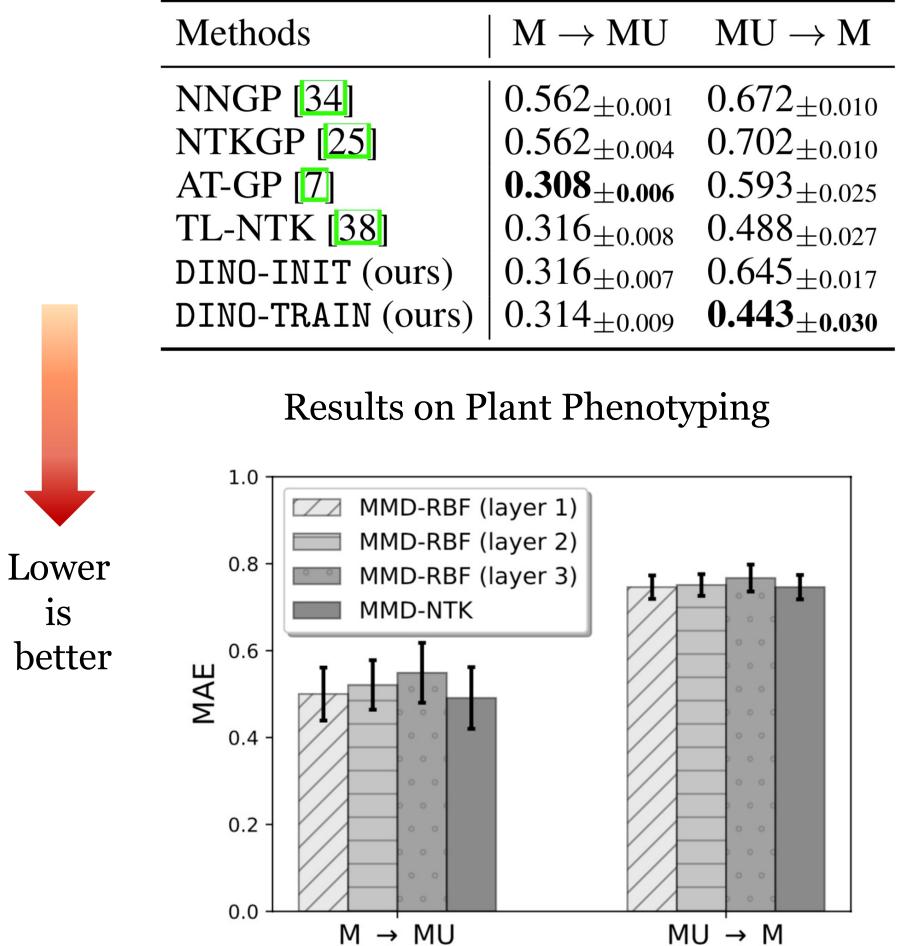

Background

Domain adaptation regression **Distribution Shift** Labeled source Unlabeled target Labeled target Z 8 o de co co **Target Domain Source Domain** □ Applications **Object Localization Plant Phenotyping** Adaptation Adaptation


Experiments

Methods	$\mid RL \rightarrow RC$	$RL \to T$	$\text{RC} \rightarrow \text{RL}$	$\text{RC} \rightarrow \text{T}$	$T \to RL$	$T \rightarrow RC$	Avg.			
NNGP [34]		$0.438 \scriptstyle \pm 0.004$								
NTKGP [25]	$0.396_{\pm 0.001}$	$0.365_{\pm 0.001}$	$0.200_{\pm 0.007}$	$0.390_{\pm 0.003}$	$0.390_{\pm 0.000}$	$0.354_{\pm 0.003}$	0.349			
AT-GP [7]	$0.214_{\pm 0.011}$	$0.209 _{\pm 0.002}$	$0.227_{\pm 0.010}$	$0.198 _{\pm 0.002}$	0.236 ± 0.000	$0.249_{\pm 0.000}$	0.222			
TL-NTK [38]	$0.206_{\pm 0.004}$	$0.200_{\pm 0.002}$	0.213 ± 0.000	$0.197 _{\pm 0.000}$	$0.226_{\pm 0.001}$	$0.218 _{\pm 0.000}$	0.210			
DINO-INIT (ours)	$0.204_{\pm 0.001}$	$0.185_{\pm 0.006}$	$0.207_{\pm 0.003}$	$0.182_{\pm 0.004}$	$0.218_{\pm 0.001}$	$0.212_{\pm 0.001}$	0.201			
DINO-TRAIN (ours)	$0.193_{\pm 0.001}$	$0.194 _{\pm 0.003}$	$0.207_{\pm 0.003}$	$0.188_{\pm 0.002}$	$0.226_{\pm 0.001}$	$0.218_{\pm 0.001}$	0.204			
Results on dSprites										
Methods	$ $ C \rightarrow N	$\mathbf{C} ightarrow \mathbf{S}$	N ightarrow C	$N \rightarrow S$	$S \rightarrow C$	$S \to N$	Avg.			

