

Personalized Federated Learning with Parameter Propagation

Jun Wu¹ junwu3@illinois.edu

Wenxuan Bao¹ wbao3@illinois.edu

Elizabeth Ainsworth^{1,2} ainsworth@illinois.edu

Jingrui He¹ jingrui@illinois.edu

¹University of Illinois at Urbana-Champaign ²USDA ARS Global Change and Photosynthesis Research Unit

Agricultural Research Service

Roadmap

Background

- Personalized Federated Learning
- A Transfer Learning Perspective

Methodology

- Federated Parameter Propagation
- Iterative Optimization
- Experiments
 - Performance Comparison
- Model Analysis

Conclusion

- Algorithm
- Evaluation

• Peter Kairouz, et al. "Advances and open problems in federated learning." Foundations and Trends® in Machine Learning 2021.

• Tian Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE signal processing magazine 2020.

• Jie Xu, et al. "Federated learning for healthcare informatics." Journal of Healthcare Informatics Research. 2021

Federated Learning (FL)

Definition

- Multiple clients **collaborate in solving a machine learning problem**, under the coordination of a central server or service provider.
- Each client's **raw data is stored locally** and not exchanged.

□ Applications

- 3 -

I

Federated Learning (FL)

□ Workflow

• **Client Update**: Locally update parameters w.r.t. private data

 $\theta_k \leftarrow \arg\min_{\theta} \ell(\theta; D_k)$

- **Forward Communication**: Upload parameter updates to the server
- **Server Update:** Synchronously aggregate the received parameters
 - $\theta_G \leftarrow \mathsf{AGG}(\theta_1, \theta_2, \cdots, \theta_K)$
- **Backward Communication**: Sent the global parameters back to clients

• Brendan McMahan, et al. "Communication-efficient learning of deep networks from decentralized data." AISTATS 2017.

• Peter Kairouz, et al. "Advances and open problems in federated learning." Foundations and Trends® in Machine Learning 2021.

Personalized Federated Learning (pFL)

• Canh T Dinh, et al. "Personalized federated learning with Moreau envelopes." NeurIPS 2020.

Aviv Shamsian, et al. "Personalized federated learning using hypernetworks." ICML 2021.

A Transfer Learning Perspective

Annue Jack

□ Knowledge Transfer across Clients

- Target domain: Any client $k \in \{1, 2, \dots, K\}$
- Source domains: All other clients $k' \neq k$
- Goal: For client *k*, it aims to **improve prediction performance** using source knowledge

• Jun Wu, and Jingrui He. "A unified meta-Learning framework for dynamic transfer learning." IJCAI 2022.

Concerns of pFL

□ Negative Transfer

• Transferring knowledge from the source can have a negative impact on the target learner

• Zirui Wang, et al. "Characterizing and avoiding negative transfer." CVPR 2019.

Annue have

Observations

- Existing pFL algorithms suffer from negative transfer
- Negative transfer is more likely to happen for client with adequate training samples

(a) Imbalanced training samples across clients

Model		Average			
	Client 1	Client 2	Client 3	Client 4	Accuracy
LOCAL	0.5270	0.4840	0.4980	0.8110	0.5800
FedAvg	0.3755	0.4420	0.6455	0.7965	0.5649
LG-FedAvg	0.5440	0.5115	0.5430	0.8095	0.6020
Ditto	0.4095	0.4810	0.6465	0.8095	0.5866
FedAMP	0.5300	0.5210	0.5415	0.8105	0.6008

(b) Results of personalized federated learning

• Zirui Wang, et al. "Characterizing and avoiding negative transfer." CVPR 2019.

Roadmap

Background

- Personalized Federated Learning
- A Transfer Learning Perspective

Methodology

- Federated Parameter Propagation
- Iterative Optimization

Experiments Performance Comparison Model Analysis

Conclusion

- Algorithm
- Evaluation

Proposed Algorithm: FEDORA

Arme James

□ Federated Parameter Propagation (FEDORA)

 $w_{kk'}$: Distribution similarity

 $D_{kk} = \sum w_{kk'}$

Overall objective function

(1) Local training: Each client updates its local parameters θ_k w.r.t. private data

(2) Approximation regularization: Each client approximates the received auxiliary parameters $\hat{\theta}_k$

3 **Distributional regularization:** Two clients share similar auxiliary parameters, if they are distributionally similar

Proposed Algorithm: FEDORA

Annue James

□ Federated Parameter Propagation (FEDORA)

