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ABSTRACT The dynamics of cargo movement in axons encodes crucial information about the
underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in
understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons
usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at
each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later
two steps are usually carried out with substantial human intervention. This article presents a
method of automatic image analysis aiming for constructing cargo trajectories with higher data proc-
essing throughput, better spatial resolution, and minimal human intervention. The method is based
on novel applications of several algorithms including 2D kymograph construction, seed points detec-
tion, trajectory curve tracing, back-projection to extract spatial information, and position refining
using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-
to-noise ratio, such as those from single molecule experiments. The method was experimentally vali-
dated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal
root ganglia neurons.Microsc. Res. Tech. 74:605–613, 2011. VVC 2010 Wiley-Liss, Inc.

INTRODUCTION

Active cargo transport between the cell body and the
axon termini of a neuron is an essential process for
proper distribution of materials to their respective cel-
lular locations and is vital for the survival and mainte-
nance of the neuronal network (Holzbaur, 2004). Dis-
ruption of the axonal transport process often precedes
the death of the neuron and is linked to many neurode-
generative diseases (Collard et al., 1995; Li et al., 2001;
Roy et al., 2005; Salehi et al., 2006; Stokin et al., 2005).
Axonal cargoes are transported by molecular motors
moving along microtubule tracks (Falnikar and Baas,
2009; Vale, 2003), exhibiting characteristic patterns of
movements such as transport direction, moving speed,
running length, pausing frequency, and pausing dura-
tion. Those movement patterns underlie regulatory
mechanisms that control the axonal transport process.
To fully understand the axonal transport process, it is
important to follow the trajectory of individual axonal
cargos over time. Intrinsic heterogeneity in individual
cargo dynamics demands a statistical analysis of many
cargo trajectories (Cui et al., 2007). The vast amount of
data, often exceeding thousands of cargo trajectories
with each containing hundreds of time points, calls for
an automated data analysis method.

Tracking particles in time-lapsed image sequences
can be a sophisticated problem. In neuroscience, the
analysis of axonal particle tracking is, if described,
mostly done manually (Lochner et al., 1998; Miller and
Sheetz, 2004; Pelkmans et al., 2001; Pelzl et al., 2009).
The manual tracking is extremely labor intensive and
results in poor spatial resolution and poor reproducibil-
ity. For high-quality images, several automatic track-
ing methods (Carter et al., 2005; Cheezum et al., 2001;
Chetverikov and Verestoy, 1999; Crocker and Grier,

1996; Sbalzarini and Koumoutsakos, 2005) and soft-
wares (ImageJ and Metamorph) have been developed
to tackle the time-lapse particle-tracking problem. The
most commonly used algorithm is the single particle
tracking (Cheezum et al., 2001; Crocker and Grier,
1996; Sbalzarini and Koumoutsakos, 2005) that gener-
ally consists of two steps (i) detecting individual parti-
cle positions at each image frame and (ii) linking these
positions over time to follow the traces of individual
particles. Single particle tracking algorithm requires
images with good signal-to-noise ratio for accurate par-
ticle detection at each frame. Inaccurate particle detec-
tion would lead to failures of the subsequent linking
steps due to frequent false positives (background noise
classified as particles) or false negatives (missed detec-
tion of real particles). This method also requires that
particles are moving at a sufficient low speed for track-
ing purpose and that their positions never overlap.
These characteristics make it particularly difficult to
apply the single particle tracking method for axonal
transport data. It is primarily due to (1) time-lapse
images for axonal transport studies are often of lower
quality with high background noises, (2) images of axo-
nal cargos can overlap at events of cargo overtaking
during the transport, and (3) axonal cargos can move
at a speed as fast as 4 lm/s. Algorithms using auto-
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and cross-correlation of neighboring images (Kannan
et al., 2006; Welzel et al., 2009) have been shown to
supply valuable information such as distributions of
particle velocities and pausing times, but they do not
produce trajectories for individual particles.

Axons have diameters in the range of 0.5–1 lm, but
run lengths of 1 cm and longer. The unusually high-as-
pect ratio makes axonal cargos effectively moving along
a defined 1D line under a fluorescence microscope due
to the diffraction limit of the optical microscopy. This
characteristics makes it possible to transform the three-
dimensional (x, y, and time) movie data into a two-
dimensional time versus position kymograph image
along the line of interest (Racine et al., 2007; Smal
et al., 2010; Stokin et al., 2005; Welzel et al., 2009). In
addition to the significant reduction of the amount of
data, the kymograph image makes it possible to use
long range correlations in the temporal space. This is in
sharp contrast to the existing single particle tracking
methods that typically use only a few neighboring
frames to connect particle positions for tracing purpose,
thus making them unable to trace fast-moving or blink-
ing particles. Consequently, the kymograph image con-
verts the problem of particle tracking in 3D movie into a
curve-tracing problem in a single 2D image.

