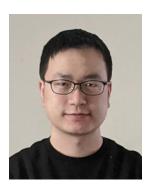
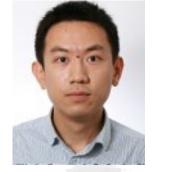


Distribution-Informed Neural Networks for Domain Adaptation Regression



Jun Wu

Jingrui He



Wang

Kaiyu Guan

Elizabeth Ainsworth

University of Illinois Urbana-Champaign {junwu3, jingrui, sheng12, kaiyug, ainswort}@illinois.edu

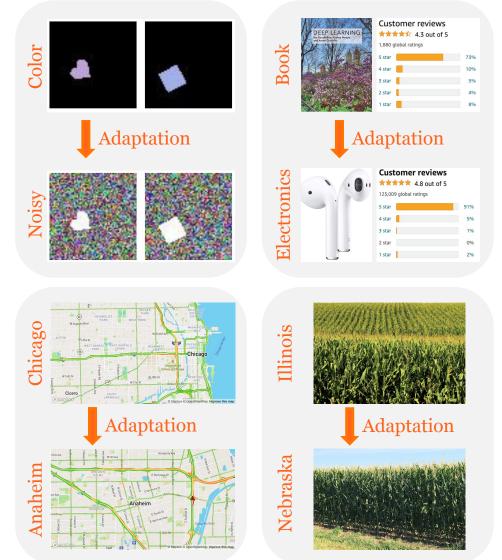
Domain Adaptation Regression

□ Problem definition

- Input: A source domain and a target domain
- Output: Prediction function on the target domain

□ Applications

- **Computer vision**: Object localization
- Natural language processing: Sentiment analysis
- **Graph mining**: Traffic flow prediction
- Agriculture analysis: Plant phenotyping



Xinyang Chen, et al. "**Representation subspace distance for domain adaptation regression**." In *ICML*. 2021. Junteng Jia, et al. "**Residual correlation in graph neural network regression**." In *KDD*. 2020. Jun Wu et al. "**Adaptive transfer learning for plant phenotyping**." In *MLCAS*. 2021

Distribution-Informed Neural Networks

□ Motivation

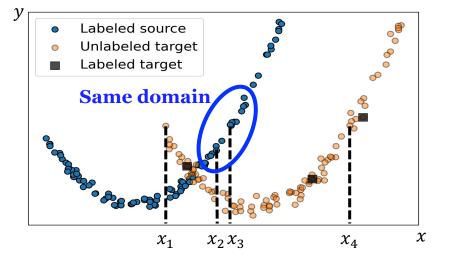
• For standard neural network $f(\cdot)$ on a single domain

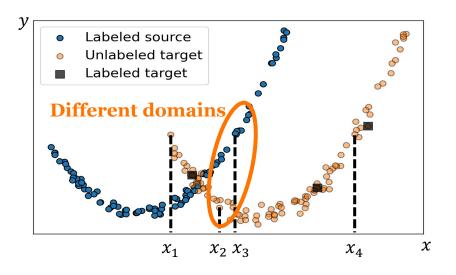
 $f(x_2) \approx f(x_3)$ if $x_2 \approx x_3$ (only source domain)

• Limitations on heterogeneous domains

 $f(x_2) \neq f(x_3)$ for $x_2 \approx x_3$ (heterogeneous case)

- > x_2 from target domain, and x_3 from source domain
- \circ Implication:
 - Input-output relationship varies among different domains
 - > It cannot be directly captured by a standard neural network

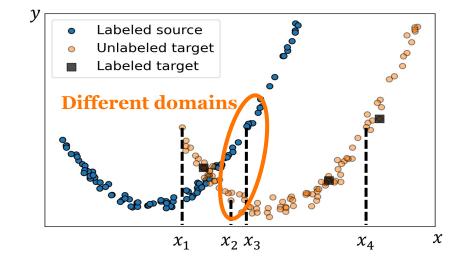




Distribution-Informed Neural Networks

□ Formal definition

- Distribution-aware input-output relationship
 - $\succ \quad \tilde{f}: (x, \mathbb{P}) \to y \text{ where } x \in \mathbb{P}$
 - ≻ $\tilde{f}(x_2, \mathbb{P}_{tgt}) \neq \tilde{f}(x_3, \mathbb{P}_{src})$ for $x_2 \approx x_3$ (heterogeneous case)
- Distribution-informed neural network (DINO)



