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Abstract—In this paper, we study the dynamic transfer learn-
ing problem involving adaptive knowledge transfer from a static
source domain to a time evolving target domain. One major
challenge is the time evolving relatedness of the source domain
and the current target domain as the target domain evolves over
time. To address this challenge, we derive a generic error bound
on the current target domain with flexible domain discrepancy
measures. Moreover, we propose a label-informed C-divergence to
measure the shift of joint data distributions (over input features
and output labels) across domains. The resulting tighter error
bound with C-divergence motivates us to develop a novel dynamic
transfer learning algorithm TransLATE. Empirical results on
various data sets confirm the effectiveness of our proposed
algorithm in modeling the time evolving target domain.

Index Terms—transfer learning, evolving domain, distribution
discrepancy

I. INTRODUCTION

Transfer learning [12], [16] has achieved significant suc-
cess across multiple high-impact applications. It improves the
prediction performance on a target domain with limited label
information by leveraging the knowledge from a related source
domain with abundant label information [3], [19]. However,
in many real applications, the target domain is constantly
evolving over time [14]. For example, the online movie
reviews are changing over the years: some famous movies
were not well received by the mainstream audience when they
were first released, but became popular only years later (e.g.,
Citizen Cane, Fight Club, and The Shawshank Redemption);
whereas the online book reviews typically do not bear this type
of dynamics. Another example is regarding high-throughput
plant phenotyping [18]: the relationship between the spectral
reflectance of a leaf and some physiological/biochemical traits
is smoothly changing with respect to the growing season;
whereas its relationship with other traits might be relatively
stable over time. It is challenging to transfer knowledge from
the static source domain (e.g., the book reviews) to the time
evolving target domain (e.g., the movie reviews).

Therefore, in this paper, we study the dynamic transfer
learning from a static source domain to a continuously time
evolving target domain [4], [6], [14], which has not attracted
adequate attention from the research community and yet is
commonly seen across many real applications. The unique
challenge for dynamic transfer learning lies in the time evolv-
ing nature of the task relatedness between the static source
domain and the time evolving target domain. Even though
the change in the target data distribution in consecutive time
stamps might be small, over time, the cumulative change in
the target domain is likely to be significant and might even
lead to negative transfer [15].

Existing theoretical analysis on transfer learning [1], [10]
has revealed that the target error is typically bounded by
the source error, the domain discrepancy of marginal data
distributions, and the difference of labeling functions. How-
ever, it has been pointed out [20] that marginal feature
distribution alignment might not guarantee the success of
knowledge transfer in real world scenarios. This indicates that
in the context of adaptive knowledge transfer on evolving
domains, marginal feature distribution alignment would lead
to the sub-optimal solution or even negative transfer [15], with
undesirable prediction performance when directly transferring
from the source domain DS to the target domain DTt

at the
tth time stamp. This paper aims to bridge the gap in terms
of both the theoretical analysis and the empirical solutions for
the target domain with a time evolving distribution. The main
contributions of this paper are summarized as follows.
• A generic generalization error bound for adaptive knowledge

transfer on evolving domains is derived with flexible domain
divergence measures.

• We propose a label-informed domain discrepancy measure
(C-divergence) with its empirical estimate, which instanti-
ates a tighter error bound for adaptive knowledge transfer.

• We design a novel adversarial Variational Auto-encoder
algorithm (TransLATE) by empirically minimizing the C-
divergence based error upper bound.

• Experiments on various data sets verify the effectiveness of
the proposed TransLATE algorithm.
The rest of the paper is organized as follows. The related

work is summarized in Section II. Then we first introduce
the problem definition in Section III, and we derive a generic
error bound for dynamic transfer learning on evolving domains
in Section IV. Formally, we propose a novel C-divergence in
Section V, followed by an instantiated error bound and a novel
dynamic transfer learning algorithm in Section VI. Extensive
experiments are provided in Section VII. Finally, we conclude
the paper in Section VIII.

