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ABSTRACT
Open-set domain adaptation aims to improve the generalization

performance of a learning algorithm on a target task of interest by

leveraging the label information from a relevant source task with

only a subset of classes. However, most existing works are designed

for the static setting, and can be hardly extended to the dynamic

setting commonly seen in many real-world applications. In this

paper, we focus on the more realistic open-set domain adaptation

setting with a static source task and a time evolving target task

where novel unknown target classes appear over time. Specifically,

we show that the classification error of the new target task can be

tightly bounded in terms of positive-unlabeled classification errors

for historical tasks and open-set domain discrepancy across tasks.

By empirically minimizing the upper bound of the target error, we

propose a novel positive-unlabeled learning based algorithm named

OuterAdapter for dynamic open-set domain adaptation with time

evolving unknown classes. Extensive experiments on various data

sets demonstrate the effectiveness and efficiency of our proposed

OuterAdapter algorithm over state-of-the-art domain adaptation

baselines.

CCS CONCEPTS
• Computing methodologies→ Transfer learning; • Theory
of computation → Sample complexity and generalization
bounds.
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1 INTRODUCTION
Domain adaptation (DA) has achieved significant success across

multiple high-impact applications, e.g., object recognition [25, 30,

40, 41] and video classification [10] in computer vision, sentiment
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Figure 1: Illustration of dynamic open-set domain adaptation where
novel unknown classes might appear every single day.

classification [33] and conversation generation [35] in natural lan-

guage processing, graph representation learning [32] in graph min-

ing, to name a few. It improves the generalization performance of a

learning algorithm on a target task of interest with scare labeled

data, by using knowledge from a relevant source task with ade-

quate label information publicly available on theweb.Most previous

adaptation algorithms [6, 36, 39] hold the close-set assumption that

the source and target tasks share the same group of classes. This

strong assumption is relaxed in the open-set domain adaptation

setting [19, 22], where the groups of classes from the source and

target tasks are partially overlapping. The goal of open-set domain

adaptation is to classify the target examples from the shared classes

correctly, and identify the target examples from all the unknown

classes as “unknown”.

However, most existing open-set domain adaptation algorithms [4,

14] are designed only for the static scenarios. In other words, when

applied to the dynamic scenarios commonly seen in many real-

world applications, these algorithms would achieve sub-optimal

performance. For example, eBay considers all the unpopular prod-

ucts (e.g., Real Estate, Tickets & Travel, etc.) as the “others” category1,
and new types of unpopular products frequently appear on eBay

over time. These time evolving unknown classes might pose a sig-

nificant challenge for predicting the class labels of eBay products

when adapting from a relevant static source task (e.g., Amazon)
without information about the new unknown classes. Another ex-

ample is the wild animal recognition [25]. It leverages the annotated

standard animal images (i.e., source data) to identify the categories

of wild animal images (e.g., target data) captured by the cameras.

However, in real scenarios, new species of animals are discovered

every year
2
. In this case, previous static open-set domain adaptation

algorithms [4, 14] might not be able to distinguish the known (task-

shared) classes from the time evolving unknown (newly appeared)

classes in the target task.

Therefore, in this paper, we study a more realistic open-set do-

main adaptation setting with a labeled static source task and an

unlabeled time evolving target task where novel unknown classes

might appear in every time stamp (see Figure 1). Compared with

previous work [3, 14], this is a much more challenging problem

1
https://www.ebay.com/n/all-categories

2
https://www.the-scientist.com/tag/new-species
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due to the following unique properties: (1) the task relatedness be-

tween the static source task and the time evolving target task would

change; (2) the class proportions of unknown classes appearing

in the target task is varying with the increase of unknown target

examples over time.

To bridge this gap, we first propose a novel open-set domain

discrepancy (OS-divergence) to measure the distribution shift in

the presence of unknown target classes. The key idea of our OS-
divergence is to encourage the matching of joint distribution across

tasks within the shared classes, and in the meanwhile, distinguish

the marginal distribution between the shared and unknown classes.

Compared to conventional domain discrepancy measures [1, 18, 36],

OS-divergence explicitly maximizes the distribution discrepancy of

the target examples within the shared and unknown classes, thereby

allowing us to identify the target examples within the unknown

classes. Then based on OS-divergence, we derive a novel gener-
alization error bound in the context of dynamic open-set domain

adaptation. To bemore specific, we show that the classification error

of the newest target task is bounded by the positive-unlabeled clas-

sification errors for historical tasks and the OS-divergence across
tasks. By empirically minimizing the error upper bound, we pro-

pose a novel domain adaptation algorithm named OuterAdapter
to learn the predictive target function using knowledge from both

the labeled source task and historical unlabeled target tasks.

Compared with previous works, the main contributions of this

paper can be summarized as follows:

• Problem: We introduce a more realistic problem setting of

dynamic open-set domain adaptation where novel unknown

classes might appear over time.

• Theory: We provide theoretical analysis for this problem

setting by deriving the generalization error bounds with our

proposed OS-divergence.
• Algorithm: A novel algorithm named OuterAdapter is pro-
posed to minimize the error upper bound of dynamic open-

set domain adaptation.

• Experiment: Extensive experiments confirm the effective-

ness and efficiency of the OuterAdapter algorithm.

The rest of the paper is organized as follows. The related work

is summarized in Section 2. We introduce our problem definition

in Section 3. In Section 4, we present the error bounds for dy-

namic open-set domain adaptation, followed by a novel algorithm

OuterAdapter in Section 5. Extensive experiments are provided in

Section 6. Finally, we conclude the paper in Section 7.

2 RELATEDWORK
In this section, we briefly introduce the related work on open-set

domain adaptation and continual learning.

2.1 Open-Set Domain Adaptation
Open-set domain adaptation [19, 22] tackles the knowledge transfer

problem where the source/target task involves unknown or task-

specific classes. The goal is to identify every target example as a

specific shared class or the “unknown” class. It has been theoreti-

cally shown [3, 17] that the target error is largely bounded in terms

of the marginal distribution alignment between source and target

examples within the shared classes as well as the misclassification

rate of unknown target class. It revealed that the key challenge

of open-set domain adaptation lied in the separation of known

and unknown classes in the target domain. It motivated a vari-

ety of practical open-set domain adaptation algorithms [4, 14, 16]

to solve the challenge. Nevertheless, all the aforementioned ap-

proaches assumed the stationary task distribution where the target

domain associated with the unknown classes is static. Little effort

has been devoted to studying the dynamic open-set domain adap-

tation where the target domain is evolving over time and novel

unknown classes might appear in every time stamp. To the best of

our knowledge, this is the first effort to provide both theoretical

analysis and practical algorithm for the dynamic open-set domain

adaptation scenarios.

2.2 Continual Learning
Continual lifelong learning aims to train a model on the new task

with previously learned knowledge from a sequence of old tasks.

It mitigates the catastrophic forgetting induced by the distribu-

tion shift of new task [13]. Moreover, in recent years, closed-set

domain adaptation has also been studied in the dynamic scenar-

ios [2, 8], where the knowledge can be transferred from labeled

source task and historical target task to the newest target task. It

is shown [12, 15, 26, 29, 31] that the historical target knowledge

could be leveraged to bridge the gap between the source task and

the newest target task. This results in the mitigation of negative

transfer [27] in the context of dynamic domain adaptation. How-

ever, in real world scenarios, it is hard to guarantee that the target

task always share the same group of classes over time. When novel

unknown classes appear in the target domain, it is challenging

for previous works to identify the category of the target exam-

ples. Therefore, different from previous works, we focus on the

dynamic open-set domain adaptation scenarios where novel un-

known classes might appear in every time stamp.

3 PRELIMINARIES
In this section, we introduce the problem definition of dynamic

open-set domain adaptation and its unique challenges.

3.1 Notation
Let X and Y denote the input feature space and output class-label

space. Specifically, we let Y𝑠 ,Y𝑡 ⊂ Y denote the source and target

class-label spaces respectively. Following the definition of open-set

domain adaptation [22], in this paper, we assume Y𝑠 ⊂ Y𝑡 . That is,

the target class-label space
3 Y𝑡 = {Y𝑠 , 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} = {1, · · · ,𝐶,𝐶 +

1}, where the source task and target task share the first 𝐶 classes,

and the target task has an additional unknown class 𝐶 + 1. Let D𝑠

andD𝑡 denote the source and target tasks with the joint probability

distribution Q𝑠 and P𝑡 over X × Y, respectively. Let Q𝑠
𝑋
and P𝑡

𝑋
be the marginal distribution of the source and target tasks over X,

and P𝑡≤𝐶 be the target distribution limited to shared classes only.

LetH be a hypothesis class on X, where a hypothesis is a function

ℎ : X → Y. When the target task is evolving over time, we use

D𝑡 𝑗 to denote the target task at the time stamp 𝑗 associated with

class-label space Y𝑡 𝑗 .

3
In this paper, all classes not appearing in the source task are represented as “unknown”.
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Figure 2: Challenges of dynamic open-set domain adaptation. (a)
evolving distribution: data distribution of ‘back pack’ and ‘bookcase’
shifts over time; (b) varying class proportions: “unknown” class is
minority at the 1

st time stamp, but becomes the majority at the 3
rd

time stamp with the increase of unknown target examples.

3.2 Problem Definition
Formally, our dynamic open-set domain adaptation problem is

defined as follows.

Definition 3.1. (DynamicOpen-SetDomainAdaptation) Given
a labeled source task D𝑠 and a time evolving unlabeled target task

{D𝑡 𝑗 }𝑁𝑗=1
with time stamp 𝑗 , where Y𝑠 ⊂ Y𝑡 𝑗 , dynamic open-set

domain adaptation aims to learn an optimal prediction function

for target task D𝑡𝑁 +1
using the knowledge from the source task

D𝑠 and the historical target tasks D𝑡 𝑗 ( 𝑗 = 1, · · · , 𝑁 ), such that it

can classify the examples from the shared classes in the target task

D𝑡𝑁 +1
correctly, and identify the examples from all the unknown

classes as “unknown”.

