 −10.4670 −4.2129

4.8160 2.7440 5.3709

 , K2 =

−10.1890 9.7062 4.2108

6.7711 −7.2755 −7.8200

 , K3 =

5.9821 1.2671 −4.8637

1.6403 −0.5531 −0.3588

 .
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Figure 4.9: Trajectory of solution for the closed-loop
system
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Figure 4.10: State-feedback control law u(k) =

K(θ̂)x(k) and the adaptatation parameters

4.4.2 Continuous Lur’e Systems with Time-Invariant Parametric Uncertainty

Consider the continuous Lur’e-LPV system given by

ẋ(t) = A(θ)x(t) +Bpϕ(t, x(t)) +Buu(t) (4.149)
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where the system matrix A depends on a time-invariant parameter θ ∈ Θ ⊂ Rnθ and Θ is assumed to

be compact. In addition, ϕ ∈ Φα
sb is a set of nonlinear functions defined previously. For example, if each

element of the time-invariant parameter vector θ = (θ1, · · · , θnθ
)T lies in a bounded interval, θi ∈ [θi, θi],

then a compact set Θ is a cube whose vertices can be defined by a finite set

Θv ≜
{
θv ∈ Θ|θv = (θv,1, · · · , θv,nθ

)T , where θv,i ∈ {θi, θi} for i = 1, . . . , nθ

}
. (4.150)

In other words, Θ = Co(Θv). Further, the LPV system (4.149) is described by a polytopic parameter

dependent uncertain system such that there exists an unknown time-invariant vector-valued function ρ :

Θ → R2nθ

+ satisfying

A(θ) =
2nθ∑
i=1

ρi(θ)Ai,
2nθ∑
i=1

ρi(θ) = 1. (4.151)

That is, A(θ) ∈ Co{A1, · · · , A2nθ } for all θ ∈ Θ. The control objective is to design a state-feedback controller

u(t) = K(θ)x(t) such that the closed-loop system

ẋ(t) = (A(θ) +BuK(θ))x(t) +Bpϕ(t, x(t)) (4.152)

is stable for all θ ∈ Θ. K(θ) indicates a parameter dependent control gain matrix to be determined. Since

θ is unknown and nonmeasurable, (4.152) can be considered as a closed-loop system with an ideal linear

parameter dependent control law u(t) = K(θ)x(t). Now, to estimate the unknown time-invariant parametric

uncertain matrix K(θ), consider the following closed-loop system dynamics with an estimator-based control

law:

ẋ(t) =
(
A(θ) +BuK(θ̂(t))

)
x(t) +Bpϕ(t, x(t)) (4.153)

=

(
A(θ) +Bu

2nθ∑
i=1

ρ̂i(t)Ki

)
x(t) +Bpϕ(t, x(t)) (4.154)

=

(
2nθ∑
i=1

ρi(Ai +BuKi) +
2nθ∑
i=1

ρ̃i(t)(BuKi)

)
x(t) +Bpϕ(t, x(t)), (4.155)

where

ρ̂(θ̂(t)) ≜
[
ρ̂i(θ̂(t)), · · · , ρ̂2nθ (θ̂(t))

]T
(4.156)

is a parameter adaptation vector to be determined and its estimation error is ρ̃(θ̃(t)) ≜ ρ̂(θ̂(t)) − ρ(θ) and

shortly ρ̃(t) = ρ̂(t)− ρ.

Theorem 42. Suppose that the parametric uncertainty ρ(t) is unknown, but a constant ρ0. If an adaptation
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parameter-dependent control gain matrix given in (4.154) satisfies the following matrix inequality for all

i = 1, . . . , 2nθ : 
(Ai +BuKi)Q+Q(Ai +BuKi)

T Bp QCT
q

BT
p −I 0

CqQ 0 −γI

 < 0 (4.157)

for some Q = QT > 0, with the following adaptive law

˙̂ρi(t) = −γix
T (t)

(
Q−1BuKi +KT

i B
T
uQ

−1
)
x(t) for i = 1, . . . , 2nθ , (4.158)

where γi indicates the adaptation gain for each index i, then the origin of the closed-loop Lur’e system is

GUAS.

Proof: To analyze the stability of the closed-loop system with a parameter estimation based state-feedback

control law u(t) = K(θ̂(t))x(t), consider the Lyapunov function:

V (x(t), ρ̃(t)) = xT (t)Q−1x(t) +
1

2
ρ̃T (t)Γ−1ρ̃(t), (4.159)

where Q = QT > 0 and Γ = diag{γi, · · · , γ2nθ } > 0. Its time-derivative is

d

dt
V (x(t), ρ̃(t)) = xT (t)Q−1

(
2nθ∑
i=1

ρi(Ai +BuKi) +

2nθ∑
i=1

ρ̃i(t)(BuKi) +Bpϕ(t, x(t))

)
x(t) (4.160)

+ xT (t)

(
2nθ∑
i=1

ρi(Ai +BuKi) +

2nθ∑
i=1

ρ̃i(t)(BuKi) +Bpϕ(t, x(t))

)T

Q−1x(t) + ρ̃T (t)Γ−1 ˙̃ρ(t).

(4.161)

If Ki and Q satisfy the inequality (4.157), and the adaptive law for ρ̂(t) is given by (4.158), then there exists

Π = ΠT > 0 such that

d

dt
V (x(t), ρ̃(t)) =

 x(t)

ϕ(t, x(t))


T

Π

 x(t)

ϕ(t, x(t))

 ≤ 0 ∀

 x(t)

ϕ(t, x(t))

 ∈ R2n. (4.162)

This implies that since the Lyapunov function V (x(t), ρ̃(t)) is positive semi-definite and non-increasing along

the vector field, x(t) and ρ̃(t) are bounded in the following sense:

V (x(t), ρ̃(t)) =

∥∥∥∥∥
[
x(t) ρ̃(t)

]T∥∥∥∥∥
2

(Q,Γ)

≜ ∥x(t)∥2Q + ∥ρ̃(t)∥2Γ ≤ V ((x(0), ρ̃(0))). (4.163)
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Further, from the property of the feedback-connected nonlinear mapping ϕ ∈ Φα one can see that ϕ(t, x(t))

is also bounded for all time history. Therefore, since V̈ is bounded such that V̇ is uniformly continuous

it follows from Barbalat’s lemma that x → 0 as t → ∞. Note that nothing can be concluded about the

convergence of ρ̃(t), except that it is bounded. □

Example 12. (Maximum upper sector bounds on the feedback connected unknown nonlinear function) The

control objective is to design a parameter dependent state-feedback controller that stabilizes the closed-loop

system in the presence of the feedback connected unknown nonlinear function whose input-output relation

is characterized by the sector bound. In this example, construct an optimal control law that maximizes the

degree of robustness α. Consider the same system introduced in Example 11. The numerical computation

shows that α∗ = 1/
√
γ∗ = 2.7959 × 104 where γ∗ = arg min γ subject to (4.157). Consider the system that

consists of the polytopic uncertain plant given in Example 11 and the nonlinear function ϕ(σ) = tanh(σ)

where the mapping is component-wise. Then the solutions are given by

Q =


152.8018 −70.1085 90.0603

−70.1085 400.4534 −97.0002

90.0603 −97.0002 446.7448

 , K1 =

−7.2529 −0.3559 1.3848

5.8120 −1.2764 −1.3064

 ,

K2 =

−19.8037 6.0846 5.3134

17.8497 −4.3926 −8.7829

 , K3 =

−6.3754 10.7042 3.6094

0.6269 −6.6817 −7.6672

 .
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Figure 4.11: Trajectory of solution for the closed-loop
system
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