II. RELATED WORK

Transfer learning [12], [21]–[23] improves the performance
of a learning algorithm on the target domain by using the
knowledge from the source domain. It is theoretically proven
that the target error is well bounded [1], [19] when the source
and target domains share the same label space (a.k.a. domain
adaptation), followed by a wealth of practical algorithms [3],
[9]. More recently, it is studied in the dynamic setting [4],
[6], [8] where the data distribution of the target domain is
evolving over time. The main challenge of transfer learning
lies in the distribution shift across the source and target



domains. It is notable that the distribution shift across domains
can be measured under different assumptions, e.g., covariate
shift assumption [12], label shift [7], etc. In this paper, we
assume that the joint distribution over both input features and
output labels would be shifted across domains and across time
stamps. It is studied in previous work [11] by incorporating
the label information for measuring the distribution shift
across domains. Different from those works, our proposed
C-divergence is derived from the perspective of measurable
set matching, thus shedding light on the empirical estimate
of label-informed domain discrepancy from finite samples in
practice. Moreover, we estimate the C-divergence in a unified
framework through the label-informed hidden representation.
This is in sharp contrast to previous works which estimate the
label-aware discrepancy over the label or conditional shift, or
both (e.g., p(x) and p(y|x) in [7]).

III. PROBLEM SETTING

We use X and Y to denote the input space and label space.
Let DS and DT denote the source and target domains with data
distribution pS(x, y) and pT (x, y) over X × Y , respectively.
When the target domain is evolving over time, we denote DTj

to be the target domain at the jth time stamp. Let H be a
hypothesis class on X , where a hypothesis is a function h :
X → Y . Following [4], [6], we formally define the problem
of dynamic transfer learning as follows.

Definition 1. Given a source domain DS (available at time
stamp j = 1) and a time evolving target domain {DTj}tj=1

with time stamp j, dynamic transfer learning aims to improve
the prediction function for target domain DTt+1

using the
knowledge from source domain DS and the historical target
domain DTj

(j = 1, · · · , t).

Notice that the source domain DS can be considered a
special initial time stamp for the time-evolving target domain.
Therefore, for notation simplicity, we will use DT0

to represent
the source domain in this paper. We assume that there are
mT0 labeled source examples drawn independently from a
source domain DT0 and mTj labeled target examples drawn
independently from a target domain DTj

at time stamp j.

IV. A GENERIC ERROR BOUND

Given a static source domain and a time evolving target
domain, dynamic transfer learning aims to improve the target
prediction function over DTt+1

using the source domain and
historical target domain. We begin by considering the binary
classification setting, i.e., Y = {0, 1}. The source error
of a hypothesis h can be defined as follows: ϵT0(h) =
E(x,y)∼pT0

(x,y)

[
L(h(x), y)

]
where L(·, ·) is the loss function.

Its empirical estimate using source labeled examples is de-
noted as ϵ̂T0

(h). Similarly, we define the target error ϵTj
(h)

and the empirical estimate of the target error ϵ̂Tj
(h) over the

target distribution pTj (x, y) at time stamp j. A natural domain
discrepancy measure over joint distributions on X×Y between
features and class labels can be defined as follows:

d1(DT0
,DT ) = sup

Q∈Q

∣∣PrDT0
[Q]− PrDT

[Q]
∣∣ (1)

where Q is the set of measurable subsets under pT0
(x, y) and

pT (x, y). Then, the error bound of dynamic transfer learning
is given by the following theorem.

Theorem 2. Assume the loss function L is bounded with 0 ≤
L ≤ M . Given a source domain DT0

and historical target
domain {DTi

}ti=1, for h ∈ H, the target domain error ϵTt+1

on DTt+1
is bounded as follows.

ϵTt+1
(h) ≤ 1

µ̄

(
t∑

j=0

µt−jϵTj
(h) +M

t∑
j=0

µt−jd1(DTj
,DTt+1

)

)
where µ ≥ 0 is a hyper-parameter1 indicating the importance
of source or historical target domain, and µ̄ =

∑t
j=0 µ

t−j .

