

Adaptive Knowledge Transfer on Evolving Domains

Jun Wu University of Illinois Urbana-Champaign

Hanghang Tong University of Illinois Urbana-Champaign

Elizabeth Ainsworth

University of Illinois Urbana-Champaign

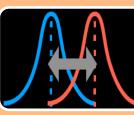
Jingrui He

University of Illinois Urbana-Champaign

Presented by **Jun Wu Email:** junwu3@illinois.edu Homepage: <u>https://publish.illinois.edu/junwu3/</u>

Background

- Dynamic transfer learning
- Assumptions



Methodology

- $\bullet \ Label-informed \ {\cal C}-divergence$
- Generalization error bound
- Adversarial VAE framework

Experiments

- Performance comparison
- Ablation study

Conclusion

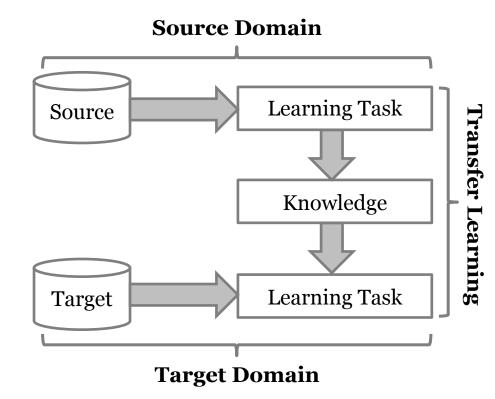
Background

Transfer Learning

- **Input**: A source domain and a target domain Ο
- **Output**: Prediction function on the target domain Ο

Assumptions

- **Relatedness**: Domains are distributionally similar. Ο
- **Static domains**: All the domain data are static Ο



Background

□ Transfer Learning

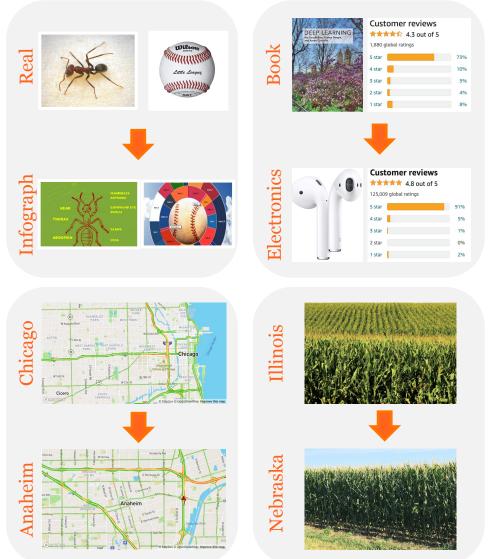
- **Input**: A source domain and a target domain
- **Output**: Prediction function on the target domain

□ Assumptions

- **Relatedness**: Domains are distributionally similar.
- **Static domains**: All the domain data are static

□ Applications

- **Computer vision**: Object recognition
- Natural language processing: Sentiment analysis
- **Graph mining**: Traffic flow prediction
- Agriculture analysis: Plant phenotyping

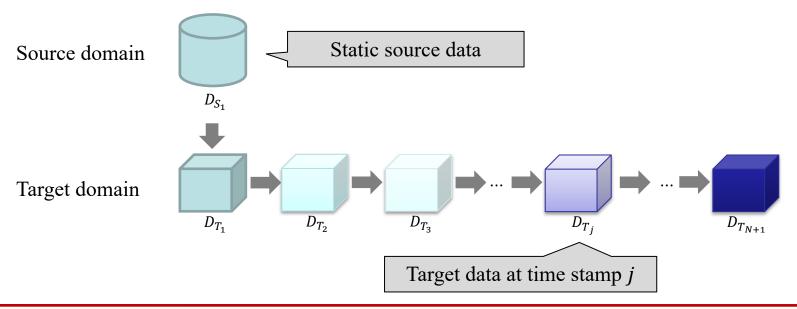


Ozan Sener, et al. "**Learning transferrable representations for unsupervised domain adaptation**." NeurIPS 2016. Junteng Jia, et al. "**Residual correlation in graph neural network regression**." KDD 2020. Jun Wu et al. "**Adaptive transfer learning for plant phenotyping**." MLCA 2021

Problem Definition

Dynamic transfer learning

- Input: A static source domain (fully labeled);
 - A time-evolving target domain (limited labeled and adequate unlabeled)
- Goal: Learn a prediction function for the newest target domain
- Assumptions
 - > **Relatedness**: The source and initial target domains are distributionally related.
 - **Evolvement**: The target domain is continuously evolving over time.