Note that for dynamic domain adaptation involving 𝑁 historical

time stamps for the target task, for the sake of notation convenience,

we use D𝑡0
to represent the source task D𝑠 with 𝑛𝑡0

labeled source

examples. In addition, we assume that the data distribution of the

target task is smoothly evolving over time. In other words, the

domain discrepancy 𝑑 (·, ·) of the target task at adjacent time stamps

is upper bounded by a small constant 𝛾 > 0, i.e., 𝑑 (P𝑡 𝑗≤𝐶 , P
𝑡 𝑗+1

≤𝐶 ) ≤ 𝛾 ,

𝑗 = 0, . . . , 𝑁 (P𝑡0

≤𝐶 = P𝑡0 = Q𝑠 denotes the source distribution

without unknown classes). As we will show in Theorem 4.4, this

assumption ensures the successful knowledge transfer across tasks

and time stamps, despite newly appearing examples from unknown

classes in the target task.

3.3 Challenges
Compared to static open-set domain adaptation [19, 22], the unique

challenges of dynamic open-set domain adaptation include (see Fig-

ure 2): (1) Evolving distribution: the target distribution evolves

over time; (2) Varying class proportions: the ratio of target exam-

ples within the shared classes constantly changes with the increase

of examples from the “unknown” class over time. In particular,

with novel unknown classes appearing in the evolving target task,

the openness [14] across tasks might increase over time. All these

factors make it more difficult to address the influence of distri-

bution shift across tasks and time stamps using existing domain

discrepancy measures [1, 18]. They can even lead to negative trans-

fer [27] with undesirable performance on the target task at the next

time stamp in the dynamic open-set domain adaptation setting.

Therefore, we propose to address these challenges by directly char-

acterizing the open-set domain discrepancy in the presence of the

“unknown” class, and minimizing the resulting error upper bound

for the target task at the next time stamp.

(a) (b) (c)

So
ur
ce
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et

Source data:

Target data:

Shared classes:

Unknown class:

Figure 3: Distribution alignment of open-set domain adaptation: (a)
label-informed distribution alignment after identifying “unknown”
class; (b) marginal distribution alignment after identifying “un-
known” class; (c) distribution alignment usingH-divergencewithout
identifying the “unknown” class.

4 GENERALIZATION ERROR BOUNDS
In domain adaptation, a common practice is to learn a common

latent feature space shared by source and target tasks, which mini-

mizes a pre-defined domain discrepancy measure. In this section,

we first demonstrate the limitation of existing domain discrepancy

measures for learning the latent feature space in the context of

open-set domain adaption. Then we formally introduce a novel

open-set domain discrepancy measure (OS-divergence), which
characterizes both the shared classes and the “unknown” class. Fi-

nally, by formulating the problem as positive-unlabeled learning

(PU-Learning) [11, 34], we derive the error bounds for open-set

domain adaptation in the dynamic setting.

4.1 OS-divergence
Following [1], we first consider a binary classification problem

with Y𝑠 ∈ {0, 1} for simplicity, although the analysis can be natu-

rally generalized to multiple classes. A typical domain discrepancy

measure between the source and target tasks is as follows.

Definition 4.1. (H -divergence [1]) Forℎ,ℎ′ ∈ H , let 𝐵 denote the

subset ofX such thatℎ(𝑥) ≠ ℎ′(𝑥) for any 𝑥 ∈ 𝐵, theH -divergence

between source and target tasks over X is defined as:

𝑑HΔH (Q𝑠𝑋 , P
𝑡
𝑋 ) = sup

ℎ,ℎ′∈H
|PrQ𝑠

𝑋
[𝐵] − PrP𝑡

𝑋
[𝐵] | (1)

However, it cannot be directly applied to measure the domain

discrepancy for open-set domain adaptation since novel unknown

classes exist in the target task. In particular, as shown in Figure 3(c),

distribution alignment withH -divergence in the presence of the

“unknown” target class might lead to non-separable representation

of target examples in the latent feature space. This is because in

this case, it might enforce the alignment of the target examples of

“unknown” class and the source examples of shared classes.

One solution proposed in previous work [3, 17] is to minimize

the marginal domain discrepancy 𝑑 (Q𝑠
𝑋
, P𝑡

𝑋,≤𝐶 ) between source

and target tasks within the shared classes, without using any label

information. Nevertheless, it has two limitations: (i) it does not

explicitly identify the “unknown” class, thus can suffer from the

same problem of distribution alignment withH -divergence (Fig-

ure 3(c)); (ii) marginal distribution alignment for source and target

data within the shared classes cannot guarantee the success of

knowledge transfer for domain adaptation (see also Theorem 4.7).

As shown in Figure 3(b), exact marginal distribution alignment

might lead to negative transfer [27], which is consistent with re-

cent theoretical analysis for closed-set domain adaptation [37].
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To solve these problems, we propose a novel discriminant domain

discrepancy measure named OS-divergence for open-set domain

adaptation. In particular, we argue that a qualified open-set domain

discrepancy measure should satisfy the following conditions (see

Figure 3(a)): (i) identifying the “unknown” class and (ii) measuring

the joint distribution shift (for both the features and the class labels)

of source and target tasks within the shared classes. Inspired by

the Fisher criterion [5] that encourages within-class examples to

be close and between-class examples to be separable, we define

OS-divergence as the difference of the within-class discrepancy to

the between-class discrepancy.

Definition 4.2. (OS-divergence) For any ℎ ∈ H , let 𝐼 (ℎ) denote
the subset of X such that x ∈ 𝐼 (ℎ) ⇔ ℎ(x) = 1 and 𝐼 (ℎ) be the
complement of 𝐼 (ℎ). The OS-divergence between the source and

target tasks is defined as

𝑑OS (Q𝑠 , P𝑡 ) = 𝑑C (Q𝑠 , P𝑡≤𝐶 ) − 𝜌 · 𝑑HΔH (Q𝑠𝑋 , P
𝑡
𝑋,>𝐶 ) (2)

where 𝜌 > 0 is a discrepancy coefficient and 𝑑C (·, ·) is a label-

informed domain discrepancy measure [29], i.e., 𝑑C (Q𝑠 , P𝑡≤𝐶 ) =

supℎ∈H
��
PrQ𝑠 [{𝐼 (ℎ), 𝑦 = 1} ∪ {𝐼 (ℎ), 𝑦 = 0}] − PrP𝑡≤𝐶

[{𝐼 (ℎ), 𝑦 =

1} ∪ {𝐼 (ℎ), 𝑦 = 0}]
��
.

Remark. The OS-divergence is the first-order Taylor series of
𝑑C (Q𝑠 , P𝑡≤𝐶 )+

𝜌

𝑑HΔH (Q𝑠
𝑋
,P𝑡

𝑋,>𝐶
) −2𝜌 , as𝑑C (Q𝑠 , P𝑡≤𝐶 )+

𝜌

𝑑HΔH (Q𝑠
𝑋
,P𝑡

𝑋,>𝐶
) −

2𝜌 ≈ 𝑑C (Q𝑠 , P𝑡≤𝐶 )−𝜌 ·𝑑HΔH (Q𝑠
𝑋
, P𝑡

𝑋,>𝐶
)+𝑂

(
(𝑑2

HΔH (Q𝑠
𝑋
, P𝑡

𝑋,>𝐶
)
)
.

One intuitive explanation of the OS-divergence is that minimiz-
ing OS-divergence is equivalent to encouraging the matching of
joint distribution across tasks within the shared classes, and in the
meanwhile, distinguishing the marginal distribution between the
shared and “unknown” classes. In addition, its empirical estimate
ˆ𝑑OS (·, ·) can be naturally defined as ˆ𝑑OS (Q𝑠 , P𝑡 ) = ˆ𝑑C (Q𝑠 , P𝑡≤𝐶 ) −
𝜌 · ˆ𝑑HΔH (Q𝑠

𝑋
, P𝑡

𝑋,>𝐶
) where ˆ𝑑C (·, ·) and ˆ𝑑HΔH (·, ·) denote the em-

pirical estimate of C-divergence [29] and H -divergence [1], respec-
tively.

4.2 Open-Set DA as PU-Learning
Open-set domain adaptation (DA) can be considered as multi-class

positive-unlabeled learning (PU-Learning) [34], where all the 𝐶

shared classes appearing in both source and target tasks are posi-

tive and the “unknown” class is negative. We first consider the static

setting with one time stamp (i.e., 𝑁 = 0) in the target task. The

overall expected target classification error incurred by the hypothe-

sis ℎ ∈ H is 𝜖𝑡 (ℎ) =
∑𝐶+1

𝑐=1
𝜋𝑡𝑐E𝑥∼P𝑡 (𝑥 |𝑦=𝑐) [L(ℎ(𝑥), 𝑦 = 𝑐)], where

𝜋𝑡𝑐 is the class-prior probability of class 𝑐 . We have the following

observation when there is no distribution shift across tasks.

Lemma 4.3. Assume there is no distribution shift between source
and target tasks, given labeled training data of 𝐶 shared classes from
source task and unlabeled training data from target task, the expected
target error 𝜖𝑡 (ℎ) incurred by the hypothesis ℎ ∈ H is as follows.