In particular, we have the following arguments. (1) It is
not tractable to accurately estimate d1 from finite examples
in real scenarios [1]; (2) This error bound could be much
tighter when considering other advanced domain discrepancy
measures, e.g., A-distance [1], discrepancy distance [10], etc.
(3) There are two special cases: when µ = 0, the error bound
of DTt+1

would be simply determined by the newest historical
target data DTt , and on the other hand, if µ goes to infinity,
DTt+1 is largely determined by the source data DT0 because
intuitively the coefficient µt−j/µ̄ of historical target domain
data DTj

(j = 1, · · · , t) converges to zero.
Corollary 3. With the assumption in Theorem 2 and assume
the loss function L is symmetric (i.e., L(y1, y2) = L(y2, y1)
for y1, y2 ∈ Y) and obeys the triangle inequality, then
(1) if A-distance [1] is adopted to measure the distribution

shift, i.e., dH∆H(DT0
,DT ) = suph,h′∈H |PrDT0

[h(x) ̸=
h′(x)]− PrDT

[h(x) ̸= h′(x)]|, we have:

ϵTt+1(h) ≤
1

µ̄

( t∑
j=0

µt−jϵTj
(h)

+M

t∑
j=0

µt−j
(
dH∆H(DTj

,DTt+1
) +

λ∗
j

M

))
where λ∗

j = minh∈H ϵTj
(h) + ϵTt+1

(h).
(2) if discrepancy distance [10] is adopted, i.e.,

ddisc(DT0
,DT ) = maxh,h′∈H |EDT0

[L(h(x), h′(x))] −
EDT

[L(h(x), h′(x))]|, we have:

ϵTt+1
(h) ≤ 1

µ̄

( t∑
j=0

µt−jϵTj
(h)

+

t∑
j=0

µt−j
(
ddisc(DTj ,DTt+1) + Ωj

))
where Ωj = EDTt+1

[L(h∗
j (x), h

∗
t+1(x))] +

EDTj
[L(h∗

j (x), y)] + EDTt+1
[L(h∗

t+1(x), y)], and
h∗
j = argminh∈H ϵTj

(h).
Remark: It is notable that (1) Corollary 3 would naturally

degenerate to the standard error bounds in the static transfer
learning setting [1], [10] with t = 0, and (2) in the special case
where µ = 1/(t+1), the derived error bound with A-distance
in Corollary 3 coincides with previous work [8] in terms of
source classification error and domain discrepancy between
source domain and target domain at every time stamp.

1In this case, we assume µ0 = 1 for any µ ≥ 0.



The aforementioned domain discrepancy measures mainly
focus on the marginal distribution over input features and have
inspired a line of practical transfer learning algorithms [3],
[19]. However, recent work [17], [20] pointed out that the min-
imization of marginal distributions cannot always guarantee
the success of transfer learning in real scenarios. We propose
to address this problem by incorporating the label information
in the domain discrepancy measure in the next section.

V. LABEL-INFORMED DOMAIN DISCREPANCY

In this section, we introduce a novel label-informed domain
discrepancy measure between the source domain DT0 and
target domain DT and its empirical estimate.

A. C-divergence
For a hypothesis h ∈ H, we denote I(h) to be the subset of

X such that x ∈ I(h) ⇔ h(x) = 1. In order to estimate
the label-informed domain discrepancy from finite samples
in practice, instead of Eq. (1), we propose the following C-
divergence between DT0

and DT , taking into consideration the
joint distribution over features and class labels:
dC(DT0

,DT ) = sup
h∈H

∣∣∣PrDT0
[{I(h), y = 1} ∪ {I(h), y = 0}]

− PrDT
[{I(h), y = 1} ∪ {I(h), y = 0}]

∣∣∣
(2)

where I(h) is the complement of I(h).
We show that several existing domain discrepancy methods

(e.g., [1]) can be seen as special cases of this definition by
using the following relaxed covariate shift assumption.