Judy Hoffman, et al. "**Continuous manifold based adaptation for evolving visual domains**." CVPR 2014. Ananya Kumar, et al. "**Understanding self-training for gradual domain adaptation**." ICML 2020.

Background

- Dynamic transfer learning
- Assumptions

Methodology

- $\bullet \ Label-informed \ {\cal C}-divergence$
- Generalization error bound
- Adversarial VAE framework

Experiments

- Performance comparison
- Ablation study

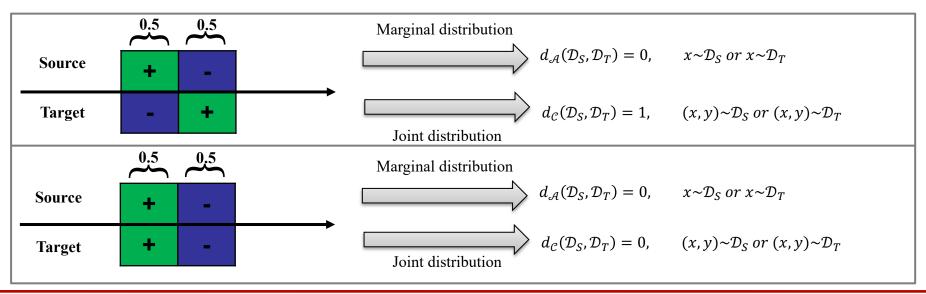
Conclusion

Label-Informed Domain Discrepancy

- □ Label-informed domain discrepancy (*C*-divergence):
 - Key idea: Measure the **joint distribution difference** over both input and output spaces

$$d_{\mathcal{C}}(\mathcal{D}_S, \mathcal{D}_T) = \sup_{h \in \mathcal{H}} \left| \Pr_{\mathcal{D}_S}[\{I(h), y = 1\} \cup \{\overline{I(h)}, y = 0\}] - \Pr_{\mathcal{D}_T}[\{I(h), y = 1\} \cup \{\overline{I(h)}, y = 0\}] \right|$$

 \Box Comparison with existing marginal discrepancy measures, e.g., A-distance [1]



[1] Shai Ben-David, et al. "A theory of learning from different domains." Machine learning 2010.

Theoretical Analysis

□ The expected target error $\epsilon_{T_{t+1}}$ on time stamp *t*+1 is bounded by

- (i) Empirical classification error $\hat{\epsilon}_{T_0}$ on source data
- (ii) Empirical classification error $\hat{\epsilon}_{T_i}$ (j = 1, ..., t) on historical target data
- o (iii) Label-informed domain discrepancy $d_{\mathcal{C}}$ among domains

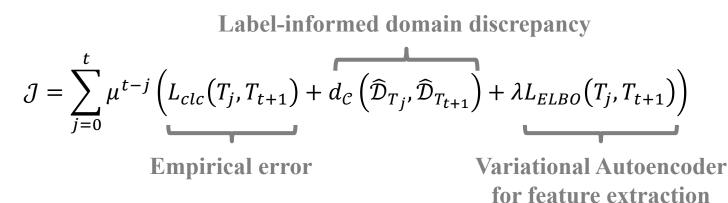
Theorem: Assume the loss function $L(\cdot, \cdot)$ is bounded. Given a source domain \mathcal{D}_S (denoted as \mathcal{D}_{T_0}) and historical target domain $\left\{\mathcal{D}_{T_j}\right\}_{j=1}^t$, for $h \in \mathcal{H}$ and $\delta \in (0,1)$, with probability at least $1 - \delta$, the target domain error $\epsilon_{T_{t+1}}$ on the newest target domain is bounded as follows.

$$\epsilon_{T_{t+1}}(h) \leq \frac{1}{\bar{\mu}} \left(\sum_{j=0}^{t} \mu^{t-j} \hat{\epsilon}_{T_j}(h) + M \sum_{j=0}^{t} \mu^{t-j} d_{\mathcal{C}} \left(\widehat{\mathcal{D}}_{T_j}, \widehat{\mathcal{D}}_{T_{t+1}} \right) + M \Lambda \right)$$

where Λ is a Rademacher complexity term.

