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Abstract
Background: Opsin-based optogenetics has emerged as a powerful biomed-
ical tool using light to control protein conformation. Such capacity has been
initially demonstrated to control ion flow across the cell membrane, enabling
precise control of action potential in excitable cells such as neurons or muscle
cells. Further advancement in optogenetics incorporates a greater variety of
photoactivatable proteins and results in flexible control of biological processes,
such as gene expression and signal transduction, with commonly employed
light sources such as LEDs or lasers in optical microscopy. Blessed by the
precise genetic targeting specificity and superior spatiotemporal resolution,
optogenetics offers new biological insights into physiological and pathological
mechanisms underlying health and diseases. Recently, its clinical potential
has started to be capitalized, particularly for blindness treatment, due to the
convenient light delivery into the eye.
Aims and methods: This work summarizes the progress of current clinical
trials and provides a brief overview of basic structures and photophysics of com-
monly used photoactivable proteins. We highlight recent achievements such
as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system,
gene expression, and organelle dynamics. We discuss conceptual innovation and
technical challenges faced by current optogenetic research.
Conclusion: In doing so, we provide a framework that showcases ever-growing
applications of optogenetics in biomedical research and may inform novel
precise medicine strategies based on this enabling technology.

#Tianyu Terry Gao, Teak-Jung Oh and Kritika Mehta contributed equally to this work.
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1 BACKGROUND

Insights into pathogenesis are crucial for disease pre-
vention, diagnosis, management, and treatment. Disease
etiology and progression often involve disruptive gene
modification, defective intracellular and intercellular cell
signaling, and dysregulated cell-environment communica-
tions, which could intervenewith each other. For example,
gain- or loss-of-function genemutation could result inmis-
regulated protein-protein interaction (PPI) and modified
intra- or intercellular signaling. Mechanistic understand-
ing and rescue of pathogenesis require strategies to visual-
ize and modify molecular activity with cell-type specificity
and spatiotemporal accuracy to avoid systemic changes
that may distort systemic physiology. This demand has
inspired the development of new model systems (e.g.,
organoid, organ-on-a-chip), molecular probes (organic or
genetic), labeling strategies (e.g., those based on unnat-
ural amino acids or click chemistry), imaging modality
(super-resolution and live-cell imaging) and sequenc-
ing strategies (genomic, transcriptomic, epigenomics and
metabolomic) to enable precise visualization of biological
systems. On the other hand, spatiotemporal modulation
of molecular activity and signal transduction remains
challenging.
The emerging optogenetics offers unique features to

empower new modes to control molecular activity and
cell signaling. Optogenetics uses a suite of photoacti-
vatable proteins, which undergo conformational changes
upon exposure to light at specific wavelengths, to interro-
gatemolecular activity and complex intracellular signaling
networks.1–5 Blessed by the capacity to draw the causal link
between neural circuits and behaviour, optogenetic tech-
nology has been awarded as theMethods of the Year 2010.6
Shortly after the report of light-gated opsin-based neu-
ronal firing control,7 optogenetics was successfully used
to control various biological events in cells (see recent
reviews8–15) and multicellular organisms.16
Optogenetics’s spatial and temporal accuracy provides

insights into translational research,17 such as in pain
management,18 strokes,19 epilepsy,20 behavior,21 heart
diseases,22–24 motor functions,25 memory26 and psychi-
atric diseases, including depression, anxiety, addiction,
schizophrenia, and autism, to name a few.27 However,
technical challenges, such as light delivery, transgene
delivery, sensitivity, and toxicity assessment, should be
addressed before realizing the full clinical potential of

optogenetics.28–30 Here, we introduce commonly used
opsin-based and opsin-free optogenetic tools, followed by
a summary of ongoing clinical trials, primarily of opsin-
based optogenetics. We then expand the landscape of
biological applications by showcasing opsin-free optoge-
netics. A section is dedicated to discussing key challenges
in translating optogenetics to clinical research, concluded
by a perspective ‘wishlist’ for next-generation optoge-
netics. We hope this work can stimulate more discus-
sions from researchers in both fundamental and clinical
research and maximally leverage features of optogenetics
in clinical applications.

2 PRINCIPLES OF OPSIN-BASED
OPTOGENETICS

2.1 Structure and photophysics of
microbial opsin

Optogenetics uses light to control protein conformation
and empowers new ways to control molecular activity
in live cells. Opsin-based optogenetics enabled accurate
control of ion flux across the cell membrane through
light-sensitive channels or pumps.7,31–33 Successful imple-
mentation of opsin-based optogenetics requires (1) micro-
bial opsins that transport ions upon exposure to light,
(2) a strategy to express opsins in specific target cells,
and (3) precise delivery of light to the target cells.34
Channelrhodopsin-2 (ChR2), the opsin derived from the
green freshwater algae Chlamydomonas reinhardtii, is a
seven-pass transmembrane protein that belongs to micro-
bial opsins. ChR2 binds a retinal cofactor that undergoes
cis-trans conformational changes when absorbing blue
light. Such a conformational change renders an increased
cations influx (Na+ and Ca2+) through ChR2 and stim-
ulates action potential in hosting excitable cells (e.g.,
neurons or muscles)35,36 (Figure 1). ChR variants such
as halorhodopsins (HRs) pump chloride ions into the
cells upon light illumination, leading to optical induction
of hyperpolarization and neuronal inhibition.37 Genetic
ChR expression can be virally driven (lentivirus or adeno-
associated virus) in cells or animals. Cre-dependent ChR
expression transgenic mice have also been developed
(e.g., strain Ai32, the Jackson Laboratory) to facilitate the
production of animals bearing the tissue-specific expres-
sion of ChR2.
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F IGURE 1 Comparison between ligand and light-gated ion channel for action potential induction. In excitable cells such as neurons,
binding neurotransmitters to voltage-gated channels induces a conformational change of the channel, allows ion flow across the membrane
to generate action potentials. Channelrhodopsin and variants utilize light-induced cis-trans conformational changes of its retinal cofactor to
tune channel conductance and generate action potentials.