Definition 4. (Relaxed Covariate Shift Assumption) The
source and target domains satisfy the relaxed covariate shift
assumption if for any h ∈ H,

PrDT0
[y | I(h)] = PrDT

[y | I(h)] = Pr[y | I(h)] (3)

Notice that it would be equivalent to the covariance shift
assumption [13] when I(h) consists of only one example for
all h ∈ H.

Lemma 5. With the relaxed covariate shift assumption, for
any h ∈ H, we have:

dC(DT0
,DT ) = sup

h∈H

∣∣∣(PrDT0
[I(h)]− PrDT

[I(h)]
)
· Sh

+PrDT
[y = 1]− PrDT0

[y = 1]
∣∣∣

where Sh = Pr[y = 1|I(h)]− Pr[y = 0|I(h)].

Remark: From Lemma 5, we can see that in the special
case where Sh is a constant for all h ∈ H and PrDT

[y =
1] = PrDT0

[y = 1], the proposed C-divergence degenerates
to the prevalent A-distance [1] defined on the marginal dis-
tribution of features. Generally speaking, C-divergence can be
considered as a weighted version of the A-distance where the
hypothesis whose characteristic function has a larger class-
separability (i.e., |Sh|) receives a higher weight. Intuitively,
compared to A-distance, C-divergence pays less attention to
class-inseparable regions in the input feature space, which pro-
vide irrelevant information for learning the prediction function
in the target domain.

B. Empirical Estimate of C-divergence
In practice, it is difficult to calculate the proposed C-

divergence based on Eq. (2) as it uses the true underlying
distributions. Therefore, we propose an empirical estimate of
the C-divergence between DT0 and DT as follows. Assuming
that the hypothesis class H is symmetric (i.e., 1 − h ∈ H if
h ∈ H), the empirical C-divergence is:

dC(D̂T0
, D̂T ) = 1−min

h∈H

∣∣∣ 1

mT0

∑
(x,y):h(x)̸=y

I[(x, y) ∈ D̂T0 ]

+
1

mT

∑
(x,y):h(x)=y

I[(x, y) ∈ D̂T ]
∣∣∣
(4)

where D̂T0
and D̂T denote the source and target domains with

finite samples, respectively. I[a] is the binary indicator function
which is 1 if a is true, and 0 otherwise.

The following lemma provides the upper bound of the true
C-divergence using its empirical estimate.

Lemma 6. For any δ ∈ (0, 1), with probability at least 1− δ
over mT0 labeled source examples BT0 and mT labeled target
examples BT , we have:
dC(DT0

,DT ) ≤ dC(D̂T0
, D̂T ) +

(
ℜ̂BT0

(LH) + ℜ̂BT
(LH)

)
+ 3

(√
log 4

δ

2mT0

+

√
log 4

δ

2mT

)
where ℜ̂B(LH)(B ∈ {BT0

,BT }) denotes the Rademacher
complexity [10] over B and LH = {(x, y) → I[h(x) = y] :
h ∈ H} is a class of functions mapping Z = X ×Y to {0, 1}.

VI. PROPOSED ALGORITHM

In this section, we derive the error bound of dynamic trans-
fer learning based on our proposed C-divergence, followed by
a novel knowledge transfer algorithm (TransLATE).
A. Error Bound

The following theorem states that for a bounded loss
function L, the expected error of the newest target domain
can be bounded in terms of the empirical classification error
within the source and historical target domains, the empir-
ical C-divergence across domains as well as the empirical
Rademacher complexity of the class of functions LH =
{(x, y) → I[h(x) = y] : h ∈ H}.

Theorem 7. Assume the loss function L is bounded with 0 ≤
L ≤ M . Given a source domain DT0

and historical target
domain {DTi

}ti=1, for h ∈ H and δ ∈ (0, 1), with probability
at least 1 − δ, the target domain error ϵTt+1

on DTt+1
is

bounded as follows.