Our approach applies the curve tracing or vectorial
tracking algorithm proposed by Steger (1998) that
explores the correlation between the center line of a
curve segment and their two parallel edges. This algo-
rithm had been successfully applied to outline vascular
structures in retinal fundus images (Can et al., 1999) and
to detect neurite structures in neuron images (Zhang
et al., 2007). We implemented this curving tracing algo-
rithm to map out multiple particle traces in the kymo-
graph image and extract location versus time trajectories
for each particle at a spatial resolution of �2 image pix-
els. To achieve higher spatial resolution, the particle posi-
tions are refined by back-projecting the kymograph loca-
tions to the original movie data and fitting the particle
image with a 2D Gaussian point spread function (PSF).

In summary, we have developed an improved method
for cargo tracking that incorporates global features in
the time domain to address the problem of inaccurate
particle tracing for low-quality images and the problem
of particles fading out and reappear in the time course.
The whole algorithm has been validated by analyzing
single-molecule experimental data with low signal-to-
noise ratio, e.g., retrograde axonal transport of quan-
tum dot (Qdot) labeled nerve growth factor (NGF). This
method is also sufficiently robust to be applied for very
crowded transport movies, in which many axonal car-
gos of varying brightness are moving simultaneously,
and their trajectories cross or overlap. This is demon-
strated by tracking the anterograde axonal transport
of DiI-labeled vesicles in dorsal root ganglion (DRG)
neurons. Limitations of this method are also discussed.

MATERIALS AND EXPERIMENTAL METHODS
Cell Culture of Dorsal Root Ganglion Neurons

DRG neurons were harvested from embryonic
Sprague Dawley rats according to a published protocol
(Cui et al., 2007; Wu et al., 2007). Briefly, DRGs were
removed from E15-E16 rats and placed immediately
into chilled Hanks balanced salt solution (HBSS) sup-
plemented with 1% Pen-Strep antibiotics. After dissec-

tion, 0.5% Trypsin solution was added to the medium,
incubated for 30 min with gentle agitation every 5 min,
and triturated 5–8 times to dissociate cells. Dissociated
neurons were centrifuged down and washed thrice
with HBSS solution. Cells were resuspended and then
plated in a microfluidic chamber specially designed for
DRG neuronal culture (Taylor et al., 2006; Zhang et al.,
in press), in which the cell bodies were grown in one
compartment, whereas the axons were directed to grow
toward an adjacent axon chamber through imbedded
microchannels. The cells were maintained in neuro-
basal medium supplemented with B27 and 50 ng/mL
NGF. All cell culture related solutions and reagents
were purchased from Invitrogen Co. NGF was purified
from mouse submaxillary glands, biotinylated via car-
boxyl group (Bronfman et al., 2003) and subsequently
labeled with quantum dot (605 nm emission wave-
length) using a streptavidin-biotin linkage as previous
reported (Cui et al., 2007). Cultured DRG neurons can
survive up to 6 weeks in the microfluidic chamber for
imaging. In general, healthy cultures 1–2 weeks after
plating were used for axonal transport studies.

Fluorescence Imaging of Axonal Transport

Fluorescence imaging experiments were conducted on
an inverted microscope (Nikon Ti-U) equipped with a
603, 1.49 NA total-internal-reflection (TIRF) oil immer-
sion objective. The microscope was modified for pseudo-
TIRF illumination (Cui et al., 2007). A green solid state
laser (532 nm, Spectra Physics) was used to excite
the 605 nm quantum dots (Invitrogen) or the membrane
bound DiI fluorophore (Invitrogen). The incident angle
of the laser was adjusted to be slightly smaller than the
critical angle so that the laser beam could penetrate
�1 lm into the aqueous solution. The emitted fluores-
cence light was collected by the same objective, reflected
on a 550 nm dichroic mirror (Chroma), filtered with a
Qdot605/20 emission filter (Chroma), and focused onto a
cooled EMCCD camera (Andor iXon DU-897).

Retrograde transport of Qdot-NGF in axons had been
previously documented (Cui et al., 2007). An hour before
fluorescence imaging, 1 nM of Qdot-NGF was added to
the distal axon compartment. The liquid in the cell body
compartment was always maintained at higher level than
the distal axonal compartment to prevent flow of Qdot-
NGF into the cell body compartment. Immediately before
imaging, free Qdot-NGF in solution was washed off and
the culture medium was replaced with CO2 independent
medium. Time-lapsed images were collected at a rate of
10 frames/s and 1,200 frames/movie. The temperature of
the microscope stage, sample holder, and the objective
were maintained at 368C during the imaging collection.
For DiI-imaging, 2 lM of DiI (Molecular Probes) was
added to the cell body compartment and incubated for
30 min to label anterograde transported vesicles with DiI
fluorophore. Experimental data for anterograde transport
of DiI-labeled vesicles were collected using the same ex-
perimental setup and conditions as Qdot-NGF transport.