2.2 The clinical accomplishment of
opsin-based optogenetics

Current clinical trials of optogenetics mainly focus on
treating blindness due to the easy delivery of light through
the eyes. We discuss six records of clinical trials, five active
and one completed, which target retinal diseases. Key
information about each clinical trial is listed in Table 1.
The fundamental idea of using light to treat retinal

diseases is to revamp defective visionary neurons with
light sensitivity. Retinitis pigmentosa (RP) is a genetic dis-
ease that affects the retina and causes the breakdown of
photoreceptors, affecting the peripheral vision first and
eventually spreading to the central vision.38 Stargardt’s dis-
ease was a genetic disease with fatty material build up on
the retina’s central region (macula), resulting in the loss
of central vision and light sensitivity.39 AbbVie sponsored
the earliest phase I/II clinical trials to determine the dose-
dependent safety and tolerability of single-dose intravitreal
RSO-001 to advanced RP patients (NCT02556736). Based
on the results updated on 6 October 2022, of the 14
participants, the treatment resulted in 0% all-cause mor-
tality or serious adverse events. Nine participants expe-
rienced grade 3, non-life threatening but medically sig-
nificant side effects, including mild eye discharge, irri-
tation, pain, and infection. A dose-escalation trial was
carried out to evaluate the safety and tolerability of adeno-

associated virus (AAV) as the transgene vehicle. This
completed phase I/IIa clinical trial by Nanoscope Ther-
apeutics (NCT04919473) evaluated patient tolerance to
vMCO-I, a serotype 2 AAV carrying a multi-characteristic
opsin (MCO) gene expression cassette. Eleven patients
with advanced RP received intravitreal vMCO-I at high
(3.5E11 viral genome per eye) or low (1.75E11 viral genome
per eye) doses. vMCO-I infects and expresses polychro-
matic opsin, which can be activated by ambient light,
in patients’ bipolar cells. All subjects had objective and
subjective improvement in functional vision, including
shape discrimination accuracy improved to greater than
90% in all subjects compared to baseline. Following the
phase I/IIa trial (NCT04919473), Nanoscope Therapeu-
tics started a phase IIb trial (NCT04945772) that addresses
the efficacy and systemic adverse effects at a lower dose
(dropping from 3.5E11-1.75E11 to 1.2E11-0.9E11). The same
company has another ongoing phase IIa clinical trial that
assesses the safety and efficacy of vMCO-010 for Stargardt’s
disease (NCT05417126).
Recently, GenSight Biologics reported promising effi-

cacy results in the NCT03326336 trial, which showed
partial visual function recovery in a blind RP patient. The
patient received an intraocular injection of an AAV vector
(5E10 viral genome per eye) encoding ChrimsonR, a red
light (590 nm) responsive opsin. The red light was deliv-
ered through an engineered goggle to stimulate human
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4 of 16 GAO et al.

TABLE 1 Opsin-based optogenetics in current clinical trials for retinal diseases.

Trial # Target Stage Intervention
Participant (#;
label)

Start-end
yr Status Sponsor

NCT02556736 Advanced RP Phase
I/IIa

Intravitreal injection
ChR2-encoding
AAV

14; Open-label 2015–2024 Active, not
recruiting

AbbVie

NCT04919473 Advanced RP Phase
I/IIa

MCO-encoding
AAV2

11; Non-randomized,
Open-label

2019–2020 Completed Nanoscope
Therapeutics
Inc.

NCT04945772 RP Phase IIb MCO-encoding
AAV2

27; Randomized,
Double-masked,
Sham-controlled

2021–2024 Active, not
recruiting

Nanoscope
Therapeutics
Inc.

NCT05417126 Stargardt
Disease

Phase IIa MCO-encoding
AAV2

6; Open-label 2022–2023 Recruiting Nanoscope
Therapeutics
Inc.