ϵTt+1
(h) ≤ 1

µ̄

(
t∑

j=0

µt−j ϵ̂Tj
(h) +M

t∑
j=0

µt−jdC(D̂Tj
, D̂Tt+1

) +MΛ

)
where Λ =

∑t
j=0 µ

t−j
(
ℜ̂BTj

(LH) + ℜ̂BTt+1
(LH) +

3

√
log

8(t+1)
δ

2mTj
+ 3

√
log

8(t+1)
δ

2mTt+1
+

√
log

4(t+1)
δ

2mTj

)
.

Remark: Compared to error bounds in Corollary 3 using
existing domain divergence measures ( [1], [10]), our bound
consists of only data-dependent terms (e.g., empirical source



error and C-divergence), whereas previous error bounds are
determined by the error terms involving the intractable labeling
function or optimal target hypothesis (see Corollary 3).
B. TransLATE Algorithm

For dynamic transfer learning, we leverage both the source
domain and historical target domain data to learn the pre-
diction function for the current time stamp. To this end, we
propose to minimize the error bound in Theorem 7 for learning
the prediction function on DTt+1

. Furthermore, we learn a
domain-invariant and time-invariant latent space such that the
C-divergence across domains and across time stamps could be
minimized. To this end, we present an adversarial Variational
Auto-encoder (VAE) algorithm with the objective function:

J (T0, T1, T2, · · · , Tt+1) = Lclc (Tt+1) +

t∑
j=0

µt−j
(
Lclc (Tj)

+ dC(D̂Tj
, D̂Tt+1

) + λLELBO (Tj , Tt+1)
)

(5)
where Lclc(Tj) represents the classification error over the
labeled examples from DTj , dC(D̂Tj , D̂Tt+1) is the empiri-
cal estimate of C-divergence across domains. Thus, the first
term of Eq. (5) is the supervised classification error when
there is a limited number of labeled examples in the target
domain DTt+1

. The second and third terms are associated with
ϵ̂Tj

(h) + dC(D̂Tj
, D̂Tt+1

) in the error bound of Theorem 7.
The third term LELBO(Tj , Tt+1) is the variational bound in
the VAE framework when learning the latent feature space and
λ > 0 is a hyper-parameter. Note that in our framework, the
variational term LELBO(·, ·) aims to learn a label-informed
feature representation for each example such that our C-
divergence could then be empirically estimated from the label-
informed features across domains. In this case, we have
µ ∈ [0, 1] because we assume that the data distribution of
the target domain shifts smoothly over time.

Inspired by semi-supervised VAE [5], we propose to learn
the feature space by maximizing the following likelihood.

log pθ(x, y) = KL
(
qϕ(z|x, y)||pθ(z|x, y)

)
+ Eqϕ(z|x,y)[log pθ(x, y, z)− log qϕ(z|x, y)]

(6)

where ϕ and θ are the trainable parameters in the encoder and
decoder respectively, and z is the latent feature representation
of the input example (x, y). KL(·||·) is Kullback–Leibler
divergence. The evidence lower bound (ELBO), a lower bound
on this log-likelihood, can be written as follows.
Eθ,ϕ(x, y) = Eqϕ(z|x,y) [log pθ(x, y|z)] + KL (qϕ(z|x, y)||p(z))
where Eθ,ϕ(x, y) ≤ log pθ(x, y). Similarly, we have the
following ELBO to maximize the log-likelihood of pθ(x)
when the label is not available:
Uθ,ϕ(x) =

∑
y

(
qϕ(y|x) · Eθ,ϕ(x, y)− Eqϕ(y|x) [log qϕ(y|x)]

)
(7)

where pθ(x, y, z) = pθ(x|y, z)pθ(y|z)p(z) with the prior
Gaussian distribution p(z) = N (0, I). Therefore, the varia-
tional bound LELBO(Tj , Tt+1) is given below.