𝜖𝑡 (ℎ) = (1 − 𝜋𝑡𝐶+1
)𝜖𝑠 (ℎ) + Δ𝑃𝑈

where 𝜋𝑡
𝐶+1

= P𝑡 (𝑦 = 𝐶 + 1) is class-prior probability of “unknown”
class in the target task and Δ𝑃𝑈 = E𝑥∼P𝑡

𝑋
[L(ℎ(𝑥), 𝑦 = 𝐶 + 1)]−(1−

𝜋𝑡
𝐶+1

)E𝑥∼Q𝑠
𝑋
[L(ℎ(𝑥), 𝑦 = 𝐶 + 1)] is a positive-unlabeled open-set

risk. Furthermore, it has the following unbiased estimator:

O𝑃𝑈 =
1 − 𝜋𝑡

𝐶+1

𝑛𝑠

𝑛𝑠∑︁
𝑖=1

(
L(ℎ(𝑥𝑖𝑠 ), 𝑦𝑖𝑠 ) − L(ℎ(𝑥𝑖𝑠 ), 𝑦 = 𝐶 + 1)

)
+ 1

𝑚𝑡

𝑚𝑡∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡 ), 𝑦 = 𝐶 + 1)

where 𝑛𝑠 and𝑚𝑡 are the numbers of training examples in the source
and target tasks, respectively.

Remark. It is notable that one recent work [16] also considered
static open-set domain adaptation as a PU-Learning problem. However,
it fundamentally differed from our results in that (1) little theoretical
explanation was provided on the relationship between open-set do-
main adaptation and PU-Learning, and (2) it formulated the open-set
domain adaptation as a two-stage PU-Learning problem separately
recognizing the shared classes and identifying the “unknown” class. In
contrast, we focus on deriving the unbiased estimator of target error in
a unified manner (classifying all the classes by the hypothesis ℎ ∈ H )
under mild conditions.

As we will show in the next subsection, combined with the

proposed open-set domain discrepancy measure OS-divergence,
the PU-Learning based unbiased estimator from this lemma can

be directly used to derive the error bounds for dynamic open-set

domain adaptation in the presence of distribution shift between

tasks and time stamps.

4.3 Error Bounds
Based on the previous discussion, now we are ready to present the

generalization error bound for dynamic open-set domain adaptation.

Let 𝜋𝐶+1 = P(𝑦 = 𝐶 + 1) be the class-prior probability, where all
the target classes are considered as the “unknown” class with the

index 𝐶 + 1 if they do not appear in the source task. We have,

Theorem 4.4. (Upper Bound) Assume that the loss function
L(·, ·) is bounded, i.e., |L(·, ·) | ≤ 𝑀 . For any hypothesis ℎ ∈ H
and

∑𝑁
𝑗=0

𝛼 𝑗 = 1 where 𝛼 𝑗 ≥ 0 ( 𝑗 = 0, · · · , 𝑁 ), there exists 𝜌 > 0

such that the expected error 𝜖𝑡𝑁 +1
(ℎ) of the target task at the (𝑁 +1)th

time stamp is bounded as:

𝜖𝑡𝑁 +1
(ℎ) ≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗E(𝑥,𝑦)∼P𝑡 𝑗≤𝐶
[L(ℎ(𝑥), 𝑦)]

+ 4𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 )
)
+ Δ𝑃𝑈 +𝐶𝑂𝑁𝑆𝑇

where Δ𝑃𝑈 = E
𝑥∼P𝑡𝑁 +1

𝑋

[L(ℎ(𝑥),𝐶 + 1)] − (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)∑𝑁

𝑗=0
𝛼 𝑗 ·

E
𝑥∼P𝑡 𝑗

𝑋 |𝑌≤𝐶
[L(ℎ(𝑥),𝐶 + 1)] and 𝐶𝑂𝑁𝑆𝑇 is a constant.

Remark. This theorem indicates that (1) the target error 𝜖𝑡𝑁 +1
(ℎ)

could be upper bounded in terms of the classification error on historical
tasks, the domain discrepancy across tasks, and PU-Learning based
open-set risk Δ𝑃𝑈 ; (2) if there exists a small constant 𝛾 > 0 such that
𝑑C (P

𝑡 𝑗
≤𝐶 , P

𝑡 𝑗+1

≤𝐶 ) ≤ 𝛾 , the target error 𝜖𝑡𝑁 +1
(ℎ) could be upper bounded

by the source error and PU-Learning based open-set risk Δ′
𝑃𝑈

due

to 𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡 𝑗+1 ) ≤ 𝑑C (P
𝑡 𝑗
≤𝐶 , P

𝑡 𝑗+1

≤𝐶 ) ≤ 𝛾 ; (3) the classification
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error O𝑃𝑈 in the error upper bound contains ordinary cost-sensitive
learning on labeled data (i.e., E(𝑥,𝑦)∼P𝑡 𝑗≤𝐶

[L(ℎ(𝑥), 𝑦)]) and the open-
set risk Δ𝑃𝑈 on unlabeled data.

Moreover, the following corollary states the generalization error

bound with empirical Rademacher complexity [18] of a hypoth-

esis class H . This motivates us to design the practical algorithm

for dynamic open-set domain adaptation by leveraging the knowl-

edge from labeled source examples and historical unlabeled target

examples.

Corollary 4.5. Let 𝑛𝑡 𝑗 denote the number of examples within 𝐶
shared classes and𝑚𝑡 𝑗 be the number of all examples in the target task
at the 𝑗 th time stamp. With the same assumption as in Theorem 4.4,
for any 𝛿 > 0 and ℎ ∈ H , with probability at least 1−𝛿 , the expected
target error 𝜖𝑡𝑁 +1

(ℎ) is bounded as follows.

𝜖𝑡𝑁 +1
(ℎ) ≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗
1

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦
𝑖
𝑡 𝑗
)

+ 4𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗 ˆ𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 )
)
+ Δ̂𝑃𝑈 + 𝑅𝛿

where Δ̂𝑃𝑈 = 1

𝑚𝑡𝑁 +1

∑𝑚𝑡𝑁 +1

𝑖=1
L(ℎ(𝑥𝑖𝑡𝑁 +1

),𝐶+1)−(1−𝜋𝑡𝑁 +1

𝐶+1
)∑𝑁

𝑗=0

𝛼 𝑗

𝑛𝑡 𝑗
·∑𝑛𝑡 𝑗

𝑖=1
L(ℎ(𝑥𝑖𝑡 𝑗 ),𝐶 + 1) and 𝑅𝛿 is a Rademacher complexity term (see

Appendix A.3).

Furthermore, the following corollary shows that static open-

set domain adaptation [22] can be considered as a special case of

Theorem 4.4 with 𝑁 = 0.

Corollary 4.6. For static open-set domain adaptation with𝑁 = 0,
with the same assumption as in Theorem 4.4, the expected target error
𝜖𝑡𝑁 +1

(ℎ) is bounded:
𝜖𝑡 (ℎ) ≤ (1 − 𝜋𝑡𝐶+1

)
(
𝜖𝑠 (ℎ) + 4𝑀𝑑OS (Q𝑠 , P𝑡 )

)
+ Δ𝑃𝑈 +𝐶𝑂𝑁𝑆𝑇

whereΔ𝑃𝑈 = EP𝑡
𝑋
[L(ℎ(𝑥),𝐶 + 1)]−(1−𝜋𝑡

𝐶+1
)EQ𝑠

𝑋
[L(ℎ(𝑥),𝐶 + 1)].

Remark. Compared to existing static error bounds of open-set
domain adaptation [3, 17], the benefits of our PU-Learning based
error bound are as follows. (1) Our open set risk Δ𝑃𝑈 is estimated
from all the source and target examples with no need of ground truth
labels of these examples; while existing works focus on designing the
open-set risk with “unknown” target classification error, which is hard
to estimate in real scenarios. (2) Our target error is bounded in terms
of label-informed domain discrepancy measure by explicitly taking
the conditional distribution shift [37] across tasks into consideration;
while the discrepancy distance [18] used in previous works cannot
guarantee the success of knowledge transfer between source and target
tasks under the conditional shift.

Theorem 4.7. (Lower Bound) Given ℎ ∈ H , if L(ℎ(𝑥), 𝑦) =

|ℎ(𝑥)−𝑦 |, 𝜖𝑡0
(ℎ) = 0 and P𝑡𝑖

𝑋 |𝑌 ≤𝐶 = P
𝑡 𝑗

𝑋 |𝑌 ≤𝐶 for 𝑖, 𝑗 = 0, 1, · · · , 𝑁 +1,
then the expected target error 𝜖𝑡𝑁 +1

(ℎ) is lower bounded.

𝜖𝑡𝑁 +1
(ℎ) ≥ 𝜋

𝑡𝑁 +1

𝐶+1
𝜖𝑈𝑡𝑁 +1

(ℎ) +
����� 𝐶∑︁
𝑐=1

𝑐

(
P𝑡𝑁 +1 (𝑦 = 𝑐) − (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)P𝑡0 (𝑦 = 𝑐)

)�����
where 𝜖𝑈𝑡𝑁 +1

(ℎ) = E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝐶+1) [L(ℎ(𝑥), 𝑦 = 𝐶 + 1)] is the
“unknown” classification error.

Remark. Theorem 4.7 shows that the target error 𝜖𝑡𝑁 +1
(ℎ) can

be large even when source classification error is zero and marginal
feature distribution within𝐶 shared classes across all tasks are exactly
matched (i.e., the discrepancy distance [18] used in previous works [3,
17] is zero).

5 PROPOSED ALGORITHM
In this section, we present a novel dynamic open-set domain adap-

tation algorithm OuterAdapter, followed by the model analysis.