Proposed Algorithm: TransLATE

- Annue funge
- □ TransLATE: <u>**Trans</u>fer** learning with <u>**la**</u>bel-informed dis<u></u>tribution alignm<u>e</u>nt</u>
- □ Objective function

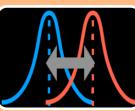


- Assume data distribution is **continuously evolving**, i.e., $0 \le \mu \le 1$
- Variational autoencoder learns the common feature space
- The empirical error on historical target task is iteratively estimated

TRANSFER

Background

- Dynamic transfer learning
- Assumptions



Methodology

- Label-informed *C*-divergence
- Generalization error bound
- Adversarial VAE framework

Experiments

- Performance comparison
- Ablation study

Conclusion

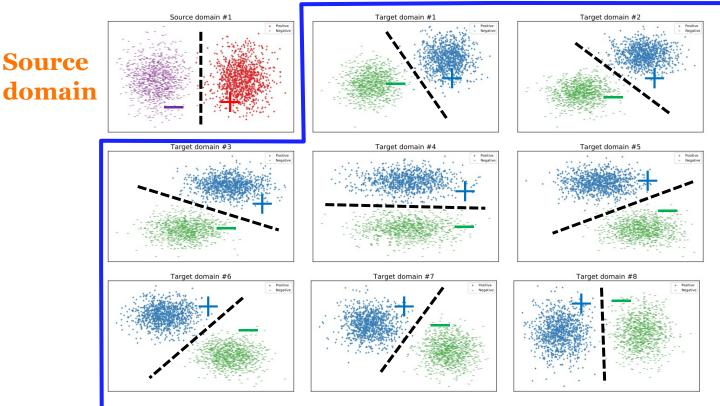
Experiments

Data sets

- Synthetic
- Office-31
- Office-Home

□ Metric

• Classification accuracy



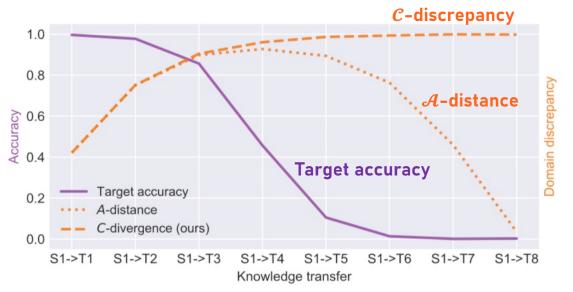
Baselines

- Single domain: SourceOnly, TargetERM
- Static adaptation: DAN, DANN, and MDD
- o Dynamic adaptation: CUA, GST, and CIDA

Time evolving target domain

Ananya Kumar, et al. "**Understanding self-training for gradual domain adaptation**." ICML 2020. Hao Wang, et al. "**Continuously indexed domain adaptation**." ICML 2020. Yuchen Zhang, et al. "**Bridging theory and algorithm for domain adaptation**." ICML 2019.

Model Analysis



Comparison of domain discrepancy and target error

Observations:

(a) Compared to \mathcal{A} -distance [1], \mathcal{C} -divergence better characterizes the transferability from the source to the target domains

Comparison of different error bounds

(b) Our $\mathcal{C}\text{-divergence}$ based error bound is much tighter than the baseline [1] based on $\mathcal{A}\text{-distance}$

[1] Shai Ben-David, et al. "A theory of learning from different domains." Machine learning 2010.