	$f_{\theta}(x) \cdot g_{w_g}(\mathbb{P} x) \left(\phi_{\theta^{\leq L}}(x)^T w\right) \cdot \left(\Phi_x(\mathbb{P})^T w_g\right) = w^T \left(\phi_{\theta^{\leq L}}(x) \Phi_x(\mathbb{P})^T\right) w_g$	g
Input representation learning	A fully-connected NN: $f_{\theta}(x) = \phi_{\theta^{$	$\theta^{: Parameters of the first L - 1 layers w: Parameters of the output layer$
Input-oriented distribution representation learning	Infinitely-wide $f_{\theta}(\cdot) \implies$ NNGP kernel space K_{χ}	$f \implies \Phi_x(\mathbb{P}) = \sum_{i=1}^n \beta_{x,\tilde{x}_i} \langle \cdot, \tilde{x}_i \rangle_{K_x} \implies g_{w_g}(\mathbb{P} x) = \Phi_x(\mathbb{P})^T w_g$

Jaehoon Lee, et al. "Deep neural networks as gaussian processes." In ICLR. 2018

Proposed Algorithm: DINO-INIT

□ Observation at model initialization

o DINO is a Gaussian process with adaptive NNGP kernel

Under random initialization, when the network width goes to infinity, we have $\tilde{f}(\cdot) \sim \mathcal{N}(0, K^{DA})$ with $K^{DA}((x, \mathbb{P}), (x', \mathbb{P}')) = K_{\chi}(x, x') \cdot K_{\mathcal{P}|\chi}(\mathbb{P}, \mathbb{P}'|x, x')$

where $K_{\mathcal{X}}(\cdot,\cdot)$ is the NNGP kernel, and $K_{\mathcal{P}|\mathcal{X}}(\cdot,\cdot)$ is a distribution kernel, i.e.,

$$K_{\mathcal{P}|\mathcal{X}}(\mathbb{P},\mathbb{P}'|x,x') = \sum_{i=1}^{n} \sum_{j=1}^{n'} \beta_{x,\tilde{x}_i} \beta_{x',\tilde{x}_j} K_{\mathcal{X}}(\tilde{x}_i,\tilde{x}_j)$$

- □ Adaptive Gaussian process algorithm
 - $\circ \quad \text{Prior GP} \, \tilde{f}(\cdot) \sim \mathcal{N}(0, K^{DA})$
 - Prediction function $p(Y|X_*^{tgt}) = \mathcal{N}(\bar{\mu}, \bar{\Sigma})$

$$\bar{\mu} = K^{DA} (X_*^{tgt}, X) C^{-1} Y \qquad \bar{\Sigma} = K^{DA} (X_*^{tgt}, X_*^{tgt}) - K^{DA} (X_*^{tgt}, X) C^{-1} K^{DA} (X_*^{tgt}, X)^T$$

Proposed Algorithm: DINO-TRAIN

Tean Local

□ DINO under gradient descent training

• Objective function

$$\mathcal{L}(\theta) = \frac{\alpha}{2n_{src}} \sum_{i=1}^{n_{src}} \left(\tilde{f}(x_i^{src}, \mathbb{P}^{src}) - y_i^{src} \right)^2 + \frac{1-\alpha}{2n_{tgt}^l} \sum_{j=1}^{n_{tgt}^l} \left(\tilde{f}\left(x_j^{tgt}, \mathbb{P}^{tgt}\right) - y_j^{tgt} \right)^2 + \frac{\mu}{2} \mathsf{MMD}_{\Theta_{DA}}^2(\mathbb{P}^{src}, \mathbb{P}^{tgt})$$

Supervised loss over labeled examples Empirical MMD-NTK

- Empirical Maximum Mean Discrepancy (MMD) over training dynamics
 - > Measure the distribution shift during gradient descent training

$$\mathsf{MMD}_{\Theta_{DA}}^{2}(\mathbb{P}^{src}, \mathbb{P}^{tgt}) = \left\| \frac{1}{n_{src}} \sum_{i=1}^{n_{src}} \nabla_{\theta} \tilde{f}(x_{i}^{src}, \mathbb{P}^{src}) - \frac{1}{n_{tgt}} \sum_{j=1}^{n_{tgt}} \nabla_{\theta} \tilde{f}(x_{j}^{tgt}, \mathbb{P}^{tgt}) \right\|_{\mathcal{H}_{DA}}^{2}$$