5.1 OuterAdapter
The goal of dynamic open-set domain adaptation is to classify the

target examples within the 𝐶 shared classes correctly, and to iden-

tify all the “unknown” examples appearing in the new target task

using knowledge from a related labeled source task and historical

unlabeled target tasks. To this end, we propose a novel adaptation

method OuterAdapter, which minimizes the generalization error

upper bound derived in Section 4.3. Specifically, by empirically min-

imizing the upper bound of target error in Corollary 4.5, the overall

objective function of OuterAdapter is formulated as follows.

min

𝜃
O𝑃𝑈 (𝜃 ) + 𝛽

𝑁∑︁
𝑗=0

𝛼 𝑗 ˆ𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1
;𝜃 ) (3)

and

O𝑃𝑈 (𝜃 ) =
𝑁∑︁
𝑗=0

𝜆𝛼 𝑗

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

(
L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦

𝑖
𝑡 𝑗

;𝜃 ) − L(ℎ(𝑥𝑖𝑡 𝑗 ),𝐶 + 1;𝜃 )
)

+ 1

𝑚𝑡𝑁 +1

𝑚𝑡𝑁 +1∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡𝑁 +1

),𝐶 + 1;𝜃 )

where O𝑃𝑈 (𝜃 ) is an unbiased positive-unlabeled learning (PU-

Learning) based classification error (please see more details in next

subsection) parameterized by 𝜃 , 𝜆 = 1− 𝜋
𝑡𝑁 +1

𝐶+1
≥ 0 is the class-prior

probability, and 𝛽 ≥ 0 is a hyper-parameter to measure the trade-off

of PU-Learning error and domain discrepancy across tasks and time

stamps. In this case, since the class-prior probability in the target

task is not known, we choose a fixed hyper-parameter 𝜆 to balance

the classification terms in O𝑃𝑈 (𝜃 ). Here 𝜃 represents all the train-

able parameters in our objective function. 𝑦𝑖𝑡 𝑗
is the pseudo-label

of the example 𝑥𝑖𝑡 𝑗
where 𝑦𝑖𝑡 𝑗

= 𝑦𝑖𝑡 𝑗
for labeled source examples

and 𝑦𝑖𝑡 𝑗
would be empirically estimated for unlabeled historical

target examples. The overall training process of OuterAdapter is
illustrated in Algorithm 1. It is given the labeled source data and a

sequence of unlabeled target data as input, and outputs the optimal

prediction function ℎ of the new target task D𝑡𝑁 +1
. The hypothesis

class H is assumed to the group of continuous functions, which

could be universally approximated by neural networks [9] (con-

volutional neural network is used in our experiments for image

classification). In particular, we use the following methods to es-

timate the parameters 𝛼 𝑗 and 𝑦
𝑖
𝑡 𝑗
as well as open-set discrepancy

measure
ˆ𝑑OS involved in our objective function.

Estimation of pseudo-label 𝑦𝑖𝑡 𝑗 : We sequentially learn the

pseudo-label𝑦𝑖𝑡 𝑗
for an example 𝑥𝑖𝑡 𝑗

appearing in the target taskD𝑡 𝑗

as follows. With labeled source data, the prediction function of the
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first target task D𝑡1
can be learned by applying our OuterAdapter

algorithm on the labeled source examples (𝑥𝑖𝑡0

, 𝑦𝑖𝑡0

) and the unla-

beled target examples 𝑥𝑖𝑡1

. Then the pseudo-label 𝑦𝑖𝑡1

of example

𝑥𝑖𝑡1

from the first target task D𝑡1
can be obtained. After that, the

prediction function of the target taskD𝑡2
is learned by applying our

OuterAdapter algorithm on the labeled examples (𝑥𝑖𝑡0

, 𝑦𝑖𝑡0

) (𝑥𝑖𝑡1

, 𝑦𝑖𝑡1

)
and the unlabeled target examples 𝑥𝑖𝑡2

for deriving the pseudo-label

𝑦𝑖𝑡2

of example 𝑥𝑖𝑡2

. In this way, the pseudo-label 𝑦𝑖𝑡 𝑗
of historical

unlabeled target examples can be sequentially estimated.

Estimation of ˆ𝑑OS : Following [1, 29], the H -divergence and

C-divergence can be estimated from finite examples using the ad-

versarial domain discriminator. However, it is hard to select the

“unknown” target examples to estimate𝑑HΔH (Q𝑠
𝑋
, P𝑡

𝑋,>𝐶
) because

we have no prior information regarding the “unknown” class. Thus

we choose the target examples which are classified as the “un-

known” class with a high prediction probability (see Steps 11-12

in Algorithm 1). 𝑑C (Q𝑠 , P𝑡≤𝐶 ) can be estimated in a similar way. In

this case, the pseudo-label 𝑦𝑖𝑡 𝑗
of input 𝑥𝑖𝑡 𝑗

is used to measure the

distribution shift across tasks over X ×Y.

Estimation of 𝛼 𝑗 : In our algorithm, 𝛼 𝑗 indicates the impor-

tance of D𝑡 𝑗 on learning the prediction function of new target

task D𝑡𝑁 +1
. In this paper, we propose a simple but effective self-

attention scheme to automatically learn the value of 𝛼 𝑗 : 𝛼 𝑗 =

exp (LeakyReLU(∑𝐶
𝑐=1

𝑎𝑇𝑐 𝑥
𝑐
𝑡 𝑗
)) and 𝛼 𝑗 = 𝛼 𝑗/

∑𝑁
𝑗=0

𝛼 𝑗 where ·𝑇 de-

notes the transpose. Here 𝑎𝑐 is a class-specific weight parameter

and 𝑥𝑐𝑡 𝑗
( 𝑗 = 0, · · · , 𝑁 +1) is the class-specific average feature vector

of examples 𝑥𝑖𝑡 𝑗
within the class 𝑐 in the task D𝑡 𝑗 , by using either

the real class-label 𝑦𝑖𝑡 𝑗
(if available) or pseudo-label 𝑦𝑖𝑡 𝑗

.

5.2 Discussion
Unbiasedness of OuterAdapter: The following theorem states

that the empirical PU loss term O𝑃𝑈 of Eq. (3) is unbiased in the

dynamic open-set domain adaptation setting.

Theorem 5.1. If 𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 ) = 0 for 𝑗 = 0, · · · , 𝑁 , the
empirical PU loss term O𝑃𝑈 of Eq. (3) is an unbiased estimator of
target error 𝜖𝑡𝑁 +1

(ℎ). Furthermore, if the loss function L satisfies a
symmetric condition, i.e.,

∑𝐶+1

𝑐=1
L(ℎ(𝑥), 𝑐) = 1 for any 𝑥 ∈ X andℎ ∈

H , the unbiased estimator involves only non-negative classification
error terms as follows.

O𝑃𝑈 = 2(1 − 𝜋
𝑡𝑁 +1

𝐶+1
)

𝑁∑︁
𝑗=0

𝛼 𝑗
1

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦
𝑖
𝑡 𝑗
)

+ 1

𝑚𝑡𝑁 +1

𝑚𝑡𝑁 +1∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡𝑁 +1

), 𝑦 = 𝐶 + 1)

+ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)

𝑁∑︁
𝑗=0

𝛼 𝑗
1

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

𝐶+1∑︁
𝑐=1

L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦 = 𝑐)

− (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)

Computational Complexity: Compared to existing open-set do-

main adaptation methods [14, 17] separably classifying data of

shared classes and identifying “unknown” data, OuterAdapter al-
gorithm is trained using back propagation in an end-to-end manner.

Algorithm 1 OuterAdapter

1: Input: Labeled source data from D𝑡0
, time evolving unlabeled

target data from {D𝑡 𝑗 }𝑁𝑗=1
, a new target task D𝑡𝑁 +1

, a hypoth-

esis classH , hyper-parameters 𝜌, 𝜆, 𝛽 .

2: Output: Prediction function on new target task D𝑡𝑁 +1
.

3: Randomly initialize the model parameters 𝜃 ;

4: for 𝑗 in [0, 1, · · · , 𝑁 + 1] do
5: while Stopping criterion is not satisfied do
6: Sample labeled examples (𝑥𝑖𝑡𝑘 , 𝑦

𝑖
𝑡𝑘
) from D𝑡0

;

7: for 𝑘 ∈ {1, · · · , 𝑗 − 1} do
8: Sample labeled examples (𝑥𝑖𝑡𝑘 , 𝑦

𝑖
𝑡𝑘
) from D𝑡𝑘 ;

9: end for
10: Sample unlabeled examples 𝑥𝑖𝑡 𝑗

from D𝑡 𝑗 ;

11: Estimate the probability of 𝑥𝑖𝑡 𝑗
as “unknown”;

12: Choose top-𝑝 unlabeled examples as “unknown” according

to the estimated probability, and others as known ones;

13: Estimate
ˆ𝑑OS and 𝛼𝑘 (𝑘 = 0, · · · , 𝑗);

14: Update parameters 𝜃 and 𝑎𝑐 using gradient descent;

15: end while
16: Estimate pseudo-label 𝑦𝑖𝑡 𝑗

for 𝑥𝑖𝑡 𝑗
in D𝑡 𝑗 ;

17: end for

It has the computational complexity of 𝑂 ( |𝜃 |) per iteration using

gradient descent, where |𝜃 | is the number of trainable parameters.

6 EXPERIMENTS
6.1 Experimental Setup
Data Sets: We use the following public data sets: Office-31 [21]

with 3 domains (Amazon, DSLR, Webcam), Office-Home [24] with

4 domains (Art, Clipart, Product, Real World) and Syn2Real-O [20]

with 2 domains (Synthetic, Real). Following [19, 29], we choose

some classes as the “unknown” class in the target task, and gener-

ate the time evolving open-set target tasks by adding the random

salt&pepper noise and rotation to the raw images (see Appendix A.6

for more details).

