
DEMO-Net: Degree-specific Graph Neural Networks for
Node and Graph Classification

Jun Wu

Arizona State University

junwu6@asu.edu

Jingrui He

Arizona State University

Jingrui.he@asu.edu

Jiejun Xu

HRL Laboratories, LLC

jxu@hrl.com

ABSTRACT
Graph data widely exist in many high-impact applications. Inspired

by the success of deep learning in grid-structured data, graph neural

network models have been proposed to learn powerful node-level

or graph-level representation. However, most of the existing graph

neural networks suffer from the following limitations: (1) there is

limited analysis regarding the graph convolution properties, such

as seed-oriented, degree-aware and order-free; (2) the node’s degree-
specific graph structure is not explicitly expressed in graph con-

volution for distinguishing structure-aware node neighborhoods;

(3) the theoretical explanation regarding the graph-level pooling

schemes is unclear.

To address these problems, we propose a generic degree-specific

graph neural network named DEMO-Net motivated by Weisfeiler-

Lehman graph isomorphism test that recursively identifies 1-hop

neighborhood structures. In order to explicitly capture the graph

topology integrated with node attributes, we argue that graph con-

volution should have three properties: seed-oriented, degree-aware,
order-free. To this end, we propose multi-task graph convolution

where each task represents node representation learning for nodes

with a specific degree value, thus leading to preserving the degree-

specific graph structure. In particular, we design two multi-task

learning methods: degree-specific weight and hashing functions

for graph convolution. In addition, we propose a novel graph-level

pooling/readout scheme for learning graph representation provably

lying in a degree-specific Hilbert kernel space. The experimental

results on several node and graph classification benchmark data

sets demonstrate the effectiveness and efficiency of our proposed

DEMO-Net over state-of-the-art graph neural network models.

KEYWORDS
Graph Neural Network, Degree-specific Convolution, Multi-task

Learning, Graph Isomorphism Test

ACM Reference Format:
Jun Wu, Jingrui He, and Jiejun Xu. 2019. DEMO-Net: Degree-specific Graph
Neural Networks for Node and Graph Classification. In Proceedings of ACM
Conference (Conference’17), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang

De Meuter (Eds.). ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Nowadays, graph data is being generated across multiple high-

impact application domains, ranging from bioinformatics [4] to

financial fraud detection [27, 28], from genome-wide association

study [21] to social network analysis [5]. In order to leverage the

rich information in graph-structured data, it is of great impor-

tance to learn effective node or graph representation from both

node/edge attributes and the graph topological structure. To this

end, numerous graph neural network models have been proposed

recently inspired by the success of deep learning architectures on

grid-structured data (e.g., images, videos, languages, etc.). One intu-

ition behind this line of approaches is that the topological structure

as well as node attributes could be integrated by recursively aggre-

gating and compressing the continuous feature vectors from local

neighborhoods in an end-to-end training architecture.

One key component of graph neural networks [4, 6] is the graph

convolution (or feature aggregation function) that aggregates and

transforms the feature vectors from a node’s local neighborhood. By

integrating the node attributes with the graph structure information

using Laplacian smoothing [9, 12] or advanced attention mecha-

nism [18], graph neural networks learn the node representation in

a low-dimensional feature space where nearby nodes in the graph

would share a similar representation. Moreover, in order to learn the

representation for the entire graph, researchers have proposed the

graph-level pooling schemes [1] that compress the nodes’ represen-

tation into a global feature vector. The node or graph representation

learned by graph neural networks has achieved state-of-the-art per-

formance in many downstream graph mining tasks, such as node

classification [26], graph classification [22], etc.

However, most of the existing graph neural networks suffer

from the following limitations. (L1) There is limited analysis on

graph convolution properties that could guide the design of graph

neural networks when learning node representation. (L2) In or-

der to preserve the node proximity, the graph convolution applies

a special form of Laplacian smoothing [12], which simply mixes

the attributes from node’s neighborhood. This leads to the loss of

degree-specific graph structure information for the learned repre-

sentation. An illustrative example is shown in Figure 1: although

nodes 4 and 5 are structurally different, they would be mapped

to similar representation due to first-order node proximity using

existing methods. Moreover, the neighborhood sub-sampling meth-

ods used to improve model efficiency [5] significantly degraded

the discrimination of degree-specific graph structure. (L3) The
theoretical explanation regarding the graph-level pooling schemes

is largely missing.

To address the above problems, in this paper, we propose a

generic graph neural network model DEMO-Net that considers the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Jun Wu, Jingrui He, and Jiejun Xu

degree-specific graph structure in learning both node and graph rep-

resentation. Inspired byWeisfeiler-Lehman graph isomorphism test

[20], the graph convolution of graph neural networks should have

three properties: seed-oriented, degree-aware, order-free, in order to

map different neighborhoods to different feature representation.

As shown in Figure 1, nodes with identical degree value typically

share similar subtree (root node followed by its 1-hop neighbors)

structures. As a result, the representation of nodes 2 and 8 should

be close in the feature space due to the similar subtree structure.

On the other hand, nodes 4 and 5 have different subtree structures

(i.e., number of subtree leaves), and they indicate different roles in

the network, e.g., leader vs. deputy in a covert group. Therefore,

they should not be mapped closely in the feature space.

To the best of our knowledge, very little effort on graph neural

networks is devoted to learning the degree-specific representation

for each node or the entire graph. To bridge the gap, we present a

degree-specific graph convolution by assuming that nodes with the

same degree value would share the same graph convolution. It can

be formulated as a multi-task feature learning problem where each

task represents the node representation learning for nodes with

specific degree values.

In addition, we introduce a degree-specific graph-level pool-

ing scheme to learn the graph representation. We theoretically

show that the graph representation learned by our model lies in

a Reproducing Kernel Hilbert space (RKHS) induced by a degree-

specific Weisfeiler-Lehman graph kernel. The most similar work

to us is Graph Isomorphism Network (GIN) [22] which used the

sum-aggregator associated with multi-layer perceptrons as the

neighborhood-injective graph convolution that mapped different

node neighborhood to different features. However, one issue of GIN

is that the degree-aware structures are implicitly expressed in its

graph convolution relying on the universal approximation capacity

of multi-layer perceptrons.

The main contributions of this paper are summarized as follows:

(1) We provide theoretical analysis for graph neural networks

from the perspective of Weisfeiler-Lehman graph isomor-

phism test, which motivates us to design the graph con-

volution based on the following properties: seed-oriented,

degree-aware and order-free.

(2) we propose a generic graph neural network framework

named DEMO-Net by assuming that nodes with the same

degree value would share the same graph convolution. A

degree-specific multi-task graph convolution function is pre-

sented to learn the node representation. Furthermore, a novel

graph-level pooling scheme is introduced for learning the

graph representation provably lying in a degree-specific

Hilbert kernel space.

(3) The experimental results on several node and graph classi-

fication benchmark data sets demonstrate the effectiveness

and efficiency of our proposed DEMO-Net model.