NCT03326336 Non-syndromic
RP

Phase
I/IIa

ChrimsonR-
tdTomato-
encoding
AAV2.7

15; Non-randomized,
Open-label

2018–2025 Recruiting GenSight
Biologics

NCT05294978 IRDs N/A Diagnostic Test:
OCT

1000; Case-control-
Retrospective

2021–2023 Recruiting University
Hospital,
Basel,
Switzerland

Abbreviations: IRD, inherited retinal dystrophies; MCO, multi-characteristic opsin; RP, retinitis pigmentosa.
Clinical trial name: NCT02556736: RST-001 Phase I/II Trial for Advanced Retinitis Pigmentosa; NCT04919473: Dose-Escalation Study to Evaluate the Safety and
Tolerability of Intravitreal vMCO-I in Patients With Advanced Retinitis Pigmentosa; NCT04945772: Efficacy and Safety of vMCO-010 Optogenetic Therapy in
Adults With Retinitis Pigmentosa; NCT05417126: Safety and Effects of a Single Intravitreal Injection of vMCO-010 Optogenetic Therapy in Subjects With Stargardt
Disease; NCT03326336: Dose-escalation Study to Evaluate the Safety and Tolerability of GS030 in Subjects With Retinitis Pigmentosa; NCT05294978: EyeConic:
Qualification for Cone-Optogenetics

retinal ganglion cells. During 84 weeks of treatment, the
patient perceived, located, counted, and touched differ-
ent objects. In addition, the patient’s occipital neural
activity assessment was also successfully correlated with
functional visual recovery.
Besides bipolar cells, University Hospital, Basel,

Switzerland, initiated a clinical trial (NCT05294978) in
2021 targeting cone cells to restore visions in patients with
inherited retinal dystrophies. Cone cells are crucial in
color vision, daytime activity, and faster bright light flash
recovery. A niche is that light-sensitive cones remain alive
but dormant before the disease progresses into the late
stage, posing an excellent time window to re-sensitize
them through optogenetics. However, the population of
patients in the dormant stage is unknown. The primary
aim of this study is to identify eligible patients worldwide
(USA, China, Germany, Hungary, Italy, Switzerland,
and the UK) through a multicenter ocular imaging
study (EyeConic Study) for cone-optogenetics treatment.
Currently, there are 1000 patients enrolled, and their eli-
gibility will be determined via macular optical coherence
tomography, which captures the pathogenic state of the
retina, as well as deeper eye structure and vasculature,
non-invasively.

3 OPSIN-FREE OPTOGENETICS
EXPANDS THE SCOPE OF OPTICALLY
CONTROLLED BIOLOGICAL PROCESSES

3.1 Structure and photophysics of
opsin-free photoactivatable proteins

Opsin-free optogenetics shares common prerequisites,
such as photoactivatable proteins, transgene expression,
and light delivery, as opsin-based technology. In contrast
to fluorescent proteins, optical probes for localizing pro-
teins, photoactivatable proteins serve as actuators to tune
target molecules’ activity. Light stimulation of the fluo-
rophore of these photoactivable proteins modifies PPIs,
which expands the mode of action to modulate molecular
activity and the scope of biological processes.
A photoactivatable protein’s core components are

the photosensory and effector domains. Photosensory
domains contain chromophores, excitation of which con-
verts energy stored in photons to the chemical potential
that changes the conformation of host molecules. Chro-
mophore excitation results in conformational changes
that lead to protein association, dissociation, and uncaging
or allosteric effects in host photoactivatable proteins. For
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GAO et al. 5 of 16

F IGURE 2 Commonly used modes of action of opsin-free photoactivable proteins and light-sensitive chromophores. Modes of action
include photo-uncaging and photo-inducible recombination of dimerizer for reconstituting split protein or transcriptional control. More
details on the excitation wavelength, chromophore, and protein structure can be found in Table 2.

example, blue light excitation of flavin mononucleotide
(FMN) cofactor in Avena sativa light, oxygen, or voltage
domain (AsLOV) results in its formation of an adduct with
the proximal cysteine residue, which induces conforma-
tional changes in LOV. Cryptochrome uses flavin adenine
dinucleotide (FAD) to mediate its light-regulated homo-
oligomerization or heterodimerization. Phytochromes use
phycocyanobilin (PCB) or biliverdin, red and far red light-
sensitive chromophores, for conformational modulation.
To date, crystal structures and light-sensitive chro-
mophores of various photoactivatable proteins have been
resolved (Figure 2, Table 2). The identified modes of action
help the structure-guided design of innovative optogenetic
systems. We will use recent studies to showcase each
mode of action, such as photo-uncaging and association.

4 CONCEPTUAL INNOVATION OF
OPTOGENETICS IN PRECLINICAL
RESEARCH

Optogenetics’s conceptual innovation leverages physics
(the ‘opto’ part) and biology (the ‘genetics’ part), providing

new modalities, such as spatiotemporal accuracy, target
specificity, and tunable kinetics, when integrated into
other therapies (Mathony et al., 2020; Tan et al., 2017) and
drug discovery processes (Kiełbus et al., 2018). Besides
benefiting fundamental research, these features continue
pushing optogenetics into translational, preclinical, and
clinical research (Bansal et al., 2022) against diseases such
as cancer (Malogolovkin et al., 2022), diabetes (Chen et al.,
2022) or other multitudes of diseases (Ye and Fussenegger,
2019).