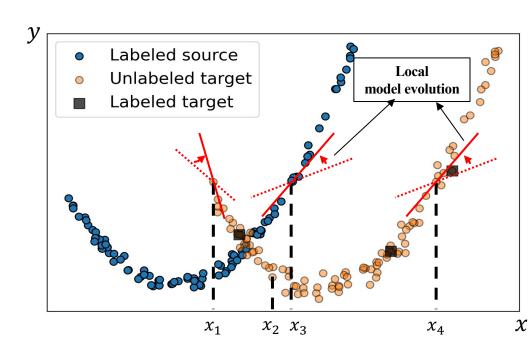
Arthur Jacot, et al. "**Neural tangent kernel: Convergence and generalization in neural networks**." In *NeurIPS*. 2018. Arthur Gretton, et al. "**A kernel two-sample test**." *The Journal of Machine Learning Research*. 2012.

Proposed Algorithm: DINO-TRAIN

□ Intuition behind MMD-NTK

- Unified distribution discrepancy estimator
- Local model evolvement

	Estimator	Characterization
MMD-RBF [Long et al. 2015]	 Two-stage discrepancy; Heuristic division: feature extractor and label predictor 	 Simple model output
MMD-NTK	 Unified estimator over training dynamics of <i>f</i>(·) 	 Local model evolvement



□ Convergence

There exists $\eta^* \in \mathbb{R}_+$ such that for the the infinitely-wide DINO $\tilde{f}(\cdot)$ trained under gradient flow with learning rate $\eta < \eta^*$, the prediction function $\lim_{t\to\infty} \tilde{f}_{\theta_t}(X_*^{tgt})$ converges to a Gaussian process with $\mu = \Theta_{DA}(X_*^{tgt}, X)\Theta_{DA}(X, X)^{-1}Y$ $\Sigma = K^{DA}(X_*^{tgt}, X_*^{tgt}) + \Theta_{DA}(X_*^{tgt}, X)\Theta_{DA}(X, X)^{-1}K^{DA}\Theta_{DA}(X, X_*^{tgt}) - (\Theta_{DA}(X_*^{tgt}, X)\Theta_{DA}(X, X)^{-1}K^{DA}(X, X_*^{tgt}) + h.c.)$

□ Generalization

For any $\delta > 0$, with probability $1 - \delta$, the expected error in the target domain can be bounded by

$$\varepsilon_{tgt}(\tilde{f}) \leq \frac{\alpha}{n_{src}} \sum_{i=1}^{n_{src}} \left(\tilde{f}(x_i^{src}, \mathbb{P}^{src}) - y_i^{src} \right)^2 + \frac{1-\alpha}{n_{tgt}^l} \sum_{j=1}^{n_{tgt}^l} \left(\tilde{f}\left(x_j^{tgt}, \mathbb{P}^{tgt}\right) - y_j^{tgt} \right)^2 + 8\alpha M_0 \cdot \mathsf{MMD}_{\Theta_{DA}}(\mathbb{P}^{src}, \mathbb{P}^{tgt}) + \Omega$$

DINO-TRAIN empirically minimizes the error bound

Arthur Jacot, et al. "Neural tangent kernel: Convergence and generalization in neural networks." In *NeurIPS*. 2018. Jaehoon Lee, et al. "Wide neural networks of any depth evolve as linear models under gradient descent." In *NeurIPS*. 2019.

Experiments

Data sets

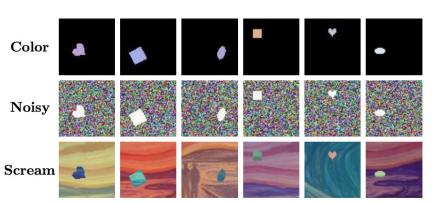
- o dSprites
- o MPI3D
- Plant Phenotyping

□ Metric

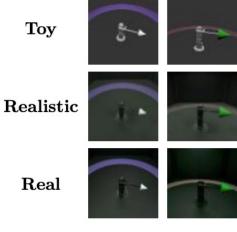
• MAE: Mean Absolute Error

Baseline

- Plain Gaussian process: NNGP and NTKGP
- Adaptive Gaussian process: AT-GP and TL-NTK



Examples of dSprites



Examples of MPI3D

Jaehoon Lee, et al. "**Deep neural networks as gaussian processes**." In *ICLR*. 2018. Bobby He, et al. "**Bayesian deep ensembles via the neural tangent kernel**." In *NeurIPS*. 2020. Bin Cao, et al. "**Adaptive transfer learning**." In *AAAI*. 2010. Wesley Maddox, et al. "**Fast adaptation with linearized neural networks**." In *AISTATS*. 2021.