Baselines: In the experiments, we use the following baseline meth-

ods: (1) static closed-set adaptation methods: SourceOnly with

basic ResNet-50 [7] and DANN [6]; (2) multi-source adaptation

methods: MDAN [38] and DARN [28]; (3) dynamic closed-set adap-

tation methods: CUA [2] and TransLATE [29]; (4) static open-

set adaptation methods: OSBP [22] and DAMC [23]; (5) dynamic

open-set adaptation methods: it combines the open-set adaptation

methods with CUA [2] to leverage the historical target knowl-

edge, i.e., OSBP+CUA and DAMC+CUA. In addition to the pro-

posed OuterAdapter algorithm, we also consider its simple variant

OuterAdapter𝜇 where 𝛼 𝑗 =
𝜇𝑁−𝑗∑𝑁

𝑘=0
𝜇𝑁−𝑘 for 0 ≤ 𝜇 ≤ 1. Here we turn

the hyperparameter 𝜇 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
Implementation Details: In our experiments, we adopted ResNet-

50 [7] pretrained on ImageNet as the base network for feature

extraction. The overall model can be trained by back propagation,

and we update the model parameters using stochastic gradient

descent with mini-batch of size 16 where the number of selected

“unknown” samples 𝑝 is searched from {2,4,6,8,10} on estimating

OS-divergence. In addition, the hyper-parameters 𝜌 , 𝜆 and 𝛽 are

empirically set as 0.25, 0.1 and 1.0, respectively. All the experiments
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Figure 4: Catastrophic forgetting mitigation of OuterAdapter
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are performed on a Windows machine with four 3.80GHz Intel

Cores, 64GB RAM and two NVIDIA Quadro RTX 5000 GPUs.

6.2 Results
Following [14, 22], we report the normalized accuracy for all classes

(OS) and normalized accuracy for the known classes only (OS*)

for dynamic open-set domain adaptation. The results on Office-

Home, Office-31 and Syn2Real-O are shown in Table 1 (see also

Table 5), Table 2 and Table 3 where the classification performance

on the dynamic target task with multiple time stamps are reported

(best results are indicated in bold) after running three times (the

models are validated on the performance of OS*). It is observed

that: (1) OuterAdapter algorithm consistently outperforms state-

of-the-art domain adaptation baselines by a large margin; and (2)

compared to OuterAdapter𝜇 , the proposed self-attention scheme

on automatically learning the weights 𝛼 𝑗 significantly improves the

performance. Besides, Figure 4 shows the effect of OuterAdapter
algorithm on mitigating the catastrophic forgetting, where the

OuterAdaptermodel (as well as baselines) learned from new target

task D𝑡6
are evaluated on all historical target tasks and then the

average classification accuracy is reported. It indicates that the

proposed OuterAdapter algorithm achieves better performance on

mitigating catastrophic forgetting compared to dynamic adaptation

baselines CUA and TransLATE as well as recent static open-set

adaptation baseline OSBP.

6.3 Analysis
We analyze our proposed OuterAdapter algorithm from various as-

pects, including ablation study on each component of OuterAdapter,
different evolution scenarios of open-set classes, hyper-parameter

sensitivity and computational efficiency.

6.3.1 Ablation Study. We investigate the impact of the PU loss term

O𝑃𝑈 and the OS-divergence as well as the historical target knowl-
edge in our OuterAdapter algorithm. It has the following variants.

(i) OuterAdapter without PU-Learning: the loss term O𝑃𝑈 (𝜃 ) of
the objective function Eq. (3) is ordinary cost-sensitive learning, i.e.,

O𝑃𝑈 (𝜃 ) =
∑𝑁

𝑗=0
𝛼 𝑗

1

𝑛𝑡 𝑗

∑𝑛𝑡 𝑗
𝑖=1

L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦
𝑖
𝑡 𝑗

;𝜃 ); (ii) OuterAdapter
without historical data: it transfers the knowledge from labeled

source data D𝑡0
(or D𝑠 ) directly without using historical target

knowledge; (iii) OuterAdapter without OS-divergence: it uses
only PU-Learning loss term without minimizing the domain dis-

crepancy across tasks; (iv) OuterAdapter with H -divergence (or

C-divergence): the OS-divergence of the objective function in Eq.

(3) is simply replaced withH -divergence [1] (or C-divergence [29]).
Table 6 shows the results on new target task D𝑡6

from Office-31

(DSLR→Webcam) where “w” indicates “with” and “w/o” indicates

“without”. It is observed that the derived PU-Learning loss term

positively affects OuterAdapter; historical target knowledge as

well as our OS-divergence could indeed improve the performance

of OuterAdapter on dynamic open-set domain adaptation.

6.3.2 Evolution of Open-Set Classes. We evaluate our proposed

OuterAdapter algorithm on various cases regarding the evolution

of open-set classes. One common case is that the novel classes are ap-

pearing over time. Here we consider two additional scenarios with

either constantly decreasing open-set classes, or randomly chang-

ing open-set classes at every time stamp (see Appendix A.6). Table 7

shows the performance of the OuterAdapter model on the new

target task D𝑡6
(Final) from Office-31 (DSLR→Webcam) and on

all historical target tasks (Average). It confirms that OuterAdapter
consistently outperforms the baselines under different evolving

conditions of open-set classes.

6.3.3 Hyper-parameter Sensitivity. We investigate the sensitivity

of our OuterAdapter algorithm to hyper-parameter 𝜆 which ap-

proximates the class-prior probability 1−𝜋𝑡𝑁 +1

𝐶+1
in PU-Learning loss

term. Figure 5 shows the normalized accuracy for all classes (OS),

normalized accuracy for the known classes only (OS*), and accuracy

for the unknown class only (UNK) on new target task D𝑡6
from

Office-31 (DSLR→Webcam). It shows that the value of 𝜆 largely

affects the trade-off of classifying the data as the shared classes or

identifying the data as “unknown” target class. More specifically,

Table 4 lists the classification accuracy on every class. It is observed

that compared to static OSBP [22], continuous methods OSBP+CUA

and OuterAdapter can better model the class membership of time

evolving open-set target domain.

6.3.4 Efficiency. Besides, we compare the computational complex-

ity of OuterAdapterwith baselines. The running time (measured in

seconds wall-clock time) per epoch and the normalized accuracy for

all classes (OS) on new target task D𝑡5
from Syn2Real-O (Synthetic

→ Real) are reported in Figure 6. It is observed that OuterAdapter
achieves the best model performance with less computational com-

plexity compared to existing dynamic domain adaptation methods.

7 CONCLUSION
In this paper, we focus on a more realistic and challenging domain

adaptation setting, where examples from unknown classes appear
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Method

D𝑡1
D𝑡2

D𝑡3
D𝑡4

D𝑡5
D𝑡6

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

SourceOnly 0.542±0.011 0.564±0.012 0.372±0.011 0.387±0.012 0.300±0.012 0.312±0.012 0.316±0.008 0.329±0.008 0.271±0.014 0.282±0.014 0.258±0.011 0.269±0.011
DANN 0.599±0.014 0.622±0.014 0.434±0.016 0.452±0.016 0.329±0.012 0.342±0.013 0.340±0.009 0.353±0.009 0.285±0.008 0.296±0.008 0.299±0.016 0.311±0.017

MDAN 0.597±0.008 0.621±0.008 0.490±0.012 0.510±0.012 0.415±0.008 0.432±0.008 0.405±0.013 0.421±0.013 0.392±0.007 0.408±0.007 0.398±0.011 0.415±0.011
DARN 0.601±0.013 0.625±0.013 0.480±0.022 0.499±0.023 0.412±0.026 0.429±0.026 0.403±0.033 0.419±0.034 0.389±0.021 0.404±0.022 0.382±0.036 0.397±0.038

CUA 0.602±0.008 0.626±0.008 0.488±0.021 0.508±0.022 0.408±0.028 0.425±0.029 0.402±0.026 0.418±0.027 0.382±0.019 0.397±0.020 0.384±0.020 0.399±0.020
TransLATE 0.590±0.007 0.614±0.007 0.473±0.014 0.492±0.015 0.408±0.022 0.424±0.023 0.382±0.015 0.398±0.015 0.380±0.017 0.396±0.017 0.380±0.018 0.395±0.018

OSBP 0.649±0.009 0.674±0.008 0.474±0.015 0.489±0.016 0.355±0.012 0.365±0.012 0.370±0.002 0.382±0.004 0.303±0.002 0.310±0.003 0.313±0.006 0.319±0.007
DAMC 0.610±0.010 0.623±0.009 0.431±0.008 0.438±0.011 0.316±0.006 0.321±0.010 0.338±0.003 0.345±0.001 0.278±0.001 0.286±0.002 0.299±0.011 0.306±0.013

OSBP+CUA 0.649±0.009 0.674±0.008 0.557±0.009 0.580±0.010 0.475±0.006 0.493±0.007 0.435±0.007 0.453±0.008 0.429±0.008 0.446±0.009 0.417±0.009 0.434±0.009
DAMC+CUA 0.610±0.010 0.623±0.009 0.487±0.007 0.503±0.008 0.413±0.008 0.428±0.009 0.404±0.008 0.419±0.008 0.390±0.010 0.405±0.010 0.386±0.016 0.401±0.017

OuterAdapter𝜇 0.652±0.004 0.678±0.004 0.590±0.012 0.614±0.012 0.507±0.006 0.527±0.006 0.487±0.015 0.506±0.016 0.440±0.025 0.457±0.026 0.425±0.025 0.442±0.027
OuterAdapter 0.652±0.004 0.678±0.004 0.598±0.005 0.622±0.005 0.541±0.005 0.562±0.004 0.525±0.004 0.546±0.004 0.501±0.006 0.521±0.007 0.494±0.008 0.513±0.008

Table 1: Accuracy of dynamic open-set domain adaptation on Office-Home (Art → Clipart)