4.1 Spatiotemporal accuracy

Optogenetics uses light (photons) to modulate molecular
activity. Compared to diffusive chemical ligands, photons
can be spatially distributed in a user-defined manner. A
simple optical objective can spatially focus a coherent
photon flux (e.g., a laser beam) to span about only half
wavelength of the photon, reaching the far-field diffrac-
tion limit. Fortunately, the wavelength of visible light
(400–700 nm) is significantly smaller than the typical
size of a cell, ranging from one micron for bacteria and
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6 of 16 GAO et al.

TABLE 2 Structure and chromophore for selected opsin-free photoactivatable proteins.

University of Il
Opsin-free
photoactivable
protein

Excitation
wavelength Chromophore PDB ID Reference

UVR8/COP1 300 nm Tryptophan ‘pyramid’ 7VGG 97

UVR8/UVR8 300 nm Tryptophan ‘pyramid’ 4D9S 98

CRY2/CIB1 450 nm FAD 7X0Y (CRY2 tetramer +
CIB1 fragment) 6K8I
(CRY2)

99

CRY2/CRY2 450 nm FAD 6K8I 100

AsLOV2 450 nm FMN 2V1A (dark) 2V1B (light) 101

iLID 450 nm FMN 4WF0 102

RsLOV 450 nm FMN 4HJ4 65

vfAuLOV 450 nm FMN 3UE6 103

EL222 450 nm FMN 3P7N 104

VVD 450 nm FMN 3RH8 105

Dronpa145K/N 500 nm Cys62-Tyr63-Gly64 (CYG) 2Z1O (only Dronpa145K) 106

Dronpa145N 500 nm Cys62-Tyr63-Gly64 (CYG) 2POX 107

pdDronpa1 500 nm Cys62-Tyr63-Gly64 (CYG) 6D39 66

TtCBD 545 nm AdoCbl, MetCbl or CNCbl No PDB entry 108

PhyA/FHY1 660 nm PCB No PDB entry 109

PhyB/PIF3 &
PhyB/PIF6

660 nm PCB 4OURz 110

CPH1 660 nm PCB 2VEA 111

BphS 660 nm Biliverdin No PDB entry 112

Abbreviations: FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; LOV, light, oxygen, or voltage; PCB, phycocyanobilin; PDB, protein data bank;
VVD, vivid.

tens of microns for mammalian cells (Figure 3). By sys-
tematically tuning the phase distribution of photons by
devices like spatial light modulators, light can almost
be distributed into any spatial pattern, for example, an
array of focus, a doughnut-shaped (as in stimulated emis-
sion depletion microscopy or STED), sheet-shaped (as in
light-sheet microscopy), defined by the user. Note that
non-coherent light sources, such as those from a light bulb
or LED, could not reach the diffraction limit because each
photon has different propagation directions and phases.

4.2 Target specificity

Target specificity arises from the capacity to express the
optogenetic protein in a tissue- and cell-type-specific man-
ner. Recent work demonstrated the use of optogenetics in
treating defective lower urinary tract (LUT) with a mouse
model.40 LUT’s physiological role, storing and emptying
urine, requires coordinated, counter-actingmechanisms of
the detrusor and urethral sphincter muscles surrounding
the bladder. Urination (emptying) involves the contraction

F IGURE 3 Scale of typical human cell structure and the
diffraction limit of visible light. The far-field diffraction limit of
visible light (400–700 nm) is approximately half of the wavelength,
significantly smaller than the typical mammalian cells such as
neurons and cardiomyocytes. However, when delivered by fiber
optics, scattering of light can reduce the spatial resolution but still
provide sufficient spatiotemporal resolution.
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detrusor and relaxation of the urethral sphincter mus-
cles, whereas storing urine requires the opposite action
from both types of muscles. However, pharmacological
treatments (e.g., anticholinergics, adrenergic receptor ago-
nists or botulinum toxin) or electronic nerve stimulation
typically target upstream neurocircuits instead of mus-
cle functions. These strategies have intrinsic drawbacks
because neurocircuits regulating storing and voiding inter-
act with other neural functions. Treatment could lead
to side effects such as unwanted bowel movements or
sexual functions. However, optogenetics could precisely
express excitatory or inhibitory opsin proteins in the blad-
der smooth muscles and contract these muscles to empty
urine by light. Similarly, the inhibitory opsin variant, such
as HR, suppresses overactive balder symptoms, a frequent
urinary bladder contraction regardless of voiding.

5 SELECTIVE CASE STUDIES OF
TRANSLATIONAL APPLICATIONS
OPSIN-FREE OPTOGENETICS

5.1 Optical control of chimeric antigen
receptor

Chimeric antigen receptors (CARs) are engineered recom-
binant receptors with an antibody-derived ectodomain
that recognizes cancer-specific surface protein and intra-
cellular signaling endodomains, including T-cell activa-
tion signal CD3ζ and costimulatory molecules for acti-
vating T cells or natural killer cells.41,42 The United
State Food and Drug Administration (FDA)-approved
CAR-T therapy targeting B cell marker CD19 has suc-
cessfully treated B-cell-related leukemia and lymphoma.43
To increase the effectiveness of CAR-T therapy on solid
tumors, the new generation of CARs called ‘TRUCKs’
incorporates inducible IL-12 production to enhance T
cell activation, modulate the tumor microenvironment
and recruit other immune cells.44 However, CAR-T and
TRUCK-T therapy face challenges in ‘on-target off-tumor’
toxicity and cytokine-associated toxicity, leading to severe
tissue damage and cytokine release syndrome with clini-
cal symptoms such as nausea, fever, hypotension, vascular
leakage, and life-threatening multiple organ failure.43,44
Anti-inflammatory drugs and corticosteroids are used to
manage the side effects of CAR-T therapies45; neverthe-
less, adverse effects from high-dose corticosteroids and the
cost of intensive care unit treatment needed for patients
with severe symptoms or high disease burden urge better
strategies for increasing safety without affecting efficacy.
Optogenetics can increase tissue specificity and alleviate