Methods	$ C \rightarrow N$	$\mathrm{C} ightarrow \mathrm{S}$	$N \to C$	$N \to S$	$S \to C$	$S \to N$	Avg.			
NNGP [34] NTKGP [25] AT-GP [7] TL-NTK [38] DINO-INIT (ours)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{0.231}_{\pm \textbf{0.000}} \\ 0.233_{\pm 0.003} \end{array}$	$\begin{array}{c} 0.323 _{\pm 0.002} \\ \textbf{0.104} _{\pm \textbf{0.001}} \\ 0.124 _{\pm 0.005} \end{array}$	$\begin{array}{c} 0.529_{\pm 0.004} \\ 0.252_{\pm 0.005} \\ 0.242_{\pm 0.002} \end{array}$	$0.118 _{\pm 0.003}$	$\begin{array}{c} 0.425_{\pm 0.002} \\ 0.189_{\pm 0.006} \\ 0.197_{\pm 0.004} \end{array}$	0.683 0.186 0.181	Lower is better		
DINO-TRAIN (ours)	$0.127_{\pm 0.002}$	$0.240_{\pm 0.003}$	$0.127_{\pm 0.000}$	$0.243_{\pm 0.000}$	$0.128_{\pm 0.001}$	$0.194_{\pm 0.001}$	0.177	Methods	$M \rightarrow MU$	$\text{MU} \rightarrow \text{M}$
		Results of	n dSprites	3				NNGP [34] NTKGP [25] AT-GP [7] TL-NTK [38] DINO-INIT (ours)	$0.316_{\pm 0.008}$	
Methods	$RL \to RC$	$RL \to T$	$\text{RC} \rightarrow \text{RL}$	$\text{RC} \rightarrow \text{T}$	$T \to RL$	$T \rightarrow RC$	Avg.	DINO-TRAIN (ours)		$0.443_{\pm 0.030}$
NTKGP [25] AT-GP [7] TL-NTK [38] DINO-INIT (ours)	$\begin{array}{c} 0.396_{\pm 0.001} \\ 0.214_{\pm 0.011} \\ 0.206_{\pm 0.004} \\ 0.204_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.365_{\pm 0.001} \\ 0.209_{\pm 0.002} \\ 0.200_{\pm 0.002} \\ \textbf{0.185}_{\pm \textbf{0.006}} \end{array}$	$0.200_{\pm 0.007}$	$\begin{array}{c} 0.390 _{\pm 0.003} \\ 0.198 _{\pm 0.002} \\ 0.197 _{\pm 0.000} \\ \textbf{0.182} _{\pm 0.004} \end{array}$	$\begin{array}{c} 0.390 _{\pm 0.000} \\ 0.236 _{\pm 0.000} \\ 0.226 _{\pm 0.001} \\ \textbf{0.218} _{\pm 0.001} \end{array}$	$\begin{array}{c} 0.324_{\pm 0.004} \\ 0.354_{\pm 0.003} \\ 0.249_{\pm 0.000} \\ 0.218_{\pm 0.000} \\ \textbf{0.212}_{\pm 0.001} \\ 0.218_{\pm 0.001} \end{array}$	0.386 0.349 0.222 0.210 0.201 0.204	Results on Pl	ant Pheno	otyping
Results on MPI3D										

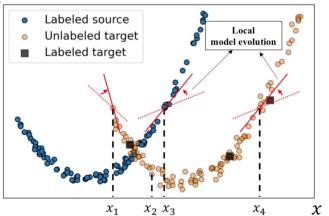
Conclusion

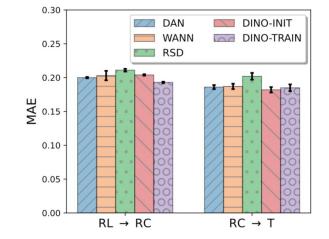


- □ **Algorithms**: Distribution-informed neural networks
 - **DINO-INIT**: Gaussian process with adaptive NNGP kernel
 - DINO-TRAIN: Discrepancy minimization using MMD in the NTK-induced RKHS

Evaluation: Effectiveness on adaptive regression tasks

- Object localization
- Plant phenotyping





Distribution-Informed Neural Networks for Domain Adaptation Regression

Jun Wu

Sheng Wang

Elizabeth Ainsworth

University of Illinois Urbana-Champaign {junwu3, jingrui, sheng12, kaiyug, ainswort}@illinois.edu