Methods	$ C \rightarrow N$	$\mathbf{C} ightarrow \mathbf{S}$	N ightarrow C	$N \rightarrow S$	$S \to C$	$S \to N$	Avg.
NNGP [34]	$ 2.041_{\pm 0.001}$	$1.823_{\pm 0.001}$	$0.445_{\pm 0.002}$	$0.624_{\pm 0.001}$	$0.197_{\pm 0.002}$	$0.459_{\pm 0.002}$	0.932
NTKGP [25]	1.345 ± 0.002	$1.227_{\pm 0.000}$	$0.323 _{\pm 0.002}$	$0.529_{\pm 0.004}$	$0.248_{\pm 0.001}$	$0.425 \scriptstyle \pm 0.002$	0.683
AT-GP [7]	$0.194_{\pm 0.005}$	$0.259_{\pm 0.002}$	$0.104 \scriptstyle \pm 0.001$	$0.252_{\pm 0.005}$	0.118 ± 0.003	$0.189 _{\pm 0.006}$	0.186
TL-NTK [38]	$0.164_{\pm 0.001}$	$0.231_{\pm 0.000}$	$0.124_{\pm 0.005}$	$0.242_{\pm 0.002}$	$0.125_{\pm 0.001}$	$0.197_{\pm 0.004}$	0.181
DINO-INIT (ours)	0.128 ± 0.001	$0.233 _{\pm 0.003}$	$0.114_{\pm 0.002}$	$0.227_{\pm 0.002}$	$0.112 \scriptstyle \pm 0.001$	$0.181 \scriptstyle \pm 0.005$	0.166
DINO-TRAIN (ours)	$ 0.127_{\pm 0.002} $	$0.240_{\pm 0.003}$	$0.127_{\pm 0.000}$	$0.243_{\pm 0.000}$	$0.128_{\pm 0.001}$	$0.194_{\pm 0.001}$	0.177

is

Algorithms

$\Box DINO-INIT$

 $K_{\mathcal{P}|\mathcal{X}}(\mathbb{P},\mathbb{P}'|x,$

Adaptive Gaussian process $\circ \operatorname{Prior} \operatorname{GP} \tilde{f}(\cdot) \sim \mathcal{N}(0, K^{DA})$

$$\circ \text{ Prediction function } p(Y|X_*^{tgt}) = \mathcal{N}(\bar{\mu}, \bar{\Sigma})$$
$$\bar{\mu} = K^{DA}(X_*^{tgt}, X)C^{-1}Y \qquad \bar{\Sigma} = K^{DA}(X_*^{tgt}, X_*^{tgt}) - K^{DA}(X_*^{tgt}, X)C^{-1}K^{DA}(X_*^{tgt}, X)^T$$

\Box **DINO-TRAIN**

$$\mathcal{L}(\theta) = \frac{\alpha}{2n_{src}} \sum_{i=1}^{n_{src}} \left(\tilde{f}(x_i^{src}, \mathbb{P}^{src}) - y_i^{src} \right)^2 + \frac{1-\alpha}{2n_{tgt}^l} \sum_{j=1}^{n_{tgt}^l} \left(\tilde{f}\left(x_j^{tgt}, \mathbb{P}^{tgt}\right) - y_j^{tgt} \right)^2 + \frac{\mu}{2} \mathsf{MMD}_{\Theta_{DA}}^2(\mathbb{P}^{src}, \mathbb{P}^{tgt})$$
Supervised loss over labeled examples Empirical MMD-NTK

Supervised loss ove

$$MMD^2_{\Theta_{DA}}(\mathbb{P}^{src}, \mathbb{P}^{tgt}) =$$

$$\left\|\frac{1}{n_{src}}\sum_{i=1}^{n_{src}}\nabla_{\theta}\tilde{f}(x_{i}^{src},\mathbb{P}^{src})-\frac{1}{n_{tgt}}\sum_{j=1}^{n_{tgt}}\nabla_{\theta}\tilde{f}(x_{j}^{tgt},\mathbb{P}^{tgt})\right\|_{\mathcal{H}_{DA}}^{2}$$

Conclusion

- several domain adaptation regression tasks.

Acknowledgments

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902, IIS-2137468, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/ project accession no.1024178 from the USDA National Institute of Food and Agriculture. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government.

> At initialization, DINO is a Gaussian process with adaptive NNGP kernel

Under random initialization, we have $\tilde{f}(\cdot) \sim \mathcal{N}(0, K^{DA})$ with $K^{DA}((x,\mathbb{P}),(x',\mathbb{P}')) = K_{\mathcal{X}}(x,x') \cdot K_{\mathcal{P}|\mathcal{X}}(\mathbb{P},\mathbb{P}'|x,x')$ where $K_{\chi}(\cdot, \cdot)$ is the NNGP kernel, and $K_{\mathcal{P}|\chi}(\cdot, \cdot)$ is a distribution kernel, i.e.,

$$x') = \sum_{i=1}^{n} \sum_{j=1}^{n'} \beta_{x, \tilde{x}_i} \beta_{x', \tilde{x}_j} K_{\mathcal{X}}(\tilde{x}_i, \tilde{x}_j)$$

Gradient descent training with the following objective function

> Empirical Maximum Mean Discrepancy (MMD) over training dynamics

Problem: We study the domain adaptation regression problem in term of convergence and generalization when using deep neural networks. □ Algorithm: Distribution-informed neural network (DINO) is proposed for learning domain heterogeneity, followed by two instantiated algorithms based on random initialization and gradient descent training. **Evaluation**: The efficacy of the proposed algorithms is verified on