The rest of the paper is organized as follows. We review the

related work in Section 2, followed by the problem definition and

background introduction in Section 3. Section 4 presents our pro-

posed DEMO-Net framework for node and graph representation

learning. The extensive experiments and discussion are provided

in Section 5. Finally, we conclude the paper in Section 6.

4

3

2

1

5 6

9

8

7

2 8

1 3 7 9 5

4

(a) Attributed network (b)

(c) (d)

Degree= 2

Degree= 1 Degree= 4

6

Figure 1: Nodes with the same degree value are structurally
similar. For example, nodes 1, 3, 5, 7 and 9 in (b), nodes 2 and
8 in (c), nodes 4 and 6 in (d) share similar 1-hop neighbor-
hood structure. Using the proposedmodel, the learned node
representation integrates the degree-specific graph struc-
ture and node attributes such that the structurally similar
nodes have similar representation.

2 RELATED WORK
In this section, we briefly review the related work on graph neural

networks for node and graph classification.

2.1 Node Classification
Most of the existing graph neural networks [6] learn the node repre-

sentation by recursively aggregating the continuous feature vectors

from local neighborhoods in an end-to-end fashion. They could

be fitted into the Message Passing Neural Networks (MPNNs) [4]

which explained the feature aggregation of graph neural networks

as message passing in local neighborhoods. Generally, they focus

on extracting the spatial topological information by operating the

convolutions in the node domain [26], which differs from some

spectral approaches [2, 9] considering a node representation in the

spectral domain. Graph Convolutional Network (GCN) [9] defined

the convolution operation via a neighborhood aggregation func-

tion. Following the same intuition, many graph neural network

models have been proposed with different aggregation functions,

e.g., attention mechanism [18], mean and max functions [5], etc.

However, most of the graph neural network architectures are

motivated by the success of deep learning on grid-like data, thus

leading to little theoretical analysis for explaining the high per-

formance and guiding the novel methodologies. Up till now, some

work have been proposed to explain why graph neural networks

work. The convolution of GCN was a special form of Laplacian

smoothing on graph [12], which explained the over-smoothing

phenomena brought by many convolution layers. Lei et al. [10]

showed that the graph representation generated by graph neural

networks lies in the Reproducing Kernel Hilbert Space (RKHS) of

some popular graph kernels. Moreover, it shows that 1-dimensional

aggregation-based graph neural networks are at most as powerful

as the Weisfeiler-Lehman (WL) isomorphism test [20] in distin-

guishing graphs [22]. Compared with the existing work on graph

neural networks, in this paper, we design a degree-specific graph

convolution that captures the node neighborhood structures in-

spired by WL isomorphism test. This is in sharp contrast to the

existing work which focused on preserving the node proximity in

the feature space, thus leading to the loss of local graph structures.

DEMO-Net : Degree-specific Graph Neural Networks for
Node and Graph Classification Conference’17, July 2017, Washington, DC, USA

2.2 Graph Classification
The graph-level pooling/readout schemes aim to learn a representa-

tion of the entire graph from its node representations for graph-level

classification tasks. Mean/max/sum functions are commonly used

due to its computational efficiency and effectiveness [1, 22]. One

challenge for graph-level pooling is to maintain the invariance to

node order. PATCHY-SAN [13] first adopted the external software

to obtain a global node order for the entire graph, which is very

time-consuming. More recently, a number of graph neural net-

work models have been proposed [22, 24, 25], which formulated the

node representation learning and graph-level pooling into a unified

framework. Different from graph kernel approaches [16, 23] that

intuitively extract the graph feature or define the graph similarity

using ad-hoc knowledge or random walk properties, graph neural

networks would automatically learn the graph representation to

integrate node attributes with its topological information via an

end-to-end training architecture.

Nevertheless, very little effort has been devoted to explicitly con-

sidering the degree-specific graph structures for graph represen-

tation learning. Our proposed degree-specific graph-level pooling

method is designed to address this issue by compressing the learned

node representation according to degree values.

3 PRELIMINARIES
In this section, we introduce the notation and problem definition,

as well as some background information on graph neural networks.

3.1 Notation
Suppose that a graph is represented as G = (V ,E), where V =
{v1, · · · ,vn } is the set of n nodes and E ⊆ V × V is the edge

set. Let X ∈ Rn×D denote the attribute matrix where each row

xv is the D-dimensional attribute vector for node v . The graph G
can also be represented by an adjacency matrix A ∈ Rn×n , where
Ai j represents the similarity between vi and vj on the graph. For

each node v ∈ V , its 1-hop neighborhood is denoted as N (v). Let
G = {G1, · · · ,Gt } denote a set of graphs. In this paper, we focus

on undirected attributed networks, although our model can be

naturally generalized to other types of networks. The main notation

used in this paper is summarized in Table 1.

3.2 Problem Definition
In this paper, we focus on two problems: node-level and graph-

level representation learning by formulating a novel degree-specific

graph neural network model. Furthermore, we analyze the pro-

posed model from various aspects, and empirically demonstrate its

superior performance on both node and graph classification.

Formally, the node- and graph-level representation learning prob-

lems can be defined below.

Definition 3.1. (Node-level Representation Learning)
Input: (i) An attributed graphG = (V ,E) with adjacency matrix

A ∈ Rn×n and node attributes X ∈ Rn×D ; (ii) Labeled training

nodes {xv ,yv }v ∈IG .
Output: A vector representation ev ∈ Rd for each node v ∈ V

on the d-dimensional embedding space where nodes would be well

separated if their local neighborhoods are structurally different.

Table 1: Notation

Notation Definition

G = {Gi }ti=1 A set of graphs

G = (V , E) A graph G with node set V and edge set E
X Attribute matrix

A Adjacency matrix

n Number of nodes in the graph

d Dimensionality of the node or graph representation

N (v) 1-hop neighborhood of node v
IG Indices of labeled nodes’ for node classification

IG Indices of labeled graphs’ for graph classification

yv Label of node v
ŷi Label of graph Gi

hkv Node v ’s representation at the k th iteration

hN (v) Feature set within node v ’s neighborhood
T A set of subtrees

deдr ee(G) A set of the degree values in graph G

Definition 3.2. (Graph-level Representation Learning)
Input: (i) A set of attributed graphs G = {Gi }ti=1 with adjacency

matrix Ai ∈ Rni×ni and node attributes Xi ∈ Rni×D ; (ii) Labeled
training graphs {Gi , ŷi }i ∈IG .

Output: A vector representation дi ∈ Rd for each graph Gi on

the d-dimensional embedding space where graphs would be well

separated if they have different graph topological structure.

3.3 Graph Neural Networks
It has been observed that a broad class of graph neural network

(GNN) architectures followed the 1-dimensional Weisfeiler-Lehman

(WL) graph isomorphism test [20]. From the perspective of WL

isomorphism test, they mainly consist of the following crucial steps

at each iteration of feature aggregation:

• Feature initialization (label
1
initialization): The node features

are initialized by original attribute vectors.

• Neighborhood detection (multiset-label determination): It

decides the local neighborhood in which node gathers the

information from neighbors. More specifically, a seed
2
fol-

lowed by its neighbors generates a subtree pattern.