LELBO(Tj , Tt+1) = −
mTj

+mTt+1∑
i=1

Eθ,ϕ(xi, yi)−
uTt+1∑
i=1

Uθ,ϕ(xi)

(8)

where uTt+1
is the number of unlabeled training examples

from DTt+1 . Besides, the classification error Lclc(Tj , Tt+1)
can be expressed as follows.

Lclc(Tj , Tt+1) =
∑mTj

+mTt+1

i=1
L (yi, qϕ(·|xi)) (9)

where qϕ(·) is the discriminative classifier formed by the
distribution qϕ(y|x) in Eq. (7), and L(·, ·) is the cross-entropy
loss function in our experiments. To estimate the C-divergence,
we first define h̃ to be a two-dimensional characteristic func-
tion with h̃(x, y) = 1 ⇔ h(x) = y ⇔ {h(x) = 1, y =
1} ∨ {h(x) = 0, y = 0} for h ∈ H. Then the empirical C-
divergence in Eq. (4) can be rewritten as follows.

dC(D̂Tj , D̂Tt+1) = 1−min
h̃

∣∣∣ 1

mTj

∑
(x,y):h̃(x,y)=0

I[(x, y) ∈ D̂Tj ]

+
1

mTt+1

∑
(x,y):h̃(x,y)=1

I[(x, y) ∈ D̂Tt+1
]
∣∣∣

Note that the feature representation z learned by qϕ(z|x, y)
captures both input feature and output label information of
an example (x, y). Thus, the hypothesis h̃ can be considered
as the composition of a feature extraction qϕ and a domain
classifier Fj , i.e, h̃(x, y) = Fj(qϕ(z|x, y)). Formally, the
empirical estimate of C-divergence is given below.

dC(D̂Tj
, D̂Tt+1

) = 1−min
Fj

∣∣∣ 1

mTj

∑
z:Fj(z)=0

I[z ∈ D̂Tj
]

+
1

mTt+1

∑
z:Fj(z)=1

I[z ∈ D̂Tt+1
]
∣∣∣ (10)

The benefits of TransLATE algorithm are twofold: first, it
learns the latent feature space using both input x and output
y; second, it minimizes a tighter error upper bound based
on C-divergence in Theorem 7. This algorithm can also be
interpreted as a minimax game: VAE learns a domain-invariant
and time-invariant feature space, whereas the domain classifier
Fj distinguishes the examples from different domains and
different time stamps. In this paper, we adopt the gradient
reversal layer [3] when updating the parameters of domain
classifier Fj .

We further address two subtle issues. To be specific, we
observe that (1) it is difficult to estimate the C-divergence
with only limited labeled target examples from DTt+1

; (2)
when learning the latent features z, combining the data x
(e.g., one image) and class-label y directly might lead to
over-emphasizing the data itself due to its high dimensionality
compared to y. To address these problems, we propose the fol-
lowing Pseudo-label Inference, i.e., we infer the pseudo labels
of unlabeled examples using the classifier qϕ(y|x) for each
training epoch. Using labeled source and target examples as
well as unlabeled target examples with inferred pseudo labels,
C-divergence is estimated in a balanced setting. Furthermore,
to enforce the compatibility between x and y, we adopt a pre-
encoder step to learn a dense representation for the input x,
and then learn the label-informed latent features z.

VII. EXPERIMENT
A. Experiment Setup

1) Data Sets: We use the following data sets.
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Fig. 1. Results on Caltran

• Synthetic Data: The synthetic data set contains a set of
source and target data points where the positive and negative
samples are randomly sampled from two independent Gaus-
sian distributions N ([1.5 cos θ, 1.5 sin θ]T , 0.5 · I2×2) and
N ([1.5 cos (−θ), 1.5 sin (−θ)]T , 0.5 · I2×2). We let θ = 0
for the source domain (denoted as S1), and then the data
points are rotated by setting θ as π

8 ,
π
4 ,

3π
8 , π

2 ,
5π
8 , 3π

4 , 7π
8 , π

to generate the target domain with time-evolving nature.
• Object Recognition Data: We use two object recognition

data sets: Office-312 and Office-Home3. Office-31 has three
domains: Amazon, DSLR and Webcam. Office-Home has
four domains: Art, Product, Clipart and Real World. In this
case, we simulate the time-evolving distribution on the target
domain by constantly adding random salt&pepper noise and
rotation into raw images over time.