Data Analysis Algorithms

All data analysis was performed using custom-written
MATLAB (Mathworks) programs. Raw data of the time-
lapse movie was stored as a 32-bits three-dimensional
array (512 3 512 3 1,200). Because of the rather large
data size (>1 GB), each image frame was accessed indi-
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vidually instead of loading the whole data set into the
memory. Algorithms for particle tracking of the axonal
transport process involved four major steps. First, the
three-dimensional data was projected along the outline
of the axon to construct a spatiotemporal kymograph
image, effectively converting the 3D particle tracking
problem into a 2D curve tracing problem. Second, Stag-
er’s edge detection algorithm was implemented for
curve tracing in the two-dimensional kymograph image.
Third, particle positions from curve tracing were refined
to achieve higher spatial resolution using a 2D Gaussian
fitting. Finally, in kymograph images with high-particle
density and many crossing traces, global features were
used to optimize the connection of trace segments.

RESULTS
Construction of Kymograph Image

Time-lapse image series of Qdot-NGF and DiI-vesicle
transport were collected as described in the method sec-
tion. The retrograde movement of Qdot-NGF particles
from the axon termini to cell bodies (Supporting Infor-
mation Movie S1) and the anterograde movement of DiI-
vesicles from the cell body to axon termini (Supporting
Information Movie S2) could be easily identified and
tracked by visual inspection. To optimally leverage on
the information in all image frames and obtain more
accurate particle trajectories, we go beyond the idea of
frame-by-frame particle tracking from the original data.
Instead, we construct a kymograph image that is a
graphical representation of all time frames along the
line of the axon. The kymograph image is constructed in
two steps. The first step involves identifying the outline
of the axon on which the kymograph will be computed.
The second step assembles the identified axon lines in
all time frames into a spatiotemporal image.

In a single fluorescence image, the outline of the
axon is often not discernable (Fig. 1a). To find the axon
outline, the initial time-lapse images with intensity
data I (x, y, t) is projected along the t axis as IP(x, y) 5
maxt[T(I(x, y, t)) where T is the time duration of the
movie. The maximum intensity projection operation is
chosen over the average operation due to its ability to
keep small and weak vesicles from loosing to the back-
ground. This operation enables the visualization of the
axial projection of all vesicle trajectories in a single ref-
erence image, in which mobile particles leave a ‘‘trail’’
on the image IP (Fig. 1b).

The kymograph is constructed by defining an ‘‘obser-
vation line’’ L along one of these trails in the projection
image (Racine et al., 2007; Smal et al., 2010; Stokin
et al., 2005; Welzel et al., 2009), e.g., the green line in
Figure 1c. Several points on the line are selected out
manually (white circles in Fig. 1c). As the line L is not
necessarily a straight line across the image, the coordi-
nate di along the line L would depends on x and y coordi-
nates on the image. The relation is calculated by linear
interpolation of the selected points along line L using
pixel-by-pixel equal-distant coordinates (di). The total
length of L should approximately equal to the trail
length in the projection image. The kymograph image
IK(t, d) is assembled from the original data intensity at
those coordinates (di). Every column t in the kymograph
image contains the gray-scale intensity values at loca-
tions (di) in t-th image. In practice, to increase the signal
to noise ratio, the intensity values are obtained by aver-

aging pixel values in the vicinity of di along a line per-
pendicular to L. Figure 1d shows an example of gener-
ated kymograph image. The vertical axis is the spatial
distance along line L. The width of the kymograph image
is identical to the length of the movie sequence. For
example, this particular movie sequence consists of 500
frames, and therefore, the width (in pixels) of the image
is also 500. The line trace of a moving particle can be
clearly seen. The slope of this line corresponds to the ve-
locity of the particle and the flat segments are time peri-
ods when the particle is stationary. Now the problem of
identification and localization of moving particles has
been transformed to the isolation and extraction of the
trace from the kymograph image.

Generation of Seed Points

Curving tracing in an image generally starts from a
certain initial point, tracks along the center lines, and
terminates at positions where stopping conditions are
satisfied (Can et al., 1999; Zhang et al., 2007). We
locate the initial seeding points by identifying local
intensity maxima within the kymograph. A pixel is
considered as local maxima if no other pixel within a
distance w is of greater or equal intensity. For this pur-
pose, the kymograph image is first processed by the
gray-scale dilation that sets the value of pixel IK (t, d)
to the maximum value within a distance w of coordi-
nates (t, d), as shown in Figure 2b. Pixel-by-pixel com-
parison between the dilated image and the original
image locates those pixels that have the same value,
which are local bright points. Because only the bright-
est pixels fall onto the axon outline, we further require

Fig. 1. Construction of kymograph image from the time-lapse
image series. a: Index-colored fluorescence images at various time
point. b: Maximum intensity projection of the image series along the
time axis. c: Outline of the axon shape. d: Kymograph image con-
structed along the axon line. The corresponding time-lapse movie can be
found in the Supporting Information (Movie S1). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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that candidates for seed point pi to be in the upper 10%
percentile of brightness for the entire image (Fig. 2c).