Results

	SourceOnly TargetERM DAN [9]	T1 0.7490 0.5584 0.8537	T2 0.2255 0.3933 0.5007	$\frac{\text{con} \rightarrow \text{We}}{\text{T3}}$ 0.2282 0.4215 0.4993	T4 0.1275 0.3396 0.3638	T5 0.1503 0.3732 0.4470	T1 0.9651 0.4966 0.9772	T2 0.4309 0.4201 0.7302	$\frac{R \rightarrow Web}{T3}$ 0.3329 0.4188 0.6161	T4 0.1611 0.3248 0.4765	T5 0.2027 0.4067 0.5302	Classification accuracy
ves er 9%) get	DANN [3] MDD [19] TransLATE $_{\infty}$	0.8389 0.8940 0.9154	0.4993 0.6738 0.6376	0.4121 0.5490 0.5758	0.3973 0.5141 0.4591	0.3382 0.4295 0.4846	0.9651 0.9724 0.9785	0.7356 0.8738 0.8591	0.6416 0.7315 0.7289	0.4510 0.5047 0.4926	0.5490 0.5289 0.5557	- Office-31
	CUA [2] GST [6] CIDA [14] TransLATE	0.8349 0.8456 0.8805 0.9154	0.6805 0.5987 0.7638 0.8134	0.6389 0.6013 0.7624 0.8081	0.6456 0.5584 0.7195 0.7611	0.6805 0.5960 0.7476 0.7826	0.9852 0.9739 0.9812 0.9785	0.8805 0.8376 0.8577 0.9235	0.8792 0.8134 0.8376 0.9208	0.8362 0.7570 0.7973 0.8886	0.8617 0.7865 0.7960 0.9154	
		Art \rightarrow Real World					Clipart \rightarrow Product]
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5	
	SourceOnly TargetERM	$0.7220 \\ 0.5643$	$0.3947 \\ 0.3297$	$0.3135 \\ 0.3010$	$0.2650 \\ 0.2582$	0.3512 0.3299	0.5944 0.6033	$0.1866 \\ 0.3805$	$0.1342 \\ 0.4232$	$0.1074 \\ 0.3061$	0.1550 0.3791	
	DAN [9] DANN [3] MDD [19] TransLATE _∞	0.7341 0.7359 0.7435 0.7560	0.4901 0.5092 0.5056 0.5273	0.4193 0.4155 0.4331 0.4575	0.3686 0.3850 0.3874 0.4080	0.4597 0.4686 0.4686 0.4850	0.7186 0.7063 0.7264 0.7411	0.4201 0.4440 0.4765 0.5017	0.3921 0.3694 0.3886 0.4436	0.3352 0.3343 0.3514 0.3634	0.4113 0.4303 0.4294 0.4595	• Office-Home
	CUA [2] GST [6] CIDA [14] TransLATE	0.7370 0.7367 0.7420 0.7560	0.5732 0.5283 0.5643 0.6046	0.5181 0.4795 0.4983 0.5447	0.4932 0.4681 0.4896 0.5097	0.5372 0.4826 0.5130 0.5459	0.7143 0.7285 0.7226 0.7411	0.4922 0.5232 0.5076 0.5747	0.4431 0.4782 0.4334 0.5318	0.4310 0.4531 0.4030 0.5009	0.4879 0.4943 0.4362 0.5422	

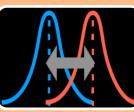
Observation: TransLATE achieve

significantly better performance (+10%) on the newest target domain.

TRANSFER

Background

- Dynamic transfer learning
- Assumptions



Methodology

- Label-informed *C*-divergence
- Generalization error bound
- Adversarial VAE framework

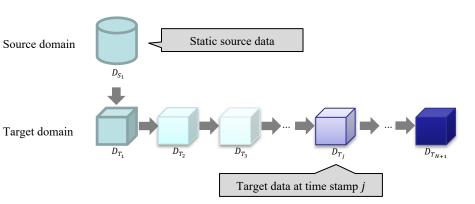
Experiments

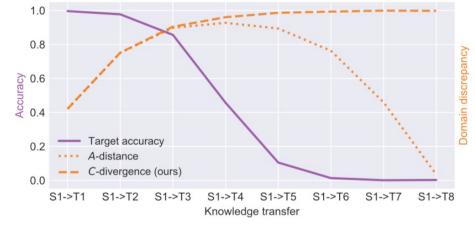
- Performance comparison
- Ablation study

Conclusion

Conclusion

- □ **Problem**: Dynamic transfer learning with time evolving target domain
- Analysis: Generalization error bounds with the proposed C-divergence
- □ Algorithm: Adversarial variational autoencoder framework based on empirical *C*-divergence
- Evaluation: Competitive performance on modeling the newest target domain





Adaptive Knowledge Transfer on Evolving Domains

Jun Wu University of Illinois Urbana-Champaign

University of Illinois Urbana-Champaign

Hanghang Tong

Elizabeth Ainsworth

University of Illinois Urbana-Champaign

Jingrui He

University of Illinois Urbana-Champaign

Please feel free to contact me if you have any question. Email: junwu3@illinois.edu Homepage: https://publish.illinois.edu/junwu3/