 $\circ~$ Overall objective function

$$\min_{\theta_{k},\hat{\theta}_{k}} \sum_{k=1}^{K} \frac{1}{\lambda_{k} n_{k}} \sum_{i=1}^{n_{k}} \ell(x_{i}^{k}, y_{i}^{k}; \theta_{k}) + \sum_{k=1}^{K} \left\| \theta_{k} - \hat{\theta}_{k} \right\|_{2}^{2} + \frac{\alpha}{2} \sum_{k=1}^{K} \sum_{k'=1}^{K} \frac{w_{kk'}}{D_{kk}} \left\| \hat{\theta}_{k} - \hat{\theta}_{k'} \right\|_{2}^{2}$$

 $\circ~$ Iteratively update the parameters θ_k and $\hat{\theta}_k$

$$\begin{aligned} \textbf{Client update:} \quad & \min_{\theta_k} \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(x_i^k, y_i^k; \theta_k) + \lambda_k \|\theta_k - \hat{\theta}_k\|_2^2 \qquad (\text{Fix } \hat{\theta}_k, \text{update } \theta_k) \\ \\ \textbf{Server update:} \quad & \min_{\hat{\theta}_k} \sum_{k=1}^{K} \|\theta_k - \hat{\theta}_k\|_2^2 + \frac{\alpha}{2} \sum_{k=1}^{K} \sum_{k'=1}^{K} \frac{w_{kk'}}{D_{kk}} \|\hat{\theta}_k - \hat{\theta}_{k'}\|_2^2 \quad (\text{Fix } \theta_k, \text{update } \hat{\theta}_k) \end{aligned}$$

Training Procedures

Step 1: Client Update

 \circ $\,$ Locally update parameters w.r.t. private data $\,$

$$\min_{\theta_k} \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(x_i^k, y_i^k; \theta_k) + \lambda_k \left\| \theta_k - \hat{\theta}_k \right\|_2^2$$

□ Step 2: Forward Communication

• Upload parameter updates θ_k to the server

Step 3: Server Update:

• Adaptively aggregate the received parameters

$$\min_{\hat{\theta}_{k}} \sum_{k=1}^{K} \left\| \theta_{k} - \hat{\theta}_{k} \right\|_{2}^{2} + \frac{\alpha}{2} \sum_{k=1}^{K} \sum_{k'=1}^{K} \frac{w_{kk'}}{D_{kk}} \left\| \hat{\theta}_{k} - \hat{\theta}_{k'} \right\|_{2}^{2}$$

□ Step 4: Backward Communication

• Sent the auxiliary parameters $\hat{\theta}_k$ back to client k

Step 0 – Preprocessing

Distribution Similarity Estimator

o Orthogonal subspace \mathcal{U}_k for client k

(i) Truncated SVD: $X_k = U_k \Sigma_k V_k^T$

• Principal angles between two subspaces

(ii) Principal Angles:

$$\zeta_{1}^{kk'} = \min_{\substack{a_{1} \in \mathcal{U}_{k}, \ b_{1} \in \mathcal{U}_{k'}}} \arccos\left(\frac{\langle a_{1}, b_{1} \rangle}{\|a_{1}\| \cdot \|b_{1}\|}\right)$$
(ii) Principal Angles:

$$\zeta_{p}^{kk'} = \min_{\substack{a_{1} \in \mathcal{U}_{k}, \ b_{1} \in \mathcal{U}_{k'}\\a_{p} \perp a_{1}, \cdots, a_{p-1}\\b_{p} \perp b_{1}, \cdots, b_{p-1}}} \arccos\left(\frac{\langle a_{1}, b_{1} \rangle}{\|a_{1}\| \cdot \|b_{1}\|}\right)$$
(Server Update)

• Distribution similarity between client k and client k'

(iii) Similarity:
$$w_{kk'} = \sum_{i=1}^{p} \cos \zeta_i^{kk'}$$
 (Server Update)

• Saeed Vahidian, et al. "Rethinking data heterogeneity in federated learning: Introducing a new notion and standard benchmarks." 2022.