the side effects of CAR-T therapies by providing spatiotem-
poral modulation. To date, two modes of action enable

optogenetic control of CAR—optical induction of CAR
expression or recombination of split CAR. The first strat-
egy controls the expression of CAR by the light-inducible
gene expression system LINTAD.46 (Figure 4A,B) In this
system, CRY2 is fused to the transcription activator VP64-
p65-Rta (VPR) and kept in the nucleus by nuclear localiza-
tion signals (NLS). CIB1 is fused to the deoxyribonucleic
acid (DNA) binding domainLexAandAsLOV2-cagedNLS,
which stays cytosolic in the dark. Caging help lower the
background expression as the basal level CRY2-CIB1 pair
is high.46 The expression of anti-CD19 CAR was tested
in mice inoculated with tumor cells Nalm-6 and showed
effectiveness in limiting the tumor size 21 days after 12-
h blue-light illumination.46 LINTAD system can achieve
transient expression of CAR; for sustained expression of
CAR, the system relies on the Cre-LoxP system and degra-
dation of the expressed protein to achieve the temporal
control of the expression.46
The second strategy, for example, the light-switchable

CAR (LiCAR),47 uses light to reconstitute split CAR pro-
tein between the costimulatorymolecule 4-1BB and activa-
tion signal CD3ζ through blue light-sensitive CRY2-CIBN
or AsLOV2-based iLID48 dimerizer system (Figure 4C,D).
Combiningwith upconversionnanoplates, LiCAR reduced
the tumour weight in mice with lymphoma after 14-day
treatment with near-infrared (NIR) light.47 By modulat-
ing the activity with light, LiCAR mitigated the cytokine
release syndrome and alleviated ‘on-target off-tumour’
effects as the level of IL-6 is lower and the number of B
cells higher in mice treated with LiCAR than those treated
with traditional CAR-T.47 By replacingAsLOV2 in the iLID
system with circularly permutated LOV2 (cpLOV2), He
and coworkers constructed cp-iLID. They demonstrated
its applications in CAR activation by blue-light-inducible
heterodimerization of split CAR.49 Using a similar design,
O’Donoghue and coworkers developed an optoCAR sys-
tem that allows for precise modulation of the periodic
activation of CAR. Intriguingly, expression of the T cell-
activation marker CD69 was attenuated with a period of
25 min of light activation (20% duty cycle).50 Light activa-
tion with a period shorter or longer than 25 min, even with
the same integrated light input, resulted in higher CD69
expression, indicating that T cells temporally filter time-
varying signals and the CD69 expression is gated through
a band-stop filter.
Both strategies offered insights into designing light-

inducible CAR and can be expanded by other optogenetic
tools. In the split-CAR strategy, the CRY2-CIB1-based sys-
tem showed less background activity and induced activity
than the AsLOV2-based system,47 suggesting the choice
of optogenetic tool may change the system’s efficacy.
In addition to splitting at endodomain, photoactivable
removal of inhibition at ectodomain is also suggested.51
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8 of 16 GAO et al.

F IGURE 4 Optogenetic control of CAR. (A) CAR can be activated through light-induced nuclear translocation of the activation domain
(AD), followed by up-regulated CAR expression. (B) Treatment of tumour cells in mice between injected with engineered T cells under light
and dark treatment. (C) Light-switchable CAR (LiCAR) recombines split CAR through light-mediated dimerization of protein pair. T-cell
activation only occurs when reconstituted CAR recognizes tumour-specific antigens (e.g., CD19). By injecting upconversion nanoparticles
with engineered T cells, protein recombination can be achieved through near-infrared light, which has a deeper penetration depth in
biological tissues. (D) Scheme of upconversion nanoparticle and its size and spectrum distribution (top). Schematic of the experimental
workflow (middle) and treatment of tumour cells with LiCAR in mice (bottom). Panel (A) and (B) are adopted from reference46 with
permission. Panels (C) and (D) are adopted from reference47 with permission.
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Basal activity should be considered in selecting activation
approaches. For example, CAR expression with photoac-
tivable Cre-loxP system (TamPA-Cre),52 drug-dependent
nuclear translocation was selected instead of AsLOV2-
caged NLS.