For a high-quality kymograph image that contains
only one particle trace, a single seeding point is suffi-
cient. However, it is expected that the traces are some-
times segmented due to particles going out of focus or
photo-blinking of fluorophores such as quantum dots. In
addition, when particle traces cross on the kymograph
image, those traces are also separated into segments.
The brightness cutoff is set that at least one seed point is
detected on every trace segment. Occasionally, some
false points not on the trace lines will be recognized as
seed points due to uneven fluorescence background
along the shape of the axon and bleaching of fluores-
cence background over time. Those false seed points will
be automatically removed during the curve tracing step.

Direction Estimation by Edge Detection

After the initial seeding step, a sequence of explora-
tory searches are initiated at each of the seed point pi

for curve tracing in the 2D kymograph image. The pro-
cess of curve tracing is composed of three steps: (1)
determining the line direction vector ~Di at a seed point
pi, (2) locating the next point pi11 following the line
direction and move to pi11, and (3) iteratively repeat-
ing (1) and (2) until certain termination condition is
met. The core tracing algorithm is carried out using an
implementation of Steger’s algorithm (Steger, 1998)
that is based on detecting the edges of the line perpen-
dicular to the direction of the line and average inten-
sity along the direction the line.

The line direction ~Di at point pi is estimated using a
combination of edge response and intensity response
between a template and the neighborhood of nearby
pixels, an algorithm that has been previously reported
(Can et al., 1999; Zhang et al., 2007). To be consistent
with previous reports, we use similar notations as in
Zhang et al. (2007).

For each seed point pi, its surrounding two-dimen-
sional space is discretized into 32 equally spaced direc-
tions. However, not all 32 directions are physically pos-
sible. Because of the irreversibility of time, the trace
always moves forward along the time axis in a kymo-
graph. Therefore, only 16 directions are possible, and
each direction is indexed by a number (Fig. 3a). For
any arbitrary direction ~d, a low-pass differentiator fil-
ter is applied to its perpendicular direction to detect
edge responses. The kernel of the differentiator filter
for left and right edge responses are given by:

hL½j� ¼ 1

8
�d½j� 2� � 2d½j� 1� þ 2d½jþ 1� þ d½jþ 2�ð Þ

hR½j� ¼ 1

8
d½j� 2� þ 2d½j� 1� � 2d½jþ 1� � d½jþ 2�ð Þ ð1Þ

where d[j] is the discrete unit-impulse function and j
represents the number of pixels away from the seed
point pi along the direction perpendicular to~d (Fig. 3b).

To be consistent with previous reports, we will
use (x, y) instead of (t, d) axis notations for kymo-
graph image for this section. Numerically, the calcu-
lated (x, y) positions of point j are often not integer
numbers. The intensity at point (x, y) is calculated
using weighted addition of intensities of four pixels
surrounding it.

Iðx; yÞ ¼ ð1� xFÞð1� yFÞIðxI; yIÞ þ xFIðxI þ 1; yIÞ
þ yFIðxI; yI þ 1Þ � xFyFIðxI þ 1; yI þ 1Þ ð2Þ

where
x ¼ xI þ xF

y ¼ yI þ yF
, and xI is the integer part of x and xF

is the remaining decimal part. To reduce the high-fre-
quency noise, we averaged intensity values over those
five points that begins at point j and equally spaced

with 1 pixel apart along the orientation of ~d. The five-
point average intensity at j 5 0 (i.e., at the location of

pi) along the direction ~d is denoted as intensity

response Ið~dÞ.
The most probable line direction ~Di should give the

sharpest edge response among all arbitrary directions
~d at point pi (Fig. 3c), and any suboptimal line direction
~d will lead to flatter edge responses than the optimal
one. The left and right edge responses for direction~d at
point j are calculated by convoluting intensity vector
I½~d; j� with the differentiator filter in Eq. (1) which
gives

L½~d; j� ¼ 1

8

�I½~d; j� 2� � 2I½~d; j� 1� þ 2I½~d; jþ 1� þ I½~d; jþ 2�
� �

R½~d; j� ¼ 1

8

I½~d; j� 2� þ 2I½~d; j� 1� � 2I½~d; jþ 1� � I½~d; jþ 2�
� �

ð3Þ

The range of j values was chosen to from 28 to 8
based on the size of the particle in experimental

Fig. 2. Initial seeding points determination. a: The kymograph
image. b: Kymograph image after gray-scale dilation. c: Seed points
determined as local maximum overlapped on the kymograph image.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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data. Figure 3c illustrates the left and right
responses for direction 12 as a function of j. As
expected, the left and right responses are of the
same absolute value with opposite signs. The maxi-
mum values of left and right responses are Rmaxð~dÞ
at j 5 2 and Lmaxð~dÞ at j 5 21 along direction d ¼ 12.