• Scene Classification Data: Caltran4 is a real-world image
data set captured by a camera at an intersection for 12 days,
and one day has over 100 images of 2 categories. In our
experiments, we assume the first day as the source domain,
and others as a time evolving target domain.
2) Baselines: We use the following baseline methods. (1)

SourceOnly: training with only source data; (2) TargetERM:
empirical risk minimization (ERM) on only target domain; (3)
Static adaptation: DAN [9], DANN [3], and MDD [19]; (4)
Dynamic adaptation: CUA [2], GST [6], and CIDA [14]; (5)
TransLATE, and TransLATE∞ which is a static variant of
TransLATE that directly transfers from source to the newest
target domain. We set λ = 0.1 and µ = 1.0 in the experiments.

B. Results
Tables I and Table II provide the results of TransLATE

on Office-31 and Office-Home where the target classification
accuracy in every time stamp is reported (e.g., ‘T1’ in Amazon
→ Webcam denotes the target domain Webcam in the first time
stamp). It is observed that (1) the classification accuracy using
SourceOnly algorithm significantly decreases on the evolving
target domain due to the time evolving relatedness across
domains; (2) the performance of static baselines is largely
affected by the distribution shift in the evolving target domain;
(3) TransLATE significantly outperforms TransLATE∞
and other competitors by a large margin (i.e., up to 30%
improvement on the last time stamp of target domain).

Figure 1(a) shows the performance of TransLATE on the
newest target domain of Caltran. It confirms the effectiveness

2https://people.eecs.berkeley.edu/∼jhoffman/domainadapt/
3http://hemanthdv.org/OfficeHome-Dataset/
4http://cma.berkeleyvision.org
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Fig. 2. Model analysis

of TransLATE on modeling the time evolving target do-
main. Besides, following [2], we investigate the catastrophic
forgetting mitigation of TransLATE in Figure 1(b) where
the average accuracy of TransLATE evaluated on historical
data is provided. It demonstrates that TransLATE mitigates
catastrophic forgetting.

C. Analysis
1) Evaluation of C-divergence: We compare the proposed

C-divergence with conventional domain discrepancy measure
A-distance [1] on the synthetic data set with an evolving target
domain. We assume that the hypothesis space H consists of
linear classifiers in the feature space. Figure 2(a) shows the
domain discrepancy and target classification accuracy for each
pair of source and target domains. We have the following
observations. (1) The classification accuracy on the target
domain significantly decreases from target domain T1 to
T8. One explanation is that the joint distribution p(x, y) on
the time evolving target domain has gradually shifted. (2)
The A-distance increases from S1→T1 to S1→T4, and then
decreases from S1→T4 to S1→T8. That is because it only
estimates the difference of the marginal feature distribution
p(x) between the source and target domains. (3) The C-
divergence keeps increasing from S1→T1 to S1→T8, which
indicates the decreasing task relatedness between the source
and the target domains. Therefore, compared with A-distance,
C-divergence better characterizes the transferability from the
source to the target domains.

2) Evaluation of Error Bound: When there is only one time
stamp involved in the target domain, Theorem 7 is reduced to
the standard error bound in the conventional static transfer
learning setting. We empirically compare this reduced error
bound with the existing Rademacher complexity based error
bound in [10]. We use the 0-1 loss function as L and assume
that the hypothesis space H consists of linear classifiers in the
feature space. Figure 2(b) shows the estimated error bounds
and target error with the time evolving target domain (i.e.,
S1→T1, · · · , S1→T8 in a new synthetic data set with a slower
time evolving target domain to ensure that the baseline bound
is meaningful most of the time) where we choose h = h∗

T0
.