Method

D𝑡1
D𝑡2

D𝑡3
D𝑡4

D𝑡5
D𝑡6

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

SourceOnly 0.871±0.009 0.958±0.009 0.822±0.007 0.905±0.008 0.690±0.003 0.759±0.003 0.733±0.027 0.806±0.031 0.649±0.009 0.714±0.011 0.542±0.008 0.596±0.009
DANN 0.891±0.006 0.980±0.007 0.821±0.003 0.903±0.003 0.775±0.009 0.853±0.010 0.804±0.020 0.884±0.023 0.767±0.019 0.844±0.020 0.742±0.014 0.815±0.016

MDAN 0.900±0.005 0.990±0.005 0.866±0.017 0.953±0.019 0.819±0.013 0.901±0.019 0.834±0.011 0.918±0.012 0.797±0.016 0.877±0.017 0.792±0.014 0.872±0.016
DARN 0.884±0.008 0.972±0.008 0.831±0.022 0.914±0.025 0.815±0.020 0.897±0.021 0.815±0.025 0.896±0.027 0.797±0.022 0.877±0.024 0.803±0.024 0.883±0.027

CUA 0.879±0.002 0.967±0.003 0.850±0.013 0.935±0.015 0.832±0.015 0.915±0.017 0.834±0.007 0.918±0.008 0.836±0.006 0.919±0.007 0.834±0.010 0.917±0.011
TransLATE 0.897±0.006 0.987±0.007 0.883±0.014 0.971±0.015 0.849±0.026 0.934±0.029 0.862±0.015 0.948±0.017 0.856±0.026 0.942±0.028 0.846±0.021 0.930±0.023

OSBP 0.907±0.003 0.993±0.001 0.848±0.013 0.929±0.010 0.792±0.033 0.868±0.034 0.788±0.003 0.862±0.001 0.813±0.007 0.892±0.005 0.777±0.033 0.853±0.035
DAMC 0.894±0.002 0.980±0.000 0.878±0.011 0.962±0.010 0.828±0.006 0.901±0.007 0.792±0.025 0.858±0.025 0.770±0.028 0.838±0.031 0.749±0.017 0.814±0.026

OSBP+CUA 0.907±0.003 0.993±0.001 0.855±0.001 0.940±0.000 0.853±0.003 0.938±0.004 0.852±0.003 0.936±0.004 0.855±0.001 0.940±0.001 0.846±0.003 0.931±0.003
DAMC+CUA 0.894±0.002 0.980±0.000 0.868±0.015 0.953±0.017 0.847±0.018 0.931±0.019 0.839±0.010 0.923±0.011 0.840±0.031 0.924±0.034 0.823±0.016 0.905±0.018

OuterAdapter𝜇 0.901±0.007 0.991±0.008 0.883±0.007 0.971±0.008 0.877±0.019 0.964±0.021 0.872±0.008 0.959±0.009 0.862±0.021 0.948±0.023 0.865±0.007 0.951±0.008
OuterAdapter 0.901±0.007 0.991±0.008 0.895±0.003 0.985±0.004 0.875±0.009 0.962±0.010 0.868±0.012 0.954±0.013 0.869±0.010 0.955±0.011 0.874±0.010 0.962±0.010

Table 2: Accuracy of dynamic open-set domain adaptation on Office-31 (Amazon → DSLR)

Method

D𝑡1
D𝑡2

D𝑡3
D𝑡4

D𝑡5
D𝑡6

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

SourceOnly 0.451±0.005 0.488±0.005 0.215±0.017 0.233±0.019 0.167±0.011 0.181±0.011 0.146±0.015 0.158±0.017 0.131±0.007 0.142±0.008 0.123±0.004 0.133±0.004
DANN 0.544±0.019 0.589±0.021 0.363±0.001 0.394±0.001 0.261±0.011 0.283±0.012 0.244±0.017 0.264±0.019 0.188±0.010 0.204±0.011 0.196±0.003 0.212±0.003

MDAN 0.534±0.010 0.578±0.011 0.358±0.009 0.388±0.010 0.298±0.004 0.323±0.004 0.277±0.014 0.300±0.015 0.225±0.009 0.244±0.010 0.244±0.010 0.265±0.011
DARN 0.541±0.004 0.586±0.004 0.376±0.022 0.408±0.024 0.310±0.022 0.336±0.024 0.269±0.023 0.291±0.025 0.220±0.028 0.238±0.031 0.230±0.017 0.250±0.019

CUA 0.550±0.012 0.596±0.013 0.384±0.013 0.417±0.015 0.301±0.010 0.326±0.011 0.263±0.012 0.286±0.013 0.202±0.033 0.219±0.036 0.171±0.020 0.186±0.022
TransLATE 0.551±0.024 0.597±0.027 0.374±0.020 0.405±0.021 0.297±0.025 0.322±0.028 0.262±0.023 0.283±0.024 0.210±0.020 0.228±0.021 0.194±0.028 0.210±0.030

OSBP 0.608±0.006 0.658±0.007 0.392±0.017 0.423±0.018 0.273±0.007 0.291±0.010 0.237±0.009 0.253±0.011 0.198±0.016 0.211±0.017 0.202±0.004 0.217±0.002
DAMC 0.563±0.011 0.605±0.013 0.345±0.007 0.371±0.005 0.251±0.020 0.272±0.021 0.231±0.009 0.249±0.008 0.198±0.008 0.213±0.005 0.190±0.013 0.205±0.016

OSBP+CUA 0.608±0.006 0.658±0.007 0.412±0.006 0.445±0.006 0.312±0.014 0.338±0.015 0.267±0.014 0.289±0.015 0.201±0.021 0.218±0.024 0.200±0.016 0.216±0.017
DAMC+CUA 0.563±0.011 0.605±0.013 0.366±0.021 0.396±0.023 0.262±0.019 0.284±0.020 0.244±0.023 0.265±0.024 0.182±0.023 0.197±0.025 0.181±0.017 0.196±0.019

OuterAdapter𝜇 0.615±0.010 0.666±0.011 0.469±0.011 0.508±0.012 0.361±0.012 0.391±0.013 0.284±0.010 0.308±0.011 0.230±0.006 0.249±0.006 0.208±0.010 0.225±0.015
OuterAdapter 0.615±0.010 0.666±0.011 0.490±0.014 0.530±0.016 0.379±0.025 0.410±0.027 0.328±0.021 0.356±0.024 0.271±0.013 0.293±0.013 0.275±0.010 0.299±0.011

Table 3: Accuracy of dynamic open-set domain adaptation on Syn2Real-O (Synthetic → Real)

Method Backpack Bike Helmet Bookcase Bottle Calculator Chair Lamp Computer Cabinet UNK OS OS*

OSBP 0.310 0.952 1.000 0.833 1.000 0.903 0.550 1.000 0.048 0.158 0.310 0.642 0.675

OSBP+CUA 0.931 0.952 0.857 1.000 0.938 0.839 0.875 0.889 0.095 0.947 0.368 0.790 0.832

OuterAdapter 0.966 0.952 1.000 1.000 1.000 1.000 0.725 0.889 0.714 0.895 0.246 0.853 0.914

Table 4: Performance comparisons Office-31 (DSLR → Webcam)

in the target task over time. To this end, we propose a novel dynamic

open-set domain adaptation algorithm OuterAdapter by explicitly

minimizing the generalization error bound. Experiments confirm

the effectiveness and efficiency of our proposed OuterAdapter
algorithm against state-of-the-art baselines.
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Method

Product→ Real World DSLR→ Webcam

OS OS* OS OS*

SourceOnly 0.414±0.034 0.431±0.036 0.486±0.008 0.535±0.011
DANN 0.488±0.006 0.508±0.006 0.612±0.002 0.673±0.004

MDAN 0.596±0.023 0.620±0.024 0.773±0.008 0.815±0.008
DARN 0.590±0.010 0.614±0.010 0.766±0.021 0.842±0.023

CUA 0.587±0.027 0.610±0.029 0.805±0.022 0.885±0.024
TransLATE 0.627±0.019 0.652±0.020 0.787±0.018 0.866±0.021

OSBP 0.544±0.011 0.562±0.013 0.669±0.023 0.702±0.030
DAMC 0.473±0.011 0.482±0.011 0.552±0.015 0.571±0.029

OSBP+CUA 0.677±0.021 0.704±0.021 0.797±0.004 0.877±0.005
DAMC+CUA 0.646±0.002 0.671±0.003 0.809±0.004 0.890±0.004

OuterAdapter𝜇 0.626±0.021 0.651±0.022 0.791±0.005 0.870±0.005
OuterAdapter 0.698±0.005 0.727±0.005 0.852±0.006 0.937±0.007

Table 5: Accuracy of dynamic open-set domain adaptation on Office-
Home (Product → Real World) and Office-31 (DSLR → Webcam)
where the classification performance on the final target task are
reported

Method OS OS*

OuterAdapter w/o PU-Learning 0.545 0.600

OuterAdapter w/o historical data 0.730 0.803

OuterAdapter w/o OS-divergence 0.782 0.860

OuterAdapter w H-divergence 0.829 0.912

OuterAdapter w C-divergence 0.839 0.922

OuterAdapter 0.848 0.933

Table 6: Ablation performance

Method

Decreasing Random

Final Average Final Average

OS OS* OS OS* OS OS* OS OS*

CUA 0.640 0.704 0.755 0.831 0.773 0.851 0.844 0.928

OSBP 0.697 0.731 0.801 0.848 0.730 0.801 0.811 0.888

OSBP_CUA 0.798 0.877 0.788 0.867 0.797 0.877 0.827 0.910

OuterAdapter 0.812 0.894 0.858 0.944 0.837 0.921 0.866 0.948

Table 7: Performance on different types of evolution of open-set
classes
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A APPENDIX
A.1 Proof of Lemma 4.3