The overall template response along direction ~d is
defined as

Tmaxð~dÞ ¼ max Rmaxð~dÞ;Lmaxð~dÞ
n o

ð4Þ

As shown in Figure 3d, the plot of overall template

response versus direction ~d shows a maximum at
~d ¼ 12, which is the desired line direction. In previous
reports (Can et al., 1999; Zhang et al., 2007), only the
template response is used for direction estimation, for

which the direction with the largest Tmaxð~dÞ is chosen

to be the direction vector ~Di for the seed point pi. Here,
we also incorporate information in the intensity

response Ið~dÞ (Fig. 3e). In general, the template

response Tmaxð~dÞ is more accurate in finding the right

direction vector than the intensity response Ið~dÞ. How-
ever, the kymograph image is much noisier than a real
2D image, which gives rise to noisy template and inten-
sity responses. The template response parameter is
susceptible to high-frequency noises, whereas the in-
tensity response parameter is more affected by the low
frequency intensity variations in the image. We esti-
mate the direction vector by calculating the sum of the
template and the intensity responses. Equal weights
are chosen for the template and the intensity responses
after testing over tens of kymograph images. There-
fore, the direction whose combined values of the tem-
plate response and the intensity response is the maxi-
mum among all 16 directions is chosen to be the direc-

tion vector ~Di for point pi.

~Di ¼ max Tmaxð~dÞ þ Ið~dÞ
n o

ð5Þ

Fig. 3. Line direction estimation by template and intensity
responses. a: Dividing the two-dimensional space to the right of the
seed point pi into 16 equally spaced discrete directions. b: For each

direction ~d, edge responses are calculated from intensities at various
points j. j represents the number of pixels away from the seed point

pi along the direction perpendicular to ~d. c: The calculated left
and right responses vs. j for direction ~d 5 12. d: The plot of
template response vs. directions shows a maximum at ~d 5 12. (e) The
plot of the intensity response vs. direction also shows a maximum at
~d 5 12.
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Curve Tracing in Kymograph Image

After the tracing direction is determined at the
seed point pi, the position of next point pi 1 1 on the
curve can be calculated from a predefined step size.
Because we are interested in the particle position at
each time frame that corresponding to a vertical
slice on the kymograph image, we trace forward a
single pixel in the x axis (time axis). Given the opti-
mal direction vector ~Di, the next point pi 1 1 can be
obtained as:

xiþ1 ¼ xi þ 1

yiþ1 ¼ yi þ tan arg~Di
� � ð6Þ

where arg ~Di is the angle of vector ~Di.
Even the initial seed point is usually located at the

center of the kymograph line, the calculated next point
pi 1 1 does not always fall at the center of the line due
to discretized directions and highly pixelated image. As
the tracing process proceeds forward, some points can
deviate significantly from the kymograph line, particu-
larly at locations when the line makes an abrupt turn
(Fig. 4a). To move the next point pi 1 1 closer to the
center of the line, we set the algorithm to find the
brightest pixel in the vicinity (6 2 pixels) of the calcu-
lated yi 1 1 along the y direction and assign it as the new
yi 1 1. This step will move the next point to the center of
the line that is generally the local maximum in y direc-
tion. The xi 1 1 is kept unchanged because each column
of data comes from a single time frame. Therefore, the
next point pi 1 1 is moved to the center of the line before
calculating the direction vector for the following time

point. Figure 4b shows the good agreement between the
computed trace and the source kymograph, after each
point is adjusted to the center of the line.

The tracing process is repeated until one of the fol-
lowing termination conditions is met.

1. The next point pi 1 1 falls within max(j) 1 1 pixels
from the edge of the image.

2. The next point pi 1 1 falls within the overlap range
(6 3 pixels) of a previously detected curve. This con-
dition terminates the tracing at the intersections
and avoids repeated tracing.

3. The maximum template response falls below a pre-
defined threshold. This threshold terminates the
tracing when the line does not show a clear edge
with respect to its local background.

4. The intensity response falls below a predefined sen-
sitivity threshold. This threshold ends the tracing
when the brightness of the line is below a certain
value.

It should be noted that seed points are not necessarily
located at the beginning of the line segment. To trace
the line to its very beginning, we also apply the curve
tracing method to the left side of each seed point for
reverse tracing after the forward tracing is terminated.
For reverse tracing, the direction estimation, next
point calculation, and termination conditions are the
same as the forward tracing, except for using the nega-
tive time [in Eq. (6)] and the mirror-image set of discre-
tized direction.