5.2 Optical control of genome editing
and gene expression

The Clustered Regularly Interspaced Short Palindromic
Repeats or CRISPR-Cas systems correct genomic defects
by precise modification of genomic sequence. The sys-
tem can also be repurposed for transcriptional regulation
by using a deactivated or ‘dead’ version of Cas9 nucle-
ase (dCas9). Like optogenetic CAR, optogenetic control
of CRISPR-Cas can be accomplished through distinct
modes of action, including light-inducible recombination
of split-Cas protein,53–57 Cas expression,58–62 and photo-
uncaging.63,64

5.2.1 Optical recombination of split-Cas

The first demonstration of optogenetic control of CRISPR-
Cas is the light-mediated recombination of split-Cas
(Figure 5A,B). Both CRY2/CIB1 and VVD/Magnets pairs
have been tested for fusion to N- and C-SpCas9, but only
the Magnets-based split-Cas9 (paCas9) achieved decent
indel mutations (60% efficiency of the full-length Cas9)
and sequence insertion through homology-directed repair,
indicating the relative orientation between photoactivat-
able protein and split Cas9 determines the efficacy of
recombination.57 The same group also developed light-
inducible CRISPR-Cas12a (also known as CRISPR-Cpf1
from Lachnospiraceae bacterium), called paCpf1, by split
Cpf1 between residues 730 and 731.54

5.2.2 Photo-uncaging of Cas protein

Cas activity can also be controlled via photo-uncaging.63,64
RsLOV65 and pdDronpa66 homodimerize in the dark,
which can be engineered to cage Cas9 until light-mediated
protein dissociation rescues Cas9 activity. In the engineer-
ing of RsLOV2-Cas9 (paRC9), a single copy of RsLOV
is inserted into Streptococcus pyogenes Cas9 (SpCas9)
between F478 and E479, and caging is achieved through
dimerization of two copies of paRC9.63 Whereas paRC9
managed to show light-switchability for plasmid DNA
cleavage in Escherichia coli., careful characterization sug-
gests that paRC9 is a ‘phenotypic’ switch that shows
switchable activity in the cells (likely due to protein

accumulation) but not in vitro with purified paRC9 and
DNA.
The second system inserts two pdDronpa1 into SpCas9

after A259 and K1246, producing ps-(d)SpCas9 to block
the DNA binding cleft.64 The same approach can be
applied to other Cas9 species, as the group also designed
ps-SaCas9 for Staphylococcus aureus Cas9 (SaCas9), with
two pdDronpa1 inserted after residues 128 and 614,
respectively.64 The ps-SpCas9 exhibited comparable effi-
ciency to other inducible Cas9 systems. A bonus is that
pdDronpa1, a fluorescent protein variant, also indicates
ps-SpCas9 expression level through its fluorescence inten-
sity in the cells.64 As exemplified by the above two cases,
single-component caging-like control of Cas enzymes can
serve both genome editing and transcriptional regulation
(Figure 5C,D). The single-component design will spare the
optimization for the ratios ofmultiple-component systems,
and the strategy can be generalized to control other Cas
enzymes for broader applications.

5.2.3 Optical control of Cas protein
expression

An alternative strategy is to use light to control Cas
protein expression. The far-red light (FRL)-inducible
CRISPR-Cas12a (FICA) system60 and red/FRL-mediated
and miniaturized Δphytochrome A (ΔPhyA)-based photo-
switch (REDMAP)62 use the heterodimerization between
red-light responsive protein PhyA and its binding partner
FHY1 to recruit transcription factor VP64 to the pro-
moter and activate gene expression. A similar system
based on blue-light-sensitive Vivid (VVD) has also been
constructed58 (Figure 5E).

5.2.4 Optical control of CRISPR-Cas activity
by modulating Cas9 inhibitors

Phage-derived anti-CRISPR (Acr) proteins were recently
discovered as natural inhibitors of type II CRISPR sys-
tems. For example,AcrIIA4 inhibitsStreptococcus pyogenes
Cas9 through tight binding (with sub-nanomolar affinity)
to the Cas9-sgRNA complexes. By inserting AsLOV2 into
the loop L5 of AcrIIA4, Bubeck and coworkers developed
CRISPR–Cas9 activity switching via a novel optogenetic
variant of AcrIIA4, or CASANOVA, that allows for opti-
cal modulation of CRISPR-Cas9 activity. In the dark,
CASANOVA maintains AcrIIA4’s binding to Cas9, there-
fore inhibits its activity; blue light stimulation causes
a conformational change of AcrIIA4 (by AsLOV2) and
releases Cas9 to restore its gene-editing function.67 A sim-
ilar strategy with anti-CRIPSR protein AcrIIC3 also works
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F IGURE 5 Optogenetic control of CRISPR-Cas. (A) Optogenetic recombination of split Cas9 through blue-light sensitive pMag/nMag
protein pair and its performance in cleaving the endogenous CCR5 gene in mammalian cells (B). (C and D) Cas9/dCas9 activity can be
controlled through photo-uncaging of pdDronpa1. (E) Cas9/dCas9 expression can be controlled through optogenetic induction of gene
expression. Panel (A) is adopted from reference57 with permission.

for Neisseria meningitidis Cas9 (NemCas9), a smaller Cas9
with higher specificity than SpCas9.68

5.3 Optical control of gene expression

5.3.1 Optical production of insulin

Light-inducible insulin production has been demonstrated
by FRL-activated human islet-like designer (FAID) cells
in type 1 diabetes (T1D) mouse model.69 FAID cells are
telomerase-immortalized human mesenchymal stem cells
whose genome is integrated with the BphS-based optoge-
netic gene expression system to control gene expression.
Selected FAID cells are implanted into the streptozotocin-
induced T1D mouse model and managed to lower the

blood glucose level in a light-dependent manner.60 An
attractive accessory device is a self-powered system70 in
combination with a smartphone for remote control,71
which could provide alternative intervention to reduce the
cost and potential side effects from the frequent injection.