• Neighbors sorting (multiset-label sorting): The neighbors

are sorted in the ascending or descending order of degree

values. The subtrees with permutation order of neighbors

are recognized as the same one.

• Feature aggregation (label compression): The node feature is

updated by compressing the feature vectors of the aggregated

neighbors including itself.

• Graph-level pooling (graph representation): It summarizes

all the node features to form a global graph representation.

Next, we briefly go over some existing graph neural network

models, which follow the aforementioned steps of the 1-dimensional

1
Here, label is an identifier of nodes. In order not to be confused with a class label, we

will use node attribute to represent it in this paper.

2
The seed denotes the root node to be learned in the graph. For example, node v1 in

Figure 2 is a seed when updating its feature at each iteration.

Conference’17, July 2017, Washington, DC, USA Jun Wu, Jingrui He, and Jiejun Xu

WL algorithms. We would like to point out that graph neural net-

works would learn the node or graph representation using contin-

uous node attributes, whereas WL algorithms update the node at-

tributes by directly compressing the augmented discrete attributes.

Taking 1-hop neighborhood N (v) = {u |(v,u) ∈ E} into consid-
eration at each iteration, the following node-level graph neural

network variants have the same feature initialization and neigh-

borhood detection on learning node representation. And when

element-wise average or max operations are used for feature aggre-

gation, graph neural networks would be invariant to the order of

neighbors. We summarize the feature aggregation functions (graph

convolution) of those graph neural networks as follows.

• Graph Convolutional Network (GCN) [9]:

hkv = σ
(∑

u ∈{v }∪N (v) âvuW
khk−1u

)
(1)

where Â = (âvu) ∈ Rn×n is the re-normalization of the

adjacency matrix A with added self-loops, andW k
is the

trainable matrix at kth layer. It is essentially a weighted

feature aggregation from node neighborhood.

• Graph Attention Network (GAT) [18]:

hkv = σ
(∑

u ∈{v }∪N (v) αvuW
khk−1u

)
(2)

where αvu is a self-attention score indicating the importance

of node u to nodev on feature aggregation. It is obvious that

GCN can be considered as a special case of GAT when the

attention score αvu is defined as âvu .
• GraphSAGE [5]:

hkN (v) = AGGREGATEk

(
{hk−1u |u ∈ N (v)}

)
hkv = σ

(
W k ·CONCAT (hk−1v ,hkN (v))

) (3)

where mean-, max- and LSTM-aggregator are presented for

feature aggregation. Though LSTM considers node neighbors

as an ordered sequence, the LSTM aggregator is adapted on

an unordered neighbors with random permutation.

There are some observations from these GNN variants: (i) Their

feature aggregation schemes are invariant to the order of the neigh-

bors except for GraphSAGE with LSTM-aggregator; (ii) The output

feature at k-layer neural network can be seen as the representa-

tion of a subtree around the seed; (iii) The node representation

become closer and indistinguishable when the neural layers are

going deeper, because the subtrees would share more common el-

ements. However, little work theoretically discusses the reasons

behind these observations to guide the design of graph neural net-

works: how is the node representation affected by node degree and

order of neighbors? what kind of graph convolution is required to

learn the subtree structures? Inspired by WL graph isomorphism

test, we present a degree-specific graph neural network model

named DEMO-Net in Section 4 to discuss those problems.

Additionally, the neighborhood aggregation schemes of graph

neural networks, such as mean-aggregator in GraphSAGE [5], self-

attention in GAT [18], can be regarded as the relabeling step in WL

isomorphism test. Figure 2 provides an example to illustrate the

essence of feature aggregation on graph neural networks. The node

feature is actually a special representation of subtree consisting of

the seed followed by its neighbors. For example, node 1’s feature

1 2

3 4

5 6

ℎ1
𝑘 ℎ2

𝑘

ℎ3
𝑘 ℎ4

𝑘

ℎ5
𝑘 ℎ6

𝑘

1 2

3 4

5 6

ℎ1
𝑘, {ℎ2

𝑘, ℎ3
𝑘, ℎ4

𝑘}
ℎ2
𝑘, {ℎ1

𝑘, ℎ4
𝑘}

ℎ3
𝑘, {ℎ1

𝑘, ℎ4
𝑘, ℎ5

𝑘, ℎ6
𝑘} ℎ4

𝑘, {ℎ1
𝑘, ℎ2

𝑘, ℎ3
𝑘}

ℎ5
𝑘, {ℎ3

𝑘} ℎ6
𝑘, {ℎ3

𝑘}

𝒉𝟏
𝒌

𝒉𝟐
𝒌 𝒉𝟑

𝒌 𝒉𝟒
𝒌

1 2

3 4

5 6

𝒉𝟏
𝒌

𝒉𝟐
𝒌 𝒉𝟑

𝒌 𝒉𝟒
𝒌

𝒉𝟐
𝒌

𝒉𝟏
𝒌 𝒉𝟒

𝒌

𝒉𝟒
𝒌

𝒉𝟏
𝒌 𝒉𝟐

𝒌 𝒉𝟑
𝒌

𝒉𝟑
𝒌

𝒉𝟏
𝒌 𝒉𝟒

𝒌 𝒉𝟓
𝒌 𝒉𝟔

𝒌

𝑘-th layer (𝑘 + 1)-th layer (𝑘 + 2)-th layer

𝒉𝟏
𝒌

(𝑎) (𝑏) (𝑐)

Subtree Subtree

Subtree

ℎ1
𝑘: ℎ1

𝑘+1:
ℎ1
𝑘+2:

Figure 2: Feature aggregation of the graph neural networks:
For node 1, its feature is (a) hk

1
at kth layer; (b) hk+1

1
at (k +1)th

layer compressed from a subtree (hk
1
; {hk

2
,hk

3
,hk

4
}); (c) hk+2

1
at

(k+2)th layer learned froma subtree (hk+1
1

; {hk+1
2
,hk+1

3
,hk+1

4
}).

hk+1
1

represents the subtree (hk
1
; {hk

2
,hk

3
,hk

4
}) collected from previ-

ous layer. As a result, graph neural networks with k layers learn

the representation of subtree with depth k rooted at the seed. That

provides us an intuition to design a graph convolution for explicitly

preserving the degree-specific subtree structures.

4 PROPOSED MODEL: DEMO-NET
In this section, we propose a generic degree-specific graph neural

network named DEMO-Net. Key to our algorithm is the degree-

specific graph convolution for feature aggregation which can map

different subtrees to different feature vectors. Figure 4 provides an

overview of the proposed DEMO-Net framework on learning node

and graph representation, which will be described in detail below.

4.1 Node Representation Learning
Let hN (v) denote the feature set {hu |u ∈ N (v)} within node v’s

neighborhood. Let T =
{(
hv ,hN (v)

)}
be the set of subtrees con-

sisting of the features of seed v and its 1-hop neighbors N (v). To
formalize our analysis, we first give the definition of structurally

identical subtree below.