Refining Spatial Positions

The trajectory data extracted from the curve tracing
has a spatial resolution limited by both the accuracy of
tracing algorithm and the diffraction of light. During
the tracing step, the center of the particle at time t is set
to be the brightest pixel in the y direction, which sets
the spatial resolution to 1 pixel (�0.25 lm) minimum
(Fig. 5a). The diffraction limit of the light sets the ulti-
mate spatial resolution for any optical microscopy at
approximately half wavelength of the light. Most impor-
tantly, the ‘‘observation line’’ used to construct the ky-
mograph image is drawn semi-manually, which could
deviate from the actual particle center by a few pixels.
To achieve higher spatial resolution, we refine the posi-
tion of each trajectory point on the 2D kymograph image
by back-projecting them onto their corresponding loca-
tions in the original three-dimensional movie images.
An example is given in Figure 5b that shows a small
image area surrounding the circled point shown in Fig-
ure 5a in its corresponding time frame. The particle cen-
ter determined by the curve tracing process (the red dot
in Fig. 5b) deviates from the real particle center by 1
pixel in both the x- and the y-directions.

Each particle position is refined for better spatial re-
solution by single particle localization. The central
position of an isolated fluorescence emitter can be
determined to a high accuracy by fitting their PSF in-
tensity profile with a 2D Gaussian function (Moerner,
2006; Mudrakola et al., 2009; Yildiz et al., 2003). Nota-
bly, the precision of this localization is not limited by
the spread of its diffraction-limited intensity profile.
The localization accuracy of this procedure is only lim-
ited by the signal to noise ratio of the image and the

Fig. 4. Curve tracing from an initial seed point (shown in green).
a: Direct curve tracing shows significant deviation from the real line,
particularly at places where the line changes direction (a0). b: After
adjusting the next point pi11 to the center of the line after each trac-
ing step, the traced curve accurately follows the real line (as seen in
the zoomed-in view of b0). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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total number of photons collected. In practice, accura-
cies of a few nanometers or less have been achieved.
We fit the small image with a symmetric two-dimen-
sional Gaussian function

Iðx; yÞ ¼ I0 � exp �ðx� x0Þ2 þ ðy� y0Þ2
4r2

8>>>:
9>>>; ð7Þ

using a simplex algorithm with a least-squares estimator.
All four parameters x0, y0, r, and I0 are allowed to vary.

The Gaussian fitted values of x0 and y0 are added to
the estimated values determined in the previous step
to obtain better spatial resolution for each point. Fig-
ure 5d displays the same trajectory after the position
refinement. The localization accuracy of 15 nm is
achieved, which is estimated from the positional fluctu-
ation in the segment of the trajectory when the particle
is stationary.

Connecting Trace Segments by Incorporating of
Global Features

In many of cases, multiple particles of varying bright-
ness move in the same axon and their traces can overlap
or cross over each other (Fig. 6a). Our implantation of
Steger’s algorithm uses information from several neigh-

boring pixels, but it is unable to work accurately in two
situations: (1) curves that fade out and reappears and
(2) curve following at junctions. Ideally, a curve tracing
algorithm should emulate human perception. Human
vision can detect a line from the whole image (a global
view) and a cropped one (a local view). Therefore, a good
curve tracing algorithm has to incorporate both the local
and the global features of a line.

One of the termination conditions of our tracing algo-
rithm is when the intensity response falls below a prede-
fined sensitivity threshold. If the particle reappears after
a short interval, it will be recognized as a new trajectory
(Fig. 6b). To address this issue, we first trace out the two
segments independently and then link them together if
certain global conditions indicate that they actually
belong to the same trajectory. The possible connections
are detected based on relative orientation between two
segments and relative distance between their end points.
The orientation measure, y, is defined as

u ¼ ua þ ub; ð8Þ

Fig. 6. Curve tracing of the kymograph image with poor signal to
noise ratio. a: A representative kymograph image of DiI-labeled vesi-
cle shows many particles of various intensities and their traces over-
lap and cross over each other. The corresponding time-lapse movie
can be found in Supporting Information (Movie S2). b: Curve tracing
of the kymograph image shown in Figure 6 produces many frag-
mented traces. c: Illustration of connecting two trace-fragments by
measuring their end-to-end distance and their relative orientation. d:
Selection of optimal connections when two trajectories cross each
other. e: Particle trajectories after connecting trace segments and fill-
ing in the gaps. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Fig. 5. Refining particle positions by back-projection from the ky-
mograph image to the original image series. a: The trajectory con-
structed by curve tracing has a spatial resolution about 2 pixels (�0.5
lm). b: Back-projection of a point (dotted circle) in the trajectory to
the image series shows deviation from the real center of the particle.
c: Locating the center of the particle by 2D Gaussian fitting. d: Recon-
structed trajectory after fining the position of every point show much
higher spatial resolution (�15 nm). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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where ya and yb are angles between segments and the
connecting line as shown in Figure 6c. The relative dis-
tance measure is defined as

d=ðla þ lbÞ ð9Þ

where d is the distance between the end points of two
segments and la and lb are their lengths. We accept the
connection if it satisfies the condition given by y < Ty
and d/(la 1 lb) < Td where Ty and Td are two user
defined threshold values. The typical working values of
Ty and Td are 0.5 and 0.2, respectively, meaning two
segmented trajectories apart by 20% of their total
lengths and �288 are likely to be joined as a single tra-
jectory.