5.3.2 Optical regulation of cytokine release

Cancer immunotherapies suffer from severe cytotoxic-
ity and off-target effects. For example, bispecific T cell
engagers (BiTEs), a type of bispecific antibodies that can
bridge the tumor cells and T cells, elicit severe cytokine
release syndrome (CRS) and neurotoxicity by uncontrolled
secretion.72,73 Hence, a far-red-light-inducible expres-
sion system based on BphS modulates the toxicities by
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transcriptional regulation.74 With the optogenetic control,
the cytotoxicity and cytokine release are under control by
FRL illumination without losing the anti-tumor activity.74
Notably, spatiotemporal control of localized T-cell activa-
tion through recombination of split CAR alsomitigates the
CRS and on-target, off-tumor side effects.47

5.4 Optical control of mitochondrial
dynamics

Mitochondria are membrane-bound organelles generat-
ing the majority of chemical energy through adenosine
triphosphate (ATP) production. Mitochondria are also
mobile organelles that exist in dynamic networks. Mito-
chondrial diseases are one of the most common types
of inherited metabolic disorders, which affect one in
200 individuals, can present at any age, and affect any
organ. Although genetic mutations that disrupt mitochon-
drial gene expression appear to be the most common
cause of mitochondrial diseases, disorders of mitochon-
drial dynamics are emerging as a mechanism of disease.75
Optic atrophy spectrum disorder is one such disease that
often involves neuron loss in different tissues. A whole-
exome sequence experiment revealed that such diseases
involve mutation of SLC25A46, a gene that encodes a
mitochondrial outer membrane protein. At the cellu-
lar level, a significant phenotype is the elonged hyper-
fused mitochondria, which show a significantly lower
oxygen consumption rate and ATP production capac-
ity. Inspired by the finding that lysosomes can regulate
mitochondrial fission,76 Qiu and coworkers developed
optoMLC (mitochondria-lysosome contacts) that allows
light-mediated recruitment of lysosomes to mitochondria
and enhanced mitochondrial fission. After light stimula-
tion, hyperfused mitochondria in SLC25A46-/- cells were
significantly reduced, enhancing oxygen consumption rate
and ATP production77 (Figure 6).

6 CHALLENGES OF CURRENT
OPTOGENETIC STRATEGIES AND
POTENTIAL SOLUTIONS

6.1 Routes of transgene delivery and
expression

Common to all gene therapies, optogenetics-based therapy
requires the safe delivery and expression of transgenes in
humans. Gene therapy has typically used viral vectors,
such as adenoviruses, AAV, and lentivirus, to deliver
therapeutic genes into patient tissues for long-term
expression. Each type of vector has unique strengths and

associated safety concerns. Adenovirus is significantly
limited in human clinical trials because its poor stable
expression span and high immunogenicity. The AAV
would be a better choice with more stable expression and
low immunogenicity.78–81
To deliver cargo to the desired tissue, gene therapists use

tissue-specific promoters, a strategy applied to target mus-
cle cells,82 tumour environments in colorectal cancer83 and
prostate cancer,84 and neurons.85 Such promoters demon-
strate cell-specific expression and therapeutic potential,
and they allow higher dosing than would be possible with
more widely expressed transgenes. The promoter length
must be considered for this technique since many deliv-
ery methods have relatively low size limits (∼5 kbp for
adeno-associated virus).86
The primary safety concerns when using these vec-

tors are the risk of viral replication within the patient,
viral integration into the patient genome (or integration
at undesirable loci), and the patient’s immune response,
as also reviewed elsewhere.86 Optogenetics-based thera-
pies are expected to introduce foreign proteins into the
patient’s tissue, which might exacerbate the immuno-
logical response to viral transduction. Indeed, Maimon
and coworkers recently reported that AAV-based ChR2
expression in the peripheral nervous system (PNS) requires
co-administering immunosuppressants to prevent neural
death.87

6.2 Light source and delivery

Optogenetic proteins are sensitive to wavelengths of light
from the near ultraviolet (UV) to the NIR. The required
light wavelength and power depend on the specific pro-
tein(s) used. A combined set of light sources capable of
blue (470 nm), orange (560 nm), and infrared (>700 nm)
can activate themajority of currently available optogenetic
proteins.88 Light delivery poses a challenge concerning
power requirement and correct positioning. With ample
surface areas of tissues like muscle or the brain to be
illuminated, demands of powering light sources become
a limiting factor. The primary sources of light delivery
are optic fibers and optical implants. While wireless optic
sources offer opportunities for specific targeting and pre-
cise control, the power limit of these devices reduces the
operational limit to 3 cm, a depth to be further optimized
for human operation.89
Most hospitals are already equipped with medical lasers

and advanced optics for techniques such as photodynamic
therapy.90,91 Many of these light sources are much higher
power than necessary for optogenetic therapies and can
be easily filtered and coupled to fiber optic cables for tis-
sue delivery. However, new devices must be manufactured
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12 of 16 GAO et al.