Definition 4.1. (Structurally Identical Subtree) Any two subtrees

inT are structurally identical if the only possible difference between

them is the order of neighbors.

The following lemma shows that graph neural networks could

distinguish the local graph structures as well as the WL graph

isomorphism test when graph convolution is an injective func-
tion that maps two subtrees in T to different features if they are

not structurally identical.

Lemma 4.2. Let G = {V ,E} be a graph and u,v ∈ V be two nodes
in the graph. When the mapping function f : T → Rd in graph
neural networks is injective, the learned features of v and u will be
different if and only if the WL graph isomorphism test determines
that they are not structurally identical.

The feature aggregation of graph neural networks can be simply

summarized as follows.

hkv = f ({hk−1v ,hk−1u |u ∈ N (v)}) (4)

DEMO-Net : Degree-specific Graph Neural Networks for
Node and Graph Classification Conference’17, July 2017, Washington, DC, USA

(a)

(b)

(c)

Figure 3: Examples of subtree in T with: (a) different seeds’
attributes; (b) different seeds’ degree values; (c) different
neighbors’ order. In such cases, two subtrees in (a) and (b) are
mapped to different feature vectors, respectively. Two sub-
trees in (c) will be mapped to the same feature vector. (Best
seen in color. Colors denote the node attributes.)

Obviously, most of the existing graph neural networks [9, 18] did

not consider the injective aggregation function when learning node

representation. From the perspective of WL isomorphism test, an

injective graph convolution has the following properties.

Lemma 4.3. (Properties) Let f : T → Rd be the aggregation
function. If it is an injective function that maps any different subtrees
in T to different feature vectors, then it has the following properties:

(i) Seed-oriented: f
(
hi , {hu |u ∈ N (i)}

)
, f

(
hj , {hw |w ∈ N (j)}

)
if the seeds’ attributes are different, i.e., hi , hj .

(ii) Degree-aware: f
(
hi , {hu |u ∈ N (i)}

)
, f

(
hj , {hw |w ∈ N (j)}

)
if the seeds’ degree values are different, i.e., deд(i) , deд(j).

(iii) Order-free: f
(
hi , {hu |u ∈ N (i)}

)
= f

(
hj , {hw |w ∈ N (j)}

)
if

hi = hj and the only possible difference between {hu |u ∈ N (i)}
and {hw |w ∈ N (j)} is the order of neighbors.

Figure 3 lists some examples to illustrate those properties. The

injective function f maps the subtrees in Figure 3(a) to different

features due to the distinctive seeds’ attributes. Here, we hold that

the subtree’s structure properties are guided by seed node. Thus

they are not structurally identical though both subtrees share the

same leaf elements. Seeds’ degree values also decide the subtree

structure (shown in Figure 3(b)) because it is obvious that nodes

with identical degree value share the similar structure. Figure 3(c)

shows that neighbors’ order will not change the subtree structure.

These properties will guide us to build a structure-specific graph

neural network model. Based on properties (i) and (ii), the feature

aggregation function in Eq. (4) can be expressed as follow.

hkv = fs (hk−1v) ◦ fdeд(v)
(
{hk−1u |u ∈ N (v)}

)
(5)

where fs and fdeд(v) are seed-related and degree-specific mapping

functions, respectively, and deд(v) denotes the degree value of node
v . All the nodes share one seed-oriented mapping function fs , but
have a degree-specific function for compressing node neighbor-

hoods. Here, ◦ denotes the vector concatenation which combines

the mapped features to form a single vector. If fs and fdeд(v) are
injective, it will have the first two properties in Lemma 4.2 that

subtrees with different seeds’ features or degree values would be

mapped differently. Additionally, the degree-specific mapping func-

tion fdeд(v) should be symmetric
3
that is invariant to the order of

neighbors. Andwe have the following theorem (proven in Appendix

7.1) to show the existence of mapping functions fs and fdeд .

Theorem 4.4. (Existence Theorem) Assume T is countable, there
exist mapping functions fs and { fdeд |deд ∈ deдree(G)} such that
for any two subtrees in T , the function f : T → Rd defined in Eq. (5)
maps them to different features if they are not structurally identical.

Next, we present our graph neural network model where the

injective aggregation function could be approximated by multi-

layer neural network due to its exceptional expression power. For

seed-related mapping function fs (·) in Eq. (5), we use a simple

one-layer fully-connected neural network as follows.

fs (hk−1v) = σ (W k
0
hk−1v) (6)

where the trainable matrixW k
0

is shared by all the seeds at kth

hidden layer. Here σ (·) is a nonlinear activation function.

For degree-specific neighborhood aggregation on hN (v), it can
be formulated as a multi-task feature learning problem (shown in

Figure 4(b)(c)) in which each task represents node representation

learning for nodes with a specific degree value, thus leading to

preserving the degree-specific graph structure. Here, we present

two schemes for this multi-task learning problem.

Degree-specific weight function: The degree-specific aggrega-

tion function can be expressed as follow.

fdeд(v)(hk−1N (v)) = σ
(∑

u ∈N (v)(W
k
д +W

k
deд(v))h

k−1
u

)
(7)

whereW k
deд(v) is a degree-specific trainable matrix at kth layer and

W k
д is a global trainable matrix shared by all the seeds.

Hashing function: Since the number of degree values on graphs

could be very large, a critical challenge is how to performmulti-task

learning efficiently. To address this challenge, hash kernel [19] (also

called feature hashing or hash trick) is applied for our multi-task

neighborhood learning problem. Given two vectors x and x ′, the
hash map ϕ and the corresponding kernel Kϕ (·, ·) are defined:

ϕ
ξ1,ξ2
i (x) =

∑
j :ξ1(j)=i

ξ2(j)x j (8)

Kϕ (x ,x ′) =
〈
x ,x ′

〉
ϕ =

〈
ϕξ1,ξ2 (x),ϕξ1,ξ2 (x ′)

〉
(9)

where ξ1 and ξ2 denote two hash functions such that ξ1 : N →
{1, · · · ,m} and ξ2 : N→ {1,−1}. Notice that hash kernel is unbi-

ased, i.e., Eϕ [⟨x ,x ′⟩ϕ] = ⟨x ,x ′⟩ for any pair of input feature vectors.
Letwk

deд(v) denote one of the row vectors inW k
deд(v), then we have

Eϕ

[〈
wk
deд(v),h

k−1
u

〉
ϕ

]
=
〈
wk
deд(v),h

k−1
u

〉
. In this way, the multi-

task feature aggregation function fdeд(v) can be expressed as:

fdeд(v)(hk−1N (v)) = σ
(∑
u ∈N (v)

W k (ϕд(hk−1u) + ϕdeд(hk−1u)
))

(10)

3
A symmetric function of n variables is one whose value given n arguments is the

same no matter the order of the arguments. For example, f (x1, x2) = f (x2, x1) for
any pair (x1, x2).

Conference’17, July 2017, Washington, DC, USA Jun Wu, Jingrui He, and Jiejun Xu

whereW k = ϕд(W k
д) + ∑

deд ϕdeд(W k
deд) is the trainable matrix

shared by all the nodes, and ϕд(·) and ϕdeд(·) are global and degree-
specific hash maps, respectively.