A Marine Ma

(Client Update)

Step 1 – Client Update

Objective Function

 $\circ \ \ \hat{\theta}_k$: Encode the knowledge from the central server

$$\min_{\theta_k} \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(x_i^k, y_i^k; \theta_k) + \lambda_k \left\| \theta_k - \hat{\theta}_k \right\|_2^2$$

□ Selective Regularization

 $∧ λ_k = 0 → pure local training$ $→ a proper λ_k mitigates negative transfer$

$$\lambda_{k} = \max\left(\epsilon, \ \ell_{k}\left(\theta_{k}; D_{k}^{val}\right) - \ell_{k}\left(\hat{\theta}_{k}; D_{k}^{val}\right)\right) \quad \text{where} \quad \epsilon = 1e - 8$$

Source knowledge $\hat{\theta}_k$ enables a smaller generalization error than the target learner θ_k

Step 3 – Server Update

Objective Function

 \circ θ_k : Uploaded personalized parameters from client k

$$\min_{\hat{\theta}_{k}} \sum_{k=1}^{K} \left\| \theta_{k} - \hat{\theta}_{k} \right\|_{2}^{2} + \frac{\alpha}{2} \sum_{k=1}^{K} \sum_{k'=1}^{K} \frac{w_{kk'}}{D_{kk}} \left\| \hat{\theta}_{k} - \hat{\theta}_{k'} \right\|_{2}^{2}$$

□ Adaptive Parameter Propagation

- Intuition: Two clients share similar auxiliary parameters, if Ο they are distributionally similar
- Ο

An iterative solution:
$$\hat{\theta}_{k}^{(m)} = \frac{\alpha}{(1+\alpha)D_{kk}} \sum_{k'=1}^{K} w_{kk'} \hat{\theta}_{k'}^{(m-1)} + \frac{1}{1+\alpha}\theta_{k}$$
A closed-form solution:

$$\widehat{\Theta}^* = \left(1 - \frac{\alpha}{1 + \alpha}\right) \left(I - \frac{\alpha}{1 + \alpha} D^{-1} W\right)^{-1} \Theta \quad \text{where} \quad \widehat{\Theta} = \left[\widehat{\theta}_1, \cdots, \widehat{\theta}_K\right]^T$$

1

Ο

Roadmap

Background

- Personalized Federated Learning
- A Transfer Learning Perspective

Methodology

- Federated Parameter Propagation
- Iterative Optimization
- Experiments
 Performance Comparison
 - Model Analysis

Conclusion

- Algorithm
- Evaluation

Experiments

Data Sets

- Feature shift: MNIST/Fashion-MNIST/GTSRB
- Label shift: CIFAR10
- Generalized shift: Yearbook

Baselines

- Global FL: FedAvg, FedProx, FedAvg+FT, FedProx+FT
- Local training: LOCAL
- Parameter decoupling: LG-FedAvg, FedPer, pFedHN
- Model interpolation: APFL, Ditto
- Clustering: IFCA, FeSEM
- o Multi-task learning: FedFOMO, FedAMP, FedU

Evaluation Metric Accuracy

• Relative Accuracy

 $R-ACC(\theta_k^*) = \frac{ACC(\theta_k^*) - ACC(\theta_k^{LOCAL})}{ACC(\theta_k^{LOCAL})}$

 $\circ \quad \text{Positive Transferability Ratio}$

$$PTR = \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \left[ACC(\theta_k^*) - ACC(\theta_k^{LOCAL}) \right]$$

- Tian Li, et al. "Ditto: Fair and robust federated learning through personalization." ICML 2021.
- Aviv Shamsian, et al. "Personalized federated learning using hypernetworks." ICML 2021.

• Michael Zhang, et al. "Personalized federated learning with first order model optimization." ICLR 2021.

- 17 -

□ Balanced Setting

 Clients have same number of training samples

Observations:

- FEDORA achieves comparable accuracy
- FEDORA consistently mitigates negative transfer