F IGURE 6 Optogenetic control of mitochondria-lysosome contacts and mitochondrial fission. (A) Optogenetic recruitment of
lysosomes to hyperfused mitochondria mediates mitochondrial fission and increases oxygen consumption rate and ATP production. (B)
Time-stamped images of the lysosome (red) and mitochondria (green) show mitochondria fission at the contact site. (C) Mitochondria
morphology resolved by structural imaging microscopy before and after 40 min of blue light stimulation. More granule-like mitochondria
show after the light stimulation compared to the initial state of hyperfused mitochondria. (D) OptoMLC rescues mitochondrial function in
oxygen consumption rate (OCR) and ATP production. Panel (B) to (D) are adopted from reference77 with permission.

and approvedwhen surgical intervention is required. Clin-
ical approval of these devices is a lengthy process, and
establishing which regulations apply will require commu-
nication with regulatory bodies, especially if clinical trials
recruit participants from multiple countries. The safety
of surgically implanted devices must be carefully consid-
ered. Devices designed to illuminate internal organs with
light must operate without generating excess heat, and
implanted devices could complicate specific diagnostic
techniques such as magnetic resonance imaging (MRI).92
Improvement in light delivery systems can significantly

improve the efficacy of optogenetic tools. A recent study

focused on using a time-reversed ultrasonically encoded
(TRUE)-based light delivery system to accurately focus
light and avoid light scattering of the light 89. The
TRUE technique could control neural firing rate much
more efficiently than conventional light focusing tech-
niques. However, the TRUE system can be ineffective
if the system response time exceeds the decorrelation
time of the tissue of interest. For example, decorrelation
time can drop due to blood flow and muscle move-
ments. Besides, the weight and size of light-delivering
implants could significantly impede a patient’s daily
activities.
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6.3 Photo and thermal toxicity from
light stimulation

Senova and coworkers93 studied the spatial distribution of
light and its effects in large brain volumes of animal mod-
els. This study demonstrates that deep light penetration in
the brain cortex is possible without detrimental photo and
thermal damage to the organ. The authors reported that
1990 seconds of light administration with an irradiance of
100 to 600mW/mm2 and 5ms pulse duration at 20, 40, and
60Hz did not trigger non-physiological functional activa-
tion. Optimization of stimulation parameters is necessary
to avoid potential damage to deep tissues. Assessment
of phototoxicity of long-term photo-stimulation requires
further investigation.

6.4 Bioavailability

Some photoactivatable proteins require exogenous cofac-
tors, whose bioavailability becomes an essential measure
for assessing the efficacy of any light-based therapy. Exoge-
nous cofactors like plant-derived PCB are required for light
absorption into various red-shifted photoactivatable pro-
teins such as PhyB. PCB supply must be ensured via trans-
genic co-expression of PCB biosynthesis genes or by an
external supply of synthetic PCB. Various PCB-providing
dietary supplements like blue-green algae spirulina could
be administered orally. However, the supplement dosage
requirement for effective phytochrome activation remains
to be validated.94 Improved optogenetic tools should min-
imally depend on external cofactors or use endogenous
cofactors in mammals such as biliverdin, FAD, FMN or
riboflavin.

7 CONCLUSIONS AND PERSPECTIVE

Light has been used clinically to treat or mitigate diseases
such as insomnia, depression,95 and cancer.96 For sleeping
disorders, the physiological foundation of light treatment
is that living organisms develop biological rhythms at
approximately a 24-hr cycle. Patterned light treatment
synchronizes the physiological function, for example, the
brain’s regulation of melatonin and temperature, to the
24 h, so patients are asleep at night and awake during
the day. The mechanisms by which light affects mood
are less understood, and circadian rhythms are believed
to be involved. Photodynamic therapy treats cancers by
using light and photosensitizers to generate reactive oxy-
gen species that can damage cancer cells. These therapies,
however, primarily use the radiation of light waves and do
not provide spatiotemporal accuracy and target specificity.

Emerging optogenetics addresses these challenges by
genetically targeting cells with specificity and spatiotem-
poral control of molecular activity. Current clinical trials
of optogenetics focus on treating vision loss because the
retina has long been considered the ‘approachable’ part of
the brain. Therefore, researchers and entrepreneurs have
capitalized on the accessibility of the retina to investigate
essential translational applications of optogenetics. How-
ever, as showcased in this work, optogenetics is blessed
with significant flexibility in its modality to control molec-
ular activity, cell signaling, and physiological functions.
Although issues concerning light delivery, transgene deliv-
ery, and phototoxicity remain, we expect that continuous
technical advancements, such as in nanoscience and engi-
neering, will eventually overcome these challenges and
bring optogenetics into the healthcare sector as a power-
ful precision medicine tool. We also hope the field can
embrace discussion and dialog regarding ethical perspec-
tives, an issue faced by many relevant fields, such as cell
and gene therapy, in translational research.
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