One common assumption in multi-task learning is that all the

tasks are related with some shared knowledge, and meanwhile have

their own task-specific knowledge. As shown in Figure 3(b), two

subtrees are structurally different, but they share some common

leaves for neighborhood aggregation. By adopting both common

(global) and task-specific (local) weight/hash functions, it allows

learning the shared sub-structures and degree-specific neighbor-

hood structures simultaneously.

There might be many different node degrees in real networks.

One intuitive idea is that we could partition the degree values into

several buckets to reduce the number of tasks. This heuristic solu-

tion might improve our model robustness to noisy graph structure

or labeled nodes on source networks brought by human annotations

[29, 30]. We leave this as our future work because hashing kernel

[19] used in DEMO-Net is efficient to tackle large-scale multi-task

learning problem.

4.2 Graph Representation Learning
The goal of graph representation learning is to use a compact feature

vector to represent the entire graph. To this end, we provide a

degree-specific graph-level pooling scheme.

When graph neural networks are going deeper, node represen-

tation actually captures the higher-order topological information

within its local neighborhood. By mapping the original graph to a

sequence of graphs {G0,G1, · · · ,GK } where G0 denotes the orig-

inal graph and Gk (1 ≤ k ≤ K) represents the graph after the kth

layer of feature aggregation (as shown in Figure 4(e)-(g)), the kth

graph representation can be expressed as follow.

hGk = CONCAT
({∑

v ∈V hkv ·δ (deд(v),d)
}��d ∈ deдree(G)

)
(11)

where deдree(G) denotes the set of degree values in graph G, and
δ (·, ·) is 1 when its two arguments are equal and 0 otherwise.

As discussed before, the node representation in Gk captures the

topological information within k-hop neighborhood. In order to

consider all the subtrees’ information, we concatenate the repre-

sentation hGk from all graphs {G0,G1, · · · ,GK }:

hG = CONCAT
(
hGk |k = 0, 1, · · · ,K

)
(12)

Next, we compare the degree-specific pooling scheme with ex-

isting graph-level pooling methods [1, 22] and Weisfeiler-Lehman

(WL) subtree kernel [16]. We define a degree-specific WL kernel:

KDW L(Gk ,G
′
k) =

〈
ϕDW L(Gk),ϕDW L(G ′

k)
〉

=
∑
v ∈V

∑
v ′∈V ′

δ (deд(v),deд(v ′)) ·
〈
hkv ,h

k
v ′

〉
(13)

The corresponding mapping function is defined as:

ϕDW L(Gk) =
[
c(Gk ,d1) ◦ · · · ◦ c(Gk ,d |deдr ee(Gk) |)

]
(14)

where di is the degree of Gk , and

c(Gk ,di) =
∑

v ∈V hkv · δ (di ,deд(v)) (15)

As shown in [10], the non-linear activation function σ (·) has
a mapping function ϕσ (·) such that σ (wT x) =

〈
ϕσ (x),ψ (w)

〉
for

Table 2: Comparison of graph neural networks

Properties seed-oriented degree-aware order-free
GCN [9] × × ✓
GAT [18] ✓ × ✓
GraphSAGE [5] ✓ × —

DCNN [1] × × ✓
DEMO-Net ✓ ✓ ✓

some mappingψ (w) constructed fromw. By the following theorem

(proven in Appendix 7.1), we show that our graph representation

lies in a degree-specific Hilbert kernel space.

Theorem 4.5. For a degree-specific Weisfeiler-Lehman kernel, the
graph representation hG in Eq. (12) belongs to the Reproducing Kernel
Hilbert Space (RKHS) of kernel Kσ ,DW L(·, ·) where

Kσ ,DW L(Gk ,G
′
k) =

〈
ϕσ (ϕDW L(Gk)),ϕσ (ϕDW L(G ′

k))
〉

(16)

The sum/mean based graph-level pooling approaches make the

learned graph representation lie in the kernel as follow.

KMWL(Gk ,G
′
k) =

∑
v ∈V

∑
v ′∈V ′

〈
hkv ,h

k
v ′

〉
(17)

And WL subtree Kernel [16] can be expressed as:

KWLsubtree (Gk ,G
′
k) =

∑
v ∈V

∑
v ′∈V ′ δ (h

k
v ,h

k
v ′) (18)

It is easy to see that: (1) WL subtree kernel cannot be applied

to measure the graph similarity when nodes have the continuous

attribute vectors. (2) Our graph-level representation lies in a degree-

specific kernel space comparing Eq. (13) with (17), thus leading to

explicitly preserving the degree-specific graph structure.

4.3 Discussion
We compare the proposed DEMO-Net with some existing graph

neural networks regarding the properties of graph convolution.

Lemma 4.3 shows that an injective aggregation function has

three properties: seed-oriented, degree-aware, order-free. We sum-

marize the properties of graph convolution of GCN [9], GAT [18],

GraphSAGE [5], and DCNN [1] in Table 2. It can be seen that: (1)

The existing graph neural networks do not have all the three prop-

erties. More importantly, none of them capture the degree-specific

graph structures. (2) For graphSAGE, it is order-free when using

mean or max aggregator. But graphSAGE with LTSM-aggregator

is not order-free because it considers the node neighborhood as an

ordered sequence. (3) Our proposed DEMO-Net considers all the
properties, and the degree-aware property in particular allows our

model to explicitly preserve the neighborhood structures for node

and graph representation learning. In addition, the time complexity

of graph convolution of DEMO-Net is linear with respect to the

number of nodes and edges.

5 EXPERIMENTAL RESULTS
In this section, we present the experimental results on real networks.

In particular, we focus on answering the following questions:

Q1: Is the proposed DEMO-Net algorithm effective on node classifi-

cation compared to the state-of-the-art graph neural networks?

Q2: How does the proposed DEMO-Net perform on identifying

graph structure compared to structure-aware embedding approaches?

DEMO-Net : Degree-specific Graph Neural Networks for
Node and Graph Classification Conference’17, July 2017, Washington, DC, USA

Task 1

Task 3

Task 2

(a) Graph (b) Degree-based task partition

Task 1

Task 3

Task 2

(c) Task-specific feature aggregation (d) Node representation

(e) Degree-based partition (f) Task-specific graph-level pooling (g) Graph representation

Figure 4: Overview of our proposed DEMO-Net framework (best seen in color). (b) and (c) represent the multi-task feature
aggregation. The node representation in (d) can be used for node-level classification. For learning graph embedding, (e)-(g)
provide the graph-level pooling method based on node degree distribution for learning graph representation.

Q3: How does the proposed DEMO-Net with degree-specific graph-

level pooling perform on graph classification task?

Q4: Is the proposed degree-specific graph convolution ofDEMO-Net
efficient on learning node representation?