Model	Rotated MNIST		Rotated Fashion-MNIST			CIFAR-10			
Widdei	Acc ↑	R-Acc↑	PTR ↑	Acc ↑	R-Acc↑	PTR ↑	Acc ↑	R-Acc↑	PTR ↑
LOCAL	0.7642	-	-	0.7057	-	-	0.7617	-	-
FedAvg [25]	0.6889	-0.0976	0	0.6441	-0.0847	0.1250	0.6531	-0.1382	0.3000
FedAvg+FT	0.7411	-0.0293	0.3056	0.6848	-0.0283	0.3472	0.7992	0.0513	0.9000
FedProx [21]	0.5375	-0.2962	0	0.5968	-0.1521	0	0.6984	-0.0799	0.2000
FedProx+FT	0.6893	-0.0973	0.0278	0.6788	-0.0358	0.3056	0.7953	0.0460	0.9000
LG-FedAvg [23]	0.7804	0.0214	0.9444	0.7137	0.0115	0.7361	0.7656	0.0054	0.8000
FedPer [1]	0.7741	0.0135	0.6389	0.6725	-0.0457	0.1389	0.8352	0.0990	1.0000
pFedHN [33]	0.8004	0.0486	0.8611	0.7215	0.0249	0.6944	0.7766	0.0221	0.6000
APFL [6]	0.7871	0.0303	0.8889	0.7134	0.0112	0.7639	0.8258	0.0866	0.9000
Ditto [20]	0.7806	0.0220	0.7222	0.7212	0.0232	0.7361	0.8078	0.0630	0.9000
IFCA [9]	0.7915	0.0365	0.6944	0.7305	0.0370	0.7639	0.8227	0.0828	0.9000
FeSEM [46]	0.7720	0.0110	0.6111	0.7074	0.0051	0.5278	0.8547	0.1255	1.0000
FedFOMO [47]	0.7749	0.0140	0.9167	0.7110	0.0076	0.7639	0.8242	0.0797	1.0000
FedU [7]	0.7837	0.0260	0.8889	0.7208	0.0225	0.8056	0.7836	0.0295	0.9000
FedAMP [13]	0.7869	0.0298	1.0000	0.7203	0.0213	0.8056	0.7953	0.0457	0.8000
FEDORA	0.8251	0.0806	1.0000	0.7433	0.0548	0.9028	0.8570	0.1288	1.0000

□ Imbalanced Setting

• Client 18 has a larger number of training samples

Average Barray

Relative

Accuracy

0

□ Imbalanced Setting

• Client 18 has a larger number of training samples

Observations

• Client 18 might suffer from negative transfer, if transferring knowledge from all other clients

Average Berger

Relative

Accuracy

• Client 18 has a larger number of training samples

Observations

- Client 18 might suffer from negative transfer, if transferring knowledge from all other clients
- When clients have similar distribution with client 18, they benefit from federated training

Area Barge

Relative

Accuracy

Imbalanced Setting

• Client 18 has a larger number of training samples

Observations

- Client 18 might suffer from negative transfer, if transferring knowledge from all other clients
- When clients have similar distribution with client 18, they benefit from federated training
- \circ When clients have different distributions with client 18, they might suffer from negative transfer

Model Analysis

Communication Costs

FEDORA is comparable with FedAvg

Model	Cost	# params
FedAvg	$2KRd_{\theta}$	118,282,000
FEDORA	$2KRd_{\theta} + Kpd_{in}$	118,282,784

Communication costs on Rotated MNIST

K: Number of clients R: Number of federated training rounds d_{θ} : Dimensionality of model parameters p: Number of orthogonal vectors in the subspace d_{in} : Dimensionality of the input sample

Computational Efficiency

 FEDORA is efficient than other relation-aware pFL algorithms (FedFOMO, FedU, FedAMP)

Roadmap

Background

- Personalized Federated Learning
- A Transfer Learning Perspective

Methodology

- Federated Parameter Propagation
- Iterative Optimization
- Experiments
 - Performance Comparison
 - Model Analysis

Conclusion

- Algorithm
- Evaluation

Conclusion

□ Motivation: A Transfer Learning Perspective

• Personalized federated learning suffers from negative transfer

☐ Algorithm: Federated Parameter Propagation

- Adaptive parameter propagation (server update)
- Selective regularization (client update)

Evaluations

- Effectiveness: Better mitigate the negative transfer
- Efficiency: More efficient than relation-aware pFL baselines
- Communication: Comparable communication cost as FedAvg

Model		Average			
	Client 1	Client 2	Client 3	Client 4	Accuracy
LOCAL	0.5270	0.4840	0.4980	0.8110	0.5800
FedAvg	0.3755	0.4420	0.6455	0.7965	0.5649
LG-FedAvg	0.5440	0.5115	0.5430	0.8095	0.6020
Ditto	0.4095	0.4810	0.6465	0.8095	0.5866
FedAMP	0.5300	0.5210	0.5415	0.8105	0.6008
FEDORA	0.5565	0.5675	0.5850	0.8195	0.6321

Personalized Federated Learning with Parameter Propagation

Jun Wu¹ junwu3@illinois.edu

Wenxuan Bao¹ wbao3@illinois.edu

Elizabeth Ainsworth^{1,2} ainsworth@illinois.edu

Jingrui He¹ jingrui@illinois.edu

¹University of Illinois at Urbana-Champaign ²USDA ARS Global Change and Photosynthesis Research Unit

Agricultural Research Service