Proof. We have𝜋𝑡
𝐶+1

·P𝑡 (𝑥 |𝑦 = 𝐶+1) = P𝑡 (𝑥)−∑𝐶
𝑐=1

𝜋𝑡𝑐P
𝑡 (𝑥 |𝑦 =

𝑐) = P𝑡 (𝑥) − (1 − 𝜋𝑡
𝐶+1

)∑𝐶
𝑐=1

𝜋𝑠𝑐Q
𝑠 (𝑥 |𝑦 = 𝑐). Then, we have

𝜖𝑡 (ℎ) = 𝜋𝑡
𝐶+1

· E𝑥∼P𝑡 (𝑥 |𝑦=𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

+
𝐶∑︁
𝑐=1

𝜋𝑡
𝑐 · E𝑥∼P𝑡 (𝑥 |𝑦=𝑐 ) [L(ℎ (𝑥), 𝑐) ] = Δ𝑃𝑈 + (1 − 𝜋𝑡

𝐶+1
)𝜖𝑠 (ℎ)

≈ O𝑃𝑈 = (1 − 𝜋𝑡
𝐶+1

) 1

𝑛𝑠

𝑛𝑠∑︁
𝑖=1

L(ℎ (𝑥𝑖𝑠 ), 𝑦𝑖𝑠 )

+ 1

𝑚𝑡

𝑚𝑡∑︁
𝑖=1

L(ℎ (𝑥𝑖𝑡 ), 𝑦 = 𝐶 + 1) −
1 − 𝜋𝑡

𝐶+1

𝑛𝑠

𝑛𝑠∑︁
𝑖=1

L(ℎ (𝑥𝑖𝑠 ), 𝑦 = 𝐶 + 1)

Following [11], such a PU estimator is unbiased w.r.t. all popular

loss functions. □

A.2 Proof of Theorem 4.4
Proof. We know that P𝑡 (𝑥) = 𝜋𝑡

𝐶+1
·P𝑡 (𝑥 |𝑦 = 𝐶 +1) +∑𝐶

𝑐=1
𝜋𝑡𝑐 ·

P𝑡 (𝑥 |𝑦 = 𝑐) where 𝜋𝑐 = P𝑡 (𝑦 = 𝑐). Based on the theory of positive-

unlabeled learning (PU-Learning), the target error can be given by:

𝜖𝑡𝑁 +1
(ℎ) = ∑𝐶

𝑐=1
𝜋
𝑡𝑁 +1

𝑐 · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝑐) [L(ℎ(𝑥), 𝑦 = 𝑐)] + 𝜋
𝑡𝑁 +1

𝐶+1
·

E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝐶+1) [L(ℎ(𝑥), 𝑦 = 𝐶 + 1)] and 𝑑HΔH ((P𝑡𝑁 +1 (𝑥 |𝑦 =

𝐶 +1), P𝑡𝑁 +1 (𝑥 |𝑦 ≠ 𝐶 +1))) +E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦≠𝐶+1) [ℎ(𝑥) = 𝐶 + 1] = 1.

𝜋
𝑡𝑁 +1

𝐶+1
E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

≤ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)𝑀

(
1 − 𝑑HΔH

(
P𝑡𝑁 +1 (𝑥 |𝑦 = 𝐶 + 1), P𝑡𝑁 +1 (𝑥 |𝑦 ≠ 𝐶 + 1)

) )
+ 𝜋

𝑡𝑁 +1

𝐶+1
E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

− (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦≠𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

≤ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗

(
1 + 𝑑HΔH

(
P𝑡 𝑗 (𝑥 |𝑦 ≠ 𝐶 + 1), P𝑡𝑁 +1 (𝑥 |𝑦 ≠ 𝐶 + 1)

)
− 𝑑HΔH

(
P𝑡𝑁 +1 (𝑥 |𝑦 = 𝐶 + 1), P𝑡 𝑗 (𝑥 |𝑦 ≠ 𝐶 + 1)

) )
+ E𝑥∼P𝑡𝑁 +1 (𝑥 ) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

− (1 − 𝜋
𝑡𝑁 +1

𝐶+1
) · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦≠𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

≤ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)𝑀 ·

𝑁∑︁
𝑗=0

𝛼 𝑗

(
1 + 𝑑C (P

𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1

≤𝐶 ) − 𝑑HΔH (P𝑡 𝑗≤𝐶 , P
𝑡𝑁 +1

>𝐶
)
)

+ E𝑥∼P𝑡𝑁 +1 (𝑥 ) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

− (1 − 𝜋
𝑡𝑁 +1

𝐶+1
) · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦≠𝐶+1) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

Here it is easy to show𝑑HΔH
(
P𝑡 𝑗 (𝑥 |𝑦 ≠ 𝐶 + 1), P𝑡𝑁 +1 (𝑥 |𝑦 ≠ 𝐶 + 1)

)
=

𝑑HΔH (P𝑡 𝑗≤𝐶 , P
𝑡𝑁 +1

≤𝐶 ) ≤ 𝑑C (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1

≤𝐶 ).

𝜖𝑡𝑁 +1
(ℎ) ≤

𝐶∑︁
𝑐=1

𝜋
𝑡𝑁 +1

𝑐 · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝑐 ) [L(ℎ (𝑥), 𝑦 = 𝑐) ]

+ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)𝑀 ·

𝑁∑︁
𝑗=0

𝛼 𝑗

(
1 + 𝑑C (P

𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1

≤𝐶 ) − 𝑑HΔH (P𝑡 𝑗≤𝐶 , P
𝑡𝑁 +1

>𝐶
)
)

+ E𝑥∼P𝑡𝑁 +1 (𝑥 ) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

−
𝐶∑︁
𝑐=1

𝜋
𝑡𝑁 +1

𝑐 · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝑐 ) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ] (4)

For the first term of Eq. (4), it is a typical target classification

error within the shared classes.

𝐶∑︁
𝑐=1

𝜋
𝑡𝑁 +1

𝑐 E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝑐 ) [L(ℎ (𝑥), 𝑦 = 𝑐) ]

≤ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗E(𝑥,𝑦)∼P
𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ]

+
𝑁∑︁
𝑗=0

𝛼 𝑗

����Pr
P
𝑡𝑁 +1

≤𝐶
[L(ℎ (𝑥), 𝑦) ] − Pr

P
𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ]

���� )
≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗E(𝑥,𝑦)∼P
𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ]

+𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗

����Pr
P
𝑡𝑁 +1

≤𝐶
[ℎ (𝑥) ≠ 𝑦 ] − Pr

P
𝑡 𝑗

≤𝐶
[ℎ (𝑥) ≠ 𝑦 ]

���� )
≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗E(𝑥,𝑦)∼P
𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ] +𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗𝑑C (P
𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1

≤𝐶 )
)

where 𝑑C (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1

≤𝐶 ) ≤ 𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 ). In this case, we use the

observation 𝑑HΔH (P𝑡 𝑗≤𝐶 , P
𝑡𝑁 +1

>𝐶
) ≤ 1. For the last term of Eq. (4),

−
𝐶∑︁
𝑐=1

𝜋
𝑡𝑁 +1

𝑐 · E𝑥∼P𝑡𝑁 +1 (𝑥 |𝑦=𝑐 ) [L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

≤ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
) ·

(
−

𝑁∑︁
𝑗=0

𝛼 𝑗E
𝑥∼P

𝑡 𝑗

𝑋 |𝑌≤𝐶
[L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

+𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗 ·
����Pr
P
𝑡𝑁 +1

≤𝐶
[ℎ (𝑥) ≠ 𝑦 ] − Pr

P
𝑡 𝑗

≤𝐶
[ℎ (𝑥) ≠ 𝑦 ]

���� )
≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
(
−

𝑁∑︁
𝑗=0

𝛼 𝑗E
𝑥∼P

𝑡 𝑗

𝑋 |𝑌≤𝐶
[L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ] +𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗𝑑C (P
𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1

≤𝐶 )
)

Therefore, the following holds:

𝜖𝑡𝑁 +1
(ℎ) ≤ E

P
𝑡𝑁 +1

𝑋

[L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ]

+ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗E
P
𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ] + 4𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗𝑑OS (P
𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1 )

)
− (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)

𝑁∑︁
𝑗=0

𝛼 𝑗E
P
𝑡 𝑗

𝑋 |𝑌≤𝐶
[L(ℎ (𝑥), 𝑦 = 𝐶 + 1) ] + (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)𝑀

where 𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 ) = 𝑑C (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1

≤𝐶 ) − 1

4
𝑑HΔH (P𝑡 𝑗≤𝐶 , P

𝑡𝑁 +1

>𝐶
).
□

A.3 Proof of Corollary 4.5
Proof. With probability at least 1 − 𝛿/4(𝑁 + 1), we have

E
(𝑥,𝑦)∼P

𝑡 𝑗

≤𝐶
[L(ℎ (𝑥), 𝑦) ] ≤ 1

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

L(ℎ (𝑥𝑖𝑡 𝑗 ), 𝑦
𝑖
𝑡 𝑗
) +𝑀

√√√
log

8(𝑁 +1)
𝛿

2𝑛𝑡 𝑗

We have similar results for both terms in Δ𝑃𝑈 , i.e., with probability

at least 1 − 𝛿/2,

Δ𝑃𝑈 ≤ Δ̂𝑃𝑈 +𝑀

√︄
log

8

𝛿

2𝑚𝑡𝑁 +1

+ (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗

√√√
log

8(𝑁 +1)
𝛿

2𝑛𝑡 𝑗

For the empirical estimate of OS-divergence, based on the def-

inition, it can be estimated from empirical C-divergence and H -

divergence. Thus, with probability at least 1 − 𝛿/4(𝑁 + 1), we have
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𝑑OS (P
𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1 ) = 𝑑C (P

𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1

≤𝐶 ) − 1

4

𝑑HΔH (P𝑡 𝑗≤𝐶 , P
𝑡𝑁 +1

>𝐶
)

≤ ˆ𝑑OS (P
𝑡 𝑗

≤𝐶 , P
𝑡𝑁 +1 ) + 5

4

(
ˆℜB𝑡 𝑗 (𝐿𝐻 ) + ˆℜB𝑡𝑁 +1

(𝐿𝐻 )
)

+ 15

4

√√√
log

16(𝑁 +1)
𝛿

2𝑛𝑡 𝑗
+ 3

√√
log

16(𝑁 +1)
𝛿

2𝑛𝑡𝑁 +1

+ 3

4

√√
log

16(𝑁 +1)
𝛿

2(𝑚𝑡𝑁 +1
− 𝑛𝑡𝑁 +1

)

Then, we have, with probability at least 1 − 𝛿 ,

𝜖𝑡𝑁 +1
(ℎ) ≤ (1 − 𝜋

𝑡𝑁 +1

𝐶+1
)
( 𝑁∑︁
𝑗=0

𝛼 𝑗
1

𝑛𝑡 𝑗

𝑛𝑡 𝑗∑︁
𝑖=1

L(ℎ(𝑥𝑖𝑡 𝑗 ), 𝑦
𝑖
𝑡 𝑗
)

+ 4𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗 ˆ𝑑OS (P
𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 )
)
+ Δ̂𝑃𝑈 + 𝑅𝛿

where (since 1 − 𝜋
𝑡𝑁 +1

𝐶+1
≤ 1)

𝑅𝛿 = 5𝑀 ˆℜB𝑡𝑁 +1

(𝐿𝐻 ) + 3𝑀

√√
log

16(𝑁+1)
𝛿

2(𝑚𝑡𝑁 +1
− 𝑛𝑡𝑁 +1

) + 13𝑀

√√
log

16(𝑁+1)
𝛿

2𝑛𝑡𝑁 +1

+𝑀

𝑁∑︁
𝑗=0

𝛼 𝑗

(
ˆℜB𝑡 𝑗

(𝐿𝐻 ) + 17

√√√
log

16(𝑁+1)
𝛿

2𝑛𝑡 𝑗

)
+𝐶𝑂𝑁𝑆𝑇

which completes the proof. □

A.4 Proof of Theorem 4.7
Proof. Based on the definition of classification error, we have

𝜖𝑡𝑁 +1
(ℎ) = E(𝑥,𝑦)∼P𝑡𝑁 +1

[L(ℎ(𝑥), 𝑦)] =
∑︁
𝑥,𝑦

P𝑡𝑁 +1 (𝑥,𝑦)L(ℎ(𝑥), 𝑦)

≥
����� 𝐶∑︁
𝑐=1

∑︁
𝑥

P𝑡𝑁 +1 (𝑥,𝑦 = 𝑐) (ℎ(𝑥) − 𝑐)
����� + 𝜋

𝑡𝑁 +1

𝐶+1
𝜖𝑈𝑡𝑁 +1

(ℎ)

=

�����(1 − 𝜋
𝑡𝑁 +1

𝐶+1
)
∑︁
𝑥

P𝑡𝑁 +1

𝑋 |𝑌 ≤𝐶 (𝑥)ℎ(𝑥) −
𝐶∑︁
𝑐=1

𝑐P𝑡𝑁 +1 (𝑦 = 𝑐)
����� + 𝜋

𝑡𝑁 +1

𝐶+1
𝜖𝑈𝑡𝑁 +1

(ℎ)

Since 𝜖𝑡0
(ℎ) = 0 and P𝑡0 = P𝑡0

≤𝐶 , we have

𝜖𝑡0
(ℎ) =

∑︁
𝑥,𝑦

P𝑡0 (𝑥, 𝑦)L(ℎ (𝑥), 𝑦) =
𝐶∑︁
𝑐=1

∑︁
𝑥

P𝑡0 (𝑥, 𝑦 = 𝑐)L(ℎ (𝑥), 𝑦 = 𝑐)

≥
����� 𝐶∑︁
𝑐=1

∑︁
𝑥

P𝑡0 (𝑥, 𝑦 = 𝑐) (ℎ (𝑥) − 𝑐)
����� =

�����∑︁
𝑥

P
𝑡0

𝑋 |𝑌≤𝐶 (𝑥)ℎ (𝑥) −
𝐶∑︁
𝑐=1

𝑐P𝑡0 (𝑦 = 𝑐)
�����

Thus, it holds that

∑
𝑥 P

𝑡0

𝑋 |𝑌 ≤𝐶 (𝑥) · ℎ(𝑥) =
∑𝐶
𝑐=1

𝑐 · P𝑡0 (𝑦 = 𝑐) for
the source the task. Combining with P𝑡𝑖

𝑋 |𝑌 ≤𝐶 = P
𝑡 𝑗

𝑋 |𝑌 ≤𝐶 for 𝑖, 𝑗 =

0, 1, · · · , 𝑁 +1, we can derive the lower bound as in Theorem 4.7. □

A.5 Proof of Theorem 5.1
Proof. If 𝑑OS (P

𝑡 𝑗
≤𝐶 , P

𝑡𝑁 +1 ) = 0 for 𝑗 = 0, · · · , 𝑁 , then for any

𝛼 𝑗 ≥ 0 and

∑𝑁
𝑗=0

= 1, it holds P𝑡𝑁 +1

≤𝐶 =
∑𝑁

𝑗=0
𝛼 𝑗P

𝑡 𝑗
≤𝐶 . Thus we have,

𝜋
𝑡𝑁 +1

𝐶+1
· P𝑡𝑁 +1 (𝑥 |𝑦 = 𝐶 + 1) = P𝑡𝑁 +1 (𝑥) −

𝐶∑︁
𝑐=1

𝜋
𝑡𝑁 +1

𝑐 P𝑡𝑁 +1 (𝑥 |𝑦 = 𝑐)

= P𝑡𝑁 +1 (𝑥) − (1 − 𝜋
𝑡𝑁 +1

𝐶+1
)

𝐶∑︁
𝑐=1

𝑁∑︁
𝑗=0

𝛼 𝑗P
𝑡 𝑗
≤𝐶 (𝑥,𝑦 = 𝑐)

Then it can be proven as the Lemma 4.3, thus we omit it here for

brevity. □

A.6 Detailed Data Description
Office-Home [24] is a challenging domain adaptation benchmark.

It consists of 15,500 images of 65 categories from four domains: Art,

Clipart, Product, and Real-World. In this data set, we select the first

25 classes in alphabetical order as the known classes and two other

classes as “unknown” for the first target task. In real scenarios,

the new unknown classes might appear in the target domain over

time. Thus, we select two more novel classes as “unknown” in the

target domain for every time stamp. Besides, the data distribution

of target task would be time evolving in real scenarios due to the

changing visual environment. To this end, we generate a set of time

evolving task by adding the random salt&pepper noise and rotation

to the sampled raw images in every time stamp. Specifically, we

generate the data ofD𝑗 by rotating the original images with degree

𝑂𝑑 and adding the random salt&pepper noise with magnitude 𝑂𝑛 ,

i.e., 𝑂𝑑 = 30 · ( 𝑗 − 1) and 𝑂𝑛 = 0.05 · ( 𝑗 − 1).
Office-31 [21] contains 4,652 images of 31 categories from three

domains: Amazon, Webcam, and DSLR. In this data set, we select

the first 10 classes in alphabetical order as the known classes and

two other classes as “unknown" for the first target task. Thus, we

select two more novel classes as “unknown” in the target domain

for every time stamp. We generate a set of time evolving task by

rotating the raw images with degree 𝑂𝑑 and adding the random

salt&pepper noise with magnitude 𝑂𝑛 , i.e., 𝑂𝑑 = 30 · ( 𝑗 − 1) and
𝑂𝑛 = 0.05 · ( 𝑗 − 1).

Syn2Real-O [20] is a large open-set domain adaptation bench-

mark with over 200K images of 12 object categories from two dis-

tinct domains: Synthetic and Real. In this case, the source domain

(Synthetic) uses the training data from VisDA-17 as the known set

and the target domain (Real) contains the test data from VisDA-17

(known set) as well as 50k images from irrelevant categories of

COCO data set (unknown set). For the target domain, we choose

all the known set at every time stamp and randomly choose 𝑗%

of the entire unknown set at time stamp 𝑗 . Besides, we simulate

the distribution sift of target domain over time by rotating the raw

images with degree 𝑂𝑑 and adding the random salt&pepper noise

with magnitude 𝑂𝑛 , i.e., 𝑂𝑑 = 30 · ( 𝑗 − 1) and 𝑂𝑛 = 0.05 · ( 𝑗 − 1).
In addition, we study other two evolving scenarios in Subsec-

tion 6.3 for evaluating the OuterAdapter algorithm (see Table 7).

On Office-31 (DSLR → Webcam), we select the first 10 classes in

alphabetical order as the known classes. One scenario is associated

with continuously decreasing open-set classes. In this case, we se-

lect twelve novel classes as “unknown” in the initial target domain

and then remove two of them at every time stamp. The other one

is associated with randomly generated open-set classes. That is, we

randomly choose 𝑝 novel classes at every time stamp where 𝑝 is a

random integer choosing from 0 to 10. For both scenarios, besides

choosing the open-set classes, we also generate the time evolving

task by rotating all the raw images with degree 𝑂𝑑 and adding the

random salt&pepper noise with magnitude𝑂𝑛 , i.e.,𝑂𝑑 = 30 · ( 𝑗 −1)
and 𝑂𝑛 = 0.05 · ( 𝑗 − 1).
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