In the case of two traces crossing each other, the cur-
rent tracing algorithm would very likely yield four
fragmented trajectories. In this case, there could be
multiple possibilities satisfying the connecting condi-
tion at the junction. If we follow one trace only, we
select one possibility, which is the most likely connec-
tion. However, when we consider multiple possible con-
nections simultaneously, we need to find the optimal
linkage combination (Fig. 6d). Therefore, to select glob-
ally optimal connections, it is necessary to consider all
the possible connections simultaneously and choose
the optimal one. The optimal connections are chosen by
minimizing the summary of all connection measures

X
i

uþ k � d=ðla þ lbÞð Þi ð10Þ

where (y 1 k � d/(la 1 lb))i is the measure of i-th linkage
and k is a weight parameter. We empirically choose k 5
3 for our experimental data because d/(la 1 lb) has a
smaller range of value than y among all putative link-
ages. After selecting the optimal connections, the gaps
of the selected connections are filled by finding the local
maximum pixels around the connection line. We
extract sufficiently long connected segments, and
regard them as particle trajectories as shown in Figure
6e. After extracting dynamic trajectories from movies,
all subsequent kinetic analysis such as moving velocity,
direction, pausing frequency, and duration can be com-
puted with ease.

DISCUSSIONS

In the last decade, extensive studies link impaired
axonal transport to a range of human neurodegenera-
tive diseases including Alzheimer’s disease (Stokin
et al., 2005), amyotrophic lateral sclerosis (Collard
et al., 1995), Parkinson’s disease, and frontotemporal
dementia (Ittner et al., 2008). In most cases, the aver-
age rate of axonal transport is slowed by 20% or less as
compared with normal neurons. However, the axonal
transport process is intrinsically heterogeneous, with
the transport rate of individual cargos varying by an
order of magnitude (Cui et al., 2007). To draw statisti-
cally significant conclusions out of individual cargo
transport measurements, one needs to analyze a large
number of trajectories. In previous studies, manual
tracking of particle trajectories from a time-lapse
image series has predominated the analysis. For man-
ual analysis procedure, the amount of trajectory data

is often limited (tens of trajectories) and the selection
criterion is hardly impartial. In contrast, the method
presented here is capable of generating >1,000 trajec-
tories from a single day experiment.

In this article, we describe a numerical method for the
automatic extraction of particle trajectories during axo-
nal transport. We first transform the problem of particle
tracking in a 3D data set as a curve tracing problem in a
2D spatiotemporal kymograph image. Initial seed points
are automatically detected as local brightest points. The
core tracing algorithm is based on the direction-depend-
ence of the edge and intensity response functions
between a template and the neighborhood of nearby pix-
els. High-spatial resolution (�15 nm) is achieved by
back-projecting the trajectory points located in the ky-
mograph onto the original image data and fitting the
particle image with a 2D Gaussian function. After all
candidate segments are extracted, an optimization pro-
cess is then used to select and connect these segments.
We have shown experimentally that particle trajectories
can be stably extracted by means of this method.

Automated data analysis for axonal transport pro-
cess would minimize the selection bias and reduce
errors and thus can be applied to high-throughput
image processing. As expected, the performance of the
present method still depends on the quality of the data.
In images where background fluorescence is high and
particle intensities vary by more than 10 times, this
method would miss some trajectory segments of the
dim particles. In addition, when the particle is very
dim and signal to background ratio is low, the 2D Gaus-
sian fitting may not converge, leading to missing points
in the high-resolution trajectory. Fully automated axon
line detection is still in progress.

REFERENCES

Bronfman FC, Tcherpakov M, Jovin TM, Fainzilber M. 2003. Ligand-
induced internalization of the p75 neurotrophin receptor: A slow
route to the signaling endosome. J Neurosci 23:3209–3220.

Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. 1999. Rapid
automated tracing and feature extraction from retinal fundus
images using direct exploratory algorithms. IEEE Trans Inf Tech-
nol Biomed 3:125–138.

Carter BC, Shubeita GT, Gross SP. 2005. Tracking single particles: A
user-friendly quantitative evaluation. Phys Biol 2:60–72.

Cheezum MK, Walker WF, Guilford WH. 2001. Quantitative compari-
son of algorithms for tracking single fluorescent particles. Biophys
J 81:2378–2388.

Chetverikov D, Verestoy J. 1999. Feature point tracking for incom-
plete trajectories. Computing 62:321–338.

Collard JF, Cote F, Julien JP. 1995. Defective axonal transport in a
transgenic mouse model of amyotrophic lateral sclerosis. Nature
375:61–64.

Crocker JC, Grier DG. 1996. Methods of digital video microscopy for
colloidal studies. J Colloid Interface Sci 179:298–310.

Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu
S. 2007. One at a time, live tracking of NGF axonal transport using
quantum dots. Proc Natl Acad Sci USA 104:13666–13671.