5.1 Experiment Setup
Data Sets: We use seven node classification data sets, including

four social networks and three air-traffic networks. Facebook, Wiki-

Vote [11], BlogCatalog and Flickr
4
are social networks. The posted

keywords or tags in BlogCatalog and Flickr networks are used as

node attribute information. There are three air-traffic networks [14]:

Brazil, Europe and USA, where each node corresponds to an airport

and edge indicates the existence of commercial flights between

the airports. Their class labels are assigned based on the level of

activity measured by flights or people that passed the airports. Data

statistics are summarized in Table 3. For those networks without

node attributes, we use the one-hot encoding of node degrees. In

BlogCatalog, Flickr and other air-traffic networks, node class labels

are available. In Facebook andWiki-Vote, we use the degree-induced

class labels by labeling the node according to its degree value.

In addition, we use four bioinformatics networks to evaluate

the model performance on graph classification, including MUTAG,

PTC, PROTEINS and ENZYMES
5
where the nodes are associated

with categorical input features. The detailed statistics for these

bioinformatics networks are summarized in Table 4.

Model Configuration: We adopt two hidden layers followed by

the softmax activation layer in DEMO-Net, where the proposed

multi-task feature learning schemes in Eq. (7) and (10) are applied to

each hidden layer for neighborhood aggregation (termed as DEMO-
Net(weight) and DEMO-Net(hash), respectively). In addition, we

4
http://people.tamu.edu/~xhuang/Code.html

5
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Table 3: Data sets for node classification

Data sets # nodes # edges # classes # attributes

Facebook 4039 88234 4 -

Wiki-Vote 7115 103689 4 -

BlogCatalog 5196 171743 6 8189

Flickr 7575 239738 9 12047

Brazil 131 1038 4 -

Europe 399 5995 4 -

USA 1190 13599 4 -

apply Adam optimizer [8] with the learning rate 0.005 on the cross-

entropy loss to train our models. To prevent our models from over-

fitting, we adopt the dropout [17] withp = 0.6 and L2 regularization
with λ = 0.0005. The hidden layer size of neural units is set as 64. An

early stopping strategy with a patience of 100 epochs on validation

set is applied in our experiments.

BaselineMethods: The baseline methods used in our experiments

are given below: (1) node-level graph neural networks: GCN [9],

GCN_cheby [9], GraphSAGE (mean aggregator) [5], Union [12],

Intersection [12] and GAT [18]; (2) node-level structure-aware em-

bedding approaches: RolX [7], struc2vec [14] and GraphWAVE [3];

(3) graph-level graph neural networks: DCNN [1], PATCHY-SAN

[13] and DIFFPOOL [24]; (4) deep graph kernel: DeepWL [23]. In

our experiments, all the baseline models used the default hyperpa-

rameters suggested in the original papers.

All our experiments are performed on a Windows machine with

four 3.60GHz Intel Cores and 32GB RAM. The source code will be

available at https://github.com/jwu4sml/DEMO-Net.

5.2 Node Classification
For a fair comparison of different architectures [15], we use different

train/validation/test splits of the networks on node classification.

For social networks, we randomly choose 10% and 20% of the graph

http://people.tamu.edu/~xhuang/Code.html
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/jwu4sml/DEMO-Net

Conference’17, July 2017, Washington, DC, USA Jun Wu, Jingrui He, and Jiejun Xu

Table 4: Data sets for graph classification

Data sets # graphs # classes Avg # nodes # attributes

MUTAG 188 2 17.9 7

PTC 344 2 25.5 19

PROTEINS 1113 2 39.1 3

ENZYMES 600 6 32.6 3

Percentage of training examples
(a) Brazil

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
ea

n
ac

cu
ra

cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Percentage of training examples
(b) USA

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
ea

n
ac

cu
ra

cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8
DEMO-Net (hash) DEMO-Net (weight) struc2vec GraphWAVE RolX

Figure 5: Node-level classification accuracy on theBrazil and
USA air-traffic networks using different train/test splits

nodes as the training and validation set, respectively, and the rest as

the test set. For air-traffic networks, the training, validation and test

sets are randomly assigned with equal number of nodes. We run

10 times and report the mean accuracy with the standard variance

for performance comparison. As shown in Table 5, we report the

classification results on the real networks where the best results

are indicated in bold. It can be observed that the proposed DEMO-
Netmodels significantly outperform other graph neural networks

(answeringQ1). In particular, ourDEMO-Net models are at least 10%

higher on mean accuracy over baseline methods. One explanation

is that baseline methods focus on preserving the node proximity

by roughly mixing a node with its neighbors, whereas our pro-

posed DEMO-Net models capture the degree-specific structure to

distinguish the structural roles of nodes in the networks.

We also evaluate the performance of our models against three

structure-aware embedding approaches: RolX, struc2vec and Graph-

WAVE. All of them are unsupervised embedding approaches identi-

fying the structural roles of nodes in the networks. Following [14],

we use the one-vs-rest logistic regression with L2 regularization to

train a classifier for node representations learned by baseline meth-

ods. Here we consider using different train-test splits where the

percentage of training nodes ranges from 10% to 90% and the rest

is used for testing. The experimental results on the Brazil and USA

air-traffic networks are provided in Figure 5. We observe that our

proposed DEMO-Net models outperform the comparison methods

across all the data sets (answering Q2). Besides, the structure roles
identified by those baselines only represent the local graph struc-

ture without considering node attributes. Instead, both topological

information and node attributes are captured in our DEMO-Net
models when learning node representation.

5.3 Graph Classification
We use four public graph classification benchmarks to evaluate the

proposed DEMO-Net models with the degree-specific graph-level

pooling scheme. DCNN [1], PATCHY-SAN [13] and DIFFPOOL [24]

adopted the end-to-end training architectures for supervised graph

classification. For unsupervised graph kernel method DeepWL [23],

we use the one-vs-rest logistic regression with L2 regularization

Number of nodes
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

S
ec

on
d

/ e
po

ch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

DEMO-Net (hash)
DEMO-Net (weight)
GCN
GAT

Figure 6: Running time per epoch (best seen in color)

to train a supervised classifier for graph classification. We also

consider our model variants (denoted as DEMO-Net_m(hash) and

DEMO-Net_m(weight) respectively) which replace the proposed

degree-specific graph-level pooling with mean-pooling scheme [1].

The input graphs are randomly assigned to the training, validation,

or test set where each set has the same number of nodes.

The graph classification results are shown in Table 6 where the

best results are indicated in bold. It is observed that (1) compared

to the existing mean-pooling method, the proposed degree-specific

pooling method improves the model performance in most cases,

which is consistent with our analysis in Section 4.2; (2) the classifica-

tion results of our DEMO-Net models are comparable to other graph

neural networks and graph kernel method (answering Q3). More-

over, on MUTAG and ENZYMES data sets, our proposed DEMO-
Net(weight) outperforms the baseline methods. One explanation

might be that the graph representation generated by DEMO-Net
explicitly preserves the degree-specific graph structure information.