It demonstrates that our C-divergence based error bound is
much tighter than the baseline. Notice that when transferring
source domain S1 to target domain T8, our error bound is
largely determined by the C-divergence, whereas the baseline
is determined by the difference between the optimal source and
target hypotheses. Furthermore, given any hypothesis h ∈ H,
we may not be able to estimate the baseline bound when the
optimal hypothesis is not available.



TABLE I
CLASSIFICATION ACCURACY ON OFFICE-31 (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

Amazon → Webcam DSLR → Webcam
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

SourceOnly 0.7490 0.2255 0.2282 0.1275 0.1503 0.9651 0.4309 0.3329 0.1611 0.2027
TargetERM 0.5584 0.3933 0.4215 0.3396 0.3732 0.4966 0.4201 0.4188 0.3248 0.4067

DAN [9] 0.8537 0.5007 0.4993 0.3638 0.4470 0.9772 0.7302 0.6161 0.4765 0.5302
DANN [3] 0.8389 0.4993 0.4121 0.3973 0.3382 0.9651 0.7356 0.6416 0.4510 0.5490
MDD [19] 0.8940 0.6738 0.5490 0.5141 0.4295 0.9724 0.8738 0.7315 0.5047 0.5289
TransLATE∞ 0.9154 0.6376 0.5758 0.4591 0.4846 0.9785 0.8591 0.7289 0.4926 0.5557

CUA [2] 0.8349 0.6805 0.6389 0.6456 0.6805 0.9852 0.8805 0.8792 0.8362 0.8617
GST [6] 0.8456 0.5987 0.6013 0.5584 0.5960 0.9739 0.8376 0.8134 0.7570 0.7865
CIDA [14] 0.8805 0.7638 0.7624 0.7195 0.7476 0.9812 0.8577 0.8376 0.7973 0.7960
TransLATE 0.9154 0.8134 0.8081 0.7611 0.7826 0.9785 0.9235 0.9208 0.8886 0.9154

TABLE II
CLASSIFICATION ACCURACY ON OFFICE-HOME (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

Art → Real World Clipart → Product
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

SourceOnly 0.7220 0.3947 0.3135 0.2650 0.3512 0.5944 0.1866 0.1342 0.1074 0.1550
TargetERM 0.5643 0.3297 0.3010 0.2582 0.3299 0.6033 0.3805 0.4232 0.3061 0.3791

DAN [9] 0.7341 0.4901 0.4193 0.3686 0.4597 0.7186 0.4201 0.3921 0.3352 0.4113
DANN [3] 0.7359 0.5092 0.4155 0.3850 0.4686 0.7063 0.4440 0.3694 0.3343 0.4303
MDD [19] 0.7435 0.5056 0.4331 0.3874 0.4686 0.7264 0.4765 0.3886 0.3514 0.4294
TransLATE∞ 0.7560 0.5273 0.4575 0.4080 0.4850 0.7411 0.5017 0.4436 0.3634 0.4595

CUA [2] 0.7370 0.5732 0.5181 0.4932 0.5372 0.7143 0.4922 0.4431 0.4310 0.4879
GST [6] 0.7367 0.5283 0.4795 0.4681 0.4826 0.7285 0.5232 0.4782 0.4531 0.4943
CIDA [14] 0.7420 0.5643 0.4983 0.4896 0.5130 0.7226 0.5076 0.4334 0.4030 0.4362
TransLATE 0.7560 0.6046 0.5447 0.5097 0.5459 0.7411 0.5747 0.5318 0.5009 0.5422

VIII. CONCLUSION

In this paper, we study the dynamic transfer learning prob-
lem by deriving a generic error bound of dynamic transfer
learning with flexible domain discrepancy measures. Then we
propose a novel label-informed C-divergence, which leads to
an improved error bound. By minimizing this error bound, we
further propose a novel adversarial Variational Auto-encoder
algorithm TransLATE. The experimental results confirm the
effectiveness of our TransLATE algorithm.
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