Falnikar A, Baas PW. 2009. Critical roles for microtubules in axonal
development and disease. Results Probl Cell Differ 48:47–64.

Holzbaur EL. 2004. Motor neurons rely on motor proteins. Trends
Cell Biol 14:233–240.

Ittner LM, Fath T, Ke YD, Bi M, van Eersel J, Li KM, Gunning P,
Gotz J. 2008. Parkinsonism and impaired axonal transport in a
mouse model of frontotemporal dementia. Proc Natl Acad Sci USA
105:15997–16002.

Kannan B, Har JY, Liu P, Maruyama I, Ding JL, Wohland T. 2006.
Electron multiplying charge-coupled device camera based fluores-
cence correlation spectroscopy. Anal Chem 78:3444–3451.

Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. 2001. Huntingtin aggregate-
associated axonal degeneration is an early pathological event in
Huntington’s disease mice. J Neurosci 21:8473–8481.

Microscopy Research and Technique

612 K. ZHANG ET AL.



Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA.
1998. Real-time imaging of the axonal transport of granules con-
taining a tissue plasminogen activator/green fluorescent protein
hybrid. Mol Biol Cell 9:2463–2476.

Miller KE, Sheetz MP. 2004. Axonal mitochondrial transport and
potential are correlated. J Cell Sci 117:2791–2804.

Moerner WE. 2006. Single-molecule mountains yield nanoscale cell
images. Nat Methods 3:781–782.

Mudrakola HV, Zhang K, Cui B. 2009. Optically resolving individual
microtubules in live axons. Structure 17:1433–1441.

Pelkmans L, Kartenbeck J, Helenius A. 2001. Caveolar endocytosis of
simian virus 40 reveals a new two-step vesicular-transport pathway
to the ER. Nat Cell Biol 3:473–483.

Pelzl C, Arcizet D, Piontek G, Schlegel J, Heinrich D. 2009. Axonal
guidance by surface microstructuring for intracellular transport
investigations. Chemphyschem 10:2884–2890.

Racine V, Sachse M, Salamero J, Fraisier V, Trubuil A, Sibarita JB.
2007. Visualization and quantification of vesicle trafficking on a
three-dimensional cytoskeleton network in living cells. J Microsc
Oxford 225:214–228.

Roy S, Zhang B, Lee VM, Trojanowski JQ. 2005. Axonal transport
defects: A common theme in neurodegenerative diseases. Acta Neu-
ropathol 109:5–13.

Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Taki-
moto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia
W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein
CJ, Stokin GB, Goldstein LS, Mobley WC. 2006. Increased App
expression in a mouse model of Down’s syndrome disrupts NGF trans-
port and causes cholinergic neuron degeneration. Neuron 51:29–42.

Sbalzarini IF, Koumoutsakos P. 2005. Feature point tracking and tra-
jectory analysis for video imaging in cell biology. J Struct Biol
151:182–195.

Smal I, Grigoriev I, Akhmanova A, Niessen W, Meijering E. 2010.
Microtubule dynamics analysis using kymographs and variable-
rate particle filters. IEEE Trans Image Process 19:1861–1876.

Steger C. 1998. An unbiased detector of curvilinear structures. IEEE
Trans Pattern Anal Mach Intell 20:113–125.

Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount
SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS.
2005. Axonopathy and transport deficits early in the pathogenesis
of Alzheimer’s disease. Science 307:1282–1288.

Taylor AM, Rhee SW, Jeon NL. 2006. Microfluidic chambers for cell
migration and neuroscience research. Methods Mol Biol 321:167–
177.

Vale RD. 2003. The molecular motor toolbox for intracellular trans-
port. Cell 112:467–480.

Welzel O, Boening D, Stroebel A, Reulbach U, Klingauf J, Korn-
huber J, Groemer TW. 2009. Determination of axonal transport
velocities via image cross- and autocorrelation. Eur Biophys J
38:883–889.

Wu C, Ramirez A, Cui B, Ding J, Delcroix JD, Valletta JS, Liu JJ,
Yang Y, Chu S, Mobley WC. 2007. A functional dynein-microtubule
network is required for NGF signaling through the Rap1/MAPK
pathway. Traffic 8:1503–1520.

Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR.
2003. Myosin V walks hand-over-hand: Single fluorophore imaging
with 1.5-nm localization. Science 300:2061–2065.

Zhang K, Osakada Y, Vrljic M, Chen L, Mudrakola HV, Cui B. 2010.
Single molecule imaging of NGF axonal transport in microfluidic
devices. Lab Chip, in press. DOI 10.1039/C003385E.

Zhang Y, Zhou X, Degterev A, Lipinski M, Adjeroh D, Yuan J, Wong
ST. 2007. A novel tracing algorithm for high throughput imaging
screening of neuron-based assays. J Neurosci Methods 160:149–
162.

Microscopy Research and Technique

613TRAJECTORY ANALYSIS BY KYMOGRAPH CURVE TRACING