5.4 Efficiency Analysis
It is easy to show that the time complexity of each layer in our

proposed DEMO-Net(hash) model is O(nFF ′ +TF + nHF ′ +mF ′)
where n andm are the number of nodes and edges in the graph,

respectively, F and F ′ are the dimensionalities of input and output

features at each layer, respectively,T is the number of tasks (degree

values) in the graph, and H is the hashing dimension. By observing

thatT ≤ n in the networks, its time complexity would beO(nFF ′ +
mF ′), which is on par with GCN and GAT models. Similarly, we can

show that the time complexity of each layer in DEMO-Net(weight)
isO(T (nFF ′+mF ′)). WhenT ≪ n andT ≪m, it also scales linearly

with respect to the number of nodes and edges.

Following [9], we report the running time (measured in seconds

wall-clock time) per epoch (including forward pass, cross-entropy

calculation, backward pass) on a synthetic network assigning 2n
edges uniformly at random. As shown in Figure 6, we observe that

(answering Q4) (1) the wall-clock time of our proposed DEMO-Net
model is linear with respect to the number of nodes; (2) our models

are much more efficient than GAT on node classification task.

6 CONCLUSIONS
In this paper, we focus on building a degree-specific graph neu-

ral network for both node and graph classification. We start by

DEMO-Net : Degree-specific Graph Neural Networks for
Node and Graph Classification Conference’17, July 2017, Washington, DC, USA

Table 5: Node-level classification accuracy (mean ± standard variance) on the social and air-traffic networks

Social networks Air-traffic networks

Facebook Wiki-Vote BlogCatalog Flickr Brazil Europe USA

GraphSAGE [5] 0.389 ±0.019 0.245 ±0.000 0.828 ±0.007 0.641 ±0.006 0.404 ±0.035 0.272 ±0.022 0.316 ±0.022

GCN [9] 0.575 ±0.013 0.329 ±0.029 0.720 ±0.013 0.546 ±0.019 0.432 ±0.064 0.371 ±0.046 0.432 ±0.022

GCN_cheby [9] 0.646 ±0.012 0.495 ±0.016 0.686 ±0.037 0.479 ±0.023 0.516 ±0.070 0.460 ±0.038 0.526 ±0.045

Union [12] 0.600 ±0.000 0.463 ±0.000 0.730 ±0.000 0.566 ±0.000 0.466 ±0.006 0.418 ±0.002 0.582 ±0.000

Intersection [12] 0.598 ±0.000 0.462 ±0.000 0.725 ±0.000 0.557 ±0.000 0.459 ±0.003 0.443 ±0.002 0.573 ±0.000

GAT [18] 0.570 ±0.036 0.594 ±0.070 0.663 ±0.000 0.359 ±0.000 0.382 ±0.126 0.424 ±0.073 0.585 ±0.021

DEMO-Net(hash) 0.887 ±0.020 0.997 ±0.000 0.849 ±0.006 0.678 ±0.010 0.614 ±0.069 0.479 ±0.064 0.659 ±0.020
DEMO-Net(weight) 0.919 ±0.003 0.998 ±0.000 0.849 ±0.000 0.656 ±0.000 0.543 ±0.034 0.459 ±0.025 0.647 ±0.021

Table 6: Graph-level classification on the real networks

MUTAG PTC PROTEINS ENZYMES

DeepWL [23] 0.733 0.537 0.680 0.210

DCNN [1] 0.670 0.572 0.579 0.160

PATCHY-SAN [13] 0.795 0.568 0.714 0.170

DIFFPOOL [24] 0.663 0.251 0.733 0.184

DEMO-Net_m(hash) 0.760 0.586 0.617 0.236

DEMO-Net_m(weight) 0.798 0.550 0.616 0.251

DEMO-Net(hash) 0.771 0.563 0.705 0.251

DEMO-Net(weight) 0.814 0.572 0.708 0.272

analyzing the limitations of the existing graph neural networks

from the perspective of Weisfeiler-Lehman graph isomorphism

test. Furthermore, it is observed that the graph convolution should

have the following properties: seed-oriented, degree-aware, order-
free. To this end, we propose a generic graph neural network model

named DEMO-Net which formulates the feature aggregation into a

multi-task learning problem according to nodes’ degree values. In

addition, we also present a novel graph-level pooling method for

learning graph representations provably lying in a degree-specific

Hilbert kernel space. The extensive experiments on real networks

demonstrate the effectiveness of our DEMO-Net algorithm.

ACKNOWLEDGMENTS
This work is supported by the United States Air Force and DARPA

under contract number FA8750-17-C-0153, National Science Foun-

dation under Grant No. IIS-1552654, Grant No. IIS-1813464 and

Grant No. CNS-1629888, the U.S. Department of Homeland Security

under Grant Award Number 17STQAC00001-02-00, and an IBM

Faculty Award. The views and conclusions are those of the authors

and should not be interpreted as representing the official policies

of the funding agencies or the government.

REFERENCES
[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In NIPS.
[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In NIPS.
[3] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning

structural node embeddings via diffusion wavelets. In SIGKDD.
[4] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML.
[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS.

[6] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning

on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).
[7] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato

Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. RolX:

structural role extraction & mining in large graphs. In SIGKDD.
[8] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[9] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[10] Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2017. Deriving

neural architectures from sequence and graph kernels. In ICML.
[11] Jure Leskovec and Andrej Krevl. 2014. SNAP datasets: Stanford large network

dataset Collection. http://snap.stanford.edu/data.

[12] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In AAAI.
[13] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In ICML. 2014–2023.
[14] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:

Learning node representations from structural identity. In SIGKDD.
[15] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. In NIPS.
[16] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-Lehman graph kernels. Journal of
Machine Learning Research (2011), 2539–2561.

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[18] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[19] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex

Smola. 2009. Feature hashing for large scale multitask learning. In ICML.
[20] Boris Weisfeiler and AA Lehman. 1968. A reduction of a graph to a canonical

form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsia 2, 9 (1968), 12–16.

[21] Mengmeng Wu, Wanwen Zeng, Wenqiang Liu, Hairong Lv, Ting Chen, and Rui

Jiang. 2018. Leveraging multiple gene networks to prioritize GWAS candidate

genes via network representation learning. Methods (2018).
[22] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[23] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In SIGKDD.
[24] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In NIPS.
[25] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An

end-to-end deep learning architecture for graph classification. In AAAI.
[26] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2018. Graph convo-

lutional networks: Algorithms, applications and open challenges. In International
Conference on Computational Social Networks. Springer, 79–91.

[27] Dawei Zhou, Jingrui He, Hongxia Yang, and Wei Fan. 2018. SPARC: Self-paced

network representation for few-shot rare category characterization. In SIGKDD.
[28] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,

Hasan Davulcu, and Jingrui He. 2017. A local algorithm for structure-preserving

graph cut. In SIGKDD. 655–664.
[29] Yao Zhou and Jingrui He. 2016. Crowdsourcing via Tensor Augmentation and

Completion.. In IJCAI. 2435–2441.
[30] Yao Zhou, Lei Ying, and Jingrui He. 2017. MultiC

2
: an optimization framework

for learning from task and worker dual heterogeneity. In SDM. 579–587.

http://snap.stanford.edu/data

Conference’17, July 2017, Washington, DC, USA Jun Wu, Jingrui He, and Jiejun Xu

7 APPENDIX FOR REPRODUCIBILITY
To better reproduce the experimental results, we provide additional

details about the algorithms (Section 7.1) and experimental results

(Section 7.2).

