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Conclusion

q Problem: We study the domain adaptation regression problem in term 
of convergence and generalization when using deep neural networks.

q Algorithm: Distribution-informed neural network (DINO) is proposed 
for learning domain heterogeneity, followed by two instantiated 
algorithms based on random initialization and gradient descent training.

q Evaluation: The efficacy of the proposed algorithms is verified on 
several domain adaptation regression tasks.
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A fully-connected NN: 𝑓! 𝑥 = 𝜙!"# 𝑥 #𝑤

(𝜃!": Parameters of the first 𝐿 − 1 layers; 𝑤: Parameters of the output layer)

𝑔"! ℙ|𝑥 = Φ$ ℙ #𝑤%Φ$ ℙ =/
&'(

)

𝛽$, +$$ ⋅, 1𝑥& ,𝒳

Infinitely-wide 𝑓! ⋅ NNGP kernel space 𝐾𝒳
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Under random initialization, we have #𝑓 ⋅ ∼ 𝒩 0,𝐾12 with
𝐾12 𝑥, ℙ , 𝑥′, ℙ′ = 𝐾𝒳 𝑥, 𝑥′ ⋅ 𝐾𝒫|𝒳 ℙ,ℙ5|𝑥, 𝑥′

where 𝐾𝒳 ⋅,⋅ is the NNGP kernel, and 𝐾𝒫|𝒳 ⋅,⋅ is a distribution kernel, i.e.,
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𝑓 𝑥0 ≈ 𝑓 𝑥. if 𝑥0 ≈ 𝑥. (Homogeneous Case)

𝑦0 ≠ 𝑦. if 𝑥0 ≈ 𝑥. (Heterogeneous Case)

Ø 𝑥0 from target domain
Ø 𝑥. from source domain

Ø 𝑥0 and 𝑥. from source domain

Ø Adaptive Gaussian process
o Prior GP #𝑓 ⋅ ∼ 𝒩 0,𝐾12

o Prediction function 𝑝 𝑌|𝑋∗
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Ø At initialization,  DINO is a Gaussian process with adaptive NNGP kernel
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Ø Gradient descent training with the following objective function
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Supervised loss over labeled examples Empirical MMD-NTK
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Ø Empirical Maximum Mean Discrepancy (MMD) over training dynamics
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