7.1 Algorithm Analysis
Proof of Theorem 4.4. Theorem 4.4 says that there exist mapping

functions fs and { fdeд |deд ∈ deдree(G)} such that for any two

subtrees inT , the function f : T → Rd defined in Eq. (5) maps them

to different feature vectors if they are not structurally identical.

Proof. Let Ts = {hv |v ∈ V } denote the seed set in T and

dm =max{deд} + 1 the maximum degree values plus one. Becuase

T is countable, there exists an injective function Z : T → N
that maps each subtree from T to an unique natural number. It

can be observed that N can be divided into dm disjoint sets: N0 =
{i ∗dm }∞i=0,N1 = {i ∗dm +1}∞i=0, · · · ,Ndm−1 = {i ∗dm +dm −1}∞i=0.

There exists an injective function Zs : Ts → N0 that maps

each seed from Ts to an unique natural number in N0. Let Ti =
{hN (v) |v ∈ V and deд(v) = i} denote the neighbor set consisting
of the seeds’ neighbors when their degree values are equal to i .
Because T is countable, all the subsets Ti (1 ≤ i ≤ max{deд})
are countable. There exists the injective, symmetric function Zi :
Ti → Ni that maps each element from Ti to an unique real number

in Ni . Moreover, there is a function Zf : T → N2 that maps

each subtree from T to an unique feature vector in N2 when

Zf (hv ,hN (v)) = Zs (hv)◦Zdeд(v)(hN (v)). Please note that the struc-
turally identical subtrees would be considered the same one when

the degree-specific function Zi is symmetric.

It is easy to construct an injective function д : N2 → Rd . Based
on the properties of injective function, д(Zf (·)) will be injective
function thatmaps any two subtrees inT to different feature vectors

in Rd if they are not structurally identical, which completes the

proof. □

Proof of Theorem 4.5. Theorem 4.5 says that the graph represen-

tation hG learned in Eq. (12) belongs to the Reproducing Kernel

Hilbert Space (RKHS) of kernel Kσ ,DW L(·, ·).

Proof. Let hGk [i] =
∑
v ∈V hkv · δ (deд(v),di) denote the feature

vector of graphGk for nodes with degree value di . Let hG [k, i, j] =
hGk [i][j] denote the jth element of hGk [i]. Our graph convolution

(feature aggregation) function can be written as:

hkv = σ (W k
0
hk−1v ◦

∑
u ∈N (v) Ŵ

k
deд(v)h

k−1
u) (19)

whereŴ k
deд(v) represents the degree-specific parameters, and more

specifically, Ŵdeд(v) = W k
д +W

k
deд(v) for degree-specific weight

matrix in Eq. (7) andŴdeд(v) =W
k (ϕд(·)+ϕdeд(·)). Because we use

the concatenation operator ◦ to combine the learned features of seed

and its neighborhood, it holds that hGk [i][j] lies in either seed’s
feature σ (W k

0
hk−1v) or σ (∑u ∈N (v) Ŵ

k
deд(v)h

k−1
u), but not both.

Let w0j denote the j
th

row fromW k
0
. To show our results, we

construct a k-regular "reference graph"Grk = (Vrk ,Erk) which has

the same nodes as the input graphG (i.e.,Vrk = V). Its degree value

k is di and each node in "reference graph" is associated with the

same feature vectorw0j/n. Then when hGk [i][j] lies in the seed’s

feature σ (W k
0
hk−1v), we have:

hG [k, i, j] = hGk [i][j]

=
∑

v ∈V hkv [j] · δ (deд(v),di)

=σ
(∑

v ∈V δ (deд(v),di) ·
〈
hk−1v ,w0j

〉)
=σ

(
1

n

∑
v ∈V

∑
r ∈Vrk

δ (deд(v),deд(r)) ·
〈
hk−1v ,w0j

〉)
=σ

(
KDW L(Gk−1,Grk)

)
(20)

The lemma 1 in [10] holds that for activation functions σ , there
exists kernel functions Kσ (·, ·) and the underlying mapping ϕσ (·)
such that f (x) = σ (wT x) = ⟨ϕσ (x),ψ (w)⟩ for some mapping func-

tionψ (w) constructed fromw . Therefore, we have:

hG [k, i, j] = Kσ ,DW L(Gk−1,Gσ ,rk) (21)

where Kσ ,DW L(·, ·) is the composition of Kσ (·, ·) and KDW L(·, ·),
and Kσ ,DW L(x ,y) = ϕσ (ϕDW L(x))Tϕσ (ϕDW L(y)). And Gσ ,rk is

the "reference graph" constructed from model parameters and acti-

vation function.

Let ŵdi j denote the j
th

row from Ŵ k
deд(v) with deд(v) = di . Sim-

ilarly, we construct a k-regular "reference graph" Ĝrk = (V̂rk , Êrk)
which has the same nodes as the input graphG with degree valuedi .
Each node in this "reference graph" is associated with the same fea-

ture vector ŵdi j/n. when when hGk [i][j] lies in the neighborhood’s

feature σ (∑u ∈N (v) Ŵ
k
deд(v)h

k−1
u), we have:

hG [k, i, j] = hGk [i][j]

=
∑

v ∈V hkv [j] · δ (deд(v),di)

=σ
(∑

v ∈V

∑
u ∈N (v) δ (deд(v),di) ·

〈
hk−1u , ŵdi j

〉)
=σ

(
1

n

∑
v ∈V

∑
r ∈V̂rk

δ (deд(v),deд(r)) ·
〈 ∑
u ∈N (v)

hk−1u , ŵdi j

〉)
=σ

(
KDW L(Gk−1, Ĝrk)

)
(22)

Please notice that in this case, node features are assumed to be the

sum of neighborhood features. And moreover, it can be written as:

hG [k, i, j] = Kσ ,DW L(Gk−1, Ĝσ ,rk) (23)

where Ĝσ ,rk is the "reference graph" constructed frommodel param-

eters and activation function. Therefore, the graph representation

hG belongs to the RKHS of kernel Kσ ,DW L(·, ·), which completes

the proof. □

	Abstract
	1 Introduction
	2 Related Work
	2.1 Node Classification
	2.2 Graph Classification

	3 Preliminaries
	3.1 Notation
	3.2 Problem Definition
	3.3 Graph Neural Networks

	4 Proposed Model: DEMO-Net
	4.1 Node Representation Learning
	4.2 Graph Representation Learning
	4.3 Discussion

	5 Experimental Results
	5.1 Experiment Setup
	5.2 Node Classification
	5.3 Graph Classification
	5.4 Efficiency Analysis

	6 Conclusions
	Acknowledgments
	References
	7 Appendix for Reproducibility
	7.1 Algorithm Analysis

