

Problem Definition

Cross-Network Transfer Learning

- Input: (i) source graph $G^s = (V^s, E^s, X^s)$ with rich structure or node label information; (ii) target graph $G^t = (V^t, E^t, X^t)$ with sparse structure or unlabeled nodes
- Goal: Learn a prediction function on the target graph

□ Graph Distribution Shift (Challenges)

□ Applications

• Cross-network node classification

Source Label: Class1) Class1) Class1) Feature: 🗎

• Cross-domain recommendation

3	â		0
1	1	1	?
?	1	1	1
1	1	?	1
1	?	1	1

Source

Target

Non-IID Transfer Learning on Graphs

Jun Wu¹, Jingrui He¹, Elizabeth Ainsworth^{1,2}

¹University of Illinois at Urbana-Champaign, ²USDA ARS Global Change and Photosynthesis Research Unit junwu3@illinois.edu, jingrui@illinois.edu, ainswort@illinois.edu

Graph Subtree Discrepancy

□ Motivation

• Connection between Weisfeiler-Lehman graph kernels [1] and graph neural networks [2]

Weisfeiler-Lehman Graph Subtree Kernel

□ Formal Definition of Graph Subtree Discrepancy

$$d_{GSD}(G^s, G^t) = \lim_{M \to \infty} \frac{1}{M+1}$$

 $\circ d_b(\cdot, \cdot)$: Base distribution discrepancy, e.g., Maximum Mean Discrepancy (MMD) [3] $\circ G_m^s (G_m^t)$: Source (target) Weisfeiler-Lehman subgraph at depth m

□ Generalization Analysis

[Cross-Network Node Classification] Given graph subtree discrepancy $d_{GSD}(G^s, G^t)$ defined above, a message-passing GNN with the feature extractor *f* and the hypothesis $h \in \mathcal{H}$, the node classification error in the target graph can be bounded:

 $\epsilon_t(h \circ f) \leq \epsilon_s(h \circ f) + d_{GSD}(G^s, G^t) + \lambda^* + R^*$

where λ^* measure the labeling difference across domains and R^* is the Bayes error.

[Cross-Network Link Prediction] The loss of link prediction is defined as $\epsilon^{link}(h \circ f) =$ $\mathbb{E}_{(u,v)\in V\times V}[L(h(f(u)||f(v)), y)]$ where y = 1 if u and v are linked, y = 0 otherwise. Then, the link prediction error in the target graph can be bounded: $\epsilon_t^{link}(h \circ f) \leq \epsilon_s^{link}(h \circ f) + d_{GSD}(G^s, G^t) + \lambda_{link}^* + R_{link}^*)$

where λ_{link}^* measure the labeling difference across domains and R_{link}^* is the Bayes error.

Proposed Algorithm: GRADE

Objective function

 $\min C(G^s, G^t; \theta)$

Task-specific Loss Distribution Discrepancy

• Cross-network node classification (GRADE-N)

 $\min_{\theta_f,\theta_h} \frac{1}{|V^s|} \sum_{v \in V^s} L(f(u^s;\theta_f), y^s;\theta_h) + \lambda \cdot d_{GSD}(f(G^s;\theta_f), f(G^t;\theta_f))$

Target

Message-Passing Graph Neural Network

 $d_b(G_m^s, G_m^t)$

+ $\lambda \cdot d_{GSD}(G^s, G^t; \theta)$

Evaluation

Performance Evaluation

Methods	$\mid USA \rightarrow Brazil$	$\text{USA} \rightarrow \text{Europe}$	$Brazil \rightarrow USA$	$Brazil \rightarrow Europe$	$\text{Europe} \rightarrow \text{USA}$	$Europe \rightarrow Brazil$	Avg.
GCN	$0.366_{\pm 0.011}$	$0.371_{\pm 0.004}$	$0.491_{\pm 0.011}$	$0.452_{\pm 0.012}$	$0.439_{\pm 0.001}$	$0.298_{\pm 0.022}$	0.403
SGC	$0.527_{\pm 0.022}$	$0.430_{\pm 0.009}$	$0.432_{\pm 0.005}$	$0.479_{\pm 0.000}$	$0.447_{\pm 0.002}$	$0.481_{\pm 0.011}$	0.466
GCNII	$0.344_{\pm 0.086}$	$0.393 _{\pm 0.025}$	$0.470_{\pm 0.056}$	$0.494_{\pm 0.018}$	$0.460 _{\pm 0.012}$	$0.542_{\pm 0.011}$	0.450
DAN	$0.504_{\pm 0.020}$	$0.393_{\pm 0.000}$	$0.436_{\pm 0.006}$	$0.393_{\pm 0.010}$	$0.436_{\pm 0.003}$	$0.542_{\pm 0.000}$	0.451
DANN	$0.500_{\pm 0.005}$	0.386 ± 0.011	$0.402_{\pm 0.048}$	0.350 ± 0.062	0.436 ± 0.000	$0.538_{\pm 0.005}$	0.435
MDD	$0.500_{\pm 0.005}$	$0.378_{\pm 0.000}$	$0.402_{\pm 0.048}$	$0.350_{\pm 0.062}$	$0.402_{\pm 0.048}$	$0.477_{\pm 0.081}$	0.418
AdaGCN	$0.466_{\pm 0.065}$	$0.434_{\pm 0.004}$	$0.501_{\pm 0.003}$	$0.486_{\pm 0.021}$	$0.456_{\pm 0.034}$	$0.561_{\pm 0.081}$	0.484
UDA-GCN	$0.607_{\pm 0.059}$	0.388 ± 0.007	$0.497_{\pm 0.005}$	$0.510_{\pm 0.019}$	$0.434_{\pm 0.042}$	$0.477_{\pm 0.024}$	0.486
EGI	$0.523_{\pm 0.013}$	$0.451_{\pm 0.011}$	$0.417_{\pm 0.021}$	$0.454_{\pm 0.046}$	$0.452_{\pm 0.029}$	$0.588_{\pm 0.011}$	0.481
GRADE-N	$0.550_{\pm 0.062}$	$0.457_{\pm 0.027}$	$0.497_{\pm 0.010}$	$0.506_{\pm 0.004}$	$0.463_{\pm 0.001}$	$0.588_{\pm0.032}$	0.510
Cross-network node classification on airport data set							

Methods	$CD \rightarrow Music$	$Music \rightarrow CD$	$Book \rightarrow Movie$	$Movie \rightarrow Book$			
lineurous	HR@10 MRR@10 NDCG@10	HR@10 MRR@10 NDCG@10	HR@10 MRR@10 NDCG@10	HR@10 MRR@10 NDCG@10			
BPRMF	$0.182_{\pm 0.003}$ $0.061_{\pm 0.003}$ $0.089_{\pm 0.003}$	$0.259_{\pm 0.008}$ $0.097_{\pm 0.006}$ $0.134_{\pm 0.007}$	$0.198_{\pm 0.003}$ $0.070_{\pm 0.002}$ $0.099_{\pm 0.002}$	$0.128_{\pm 0.007}$ $0.040_{\pm 0.003}$ $0.060_{\pm 0.004}$			
NeuMF	$0.286_{\pm 0.012}$ $0.104_{\pm 0.007}$ $0.145_{\pm 0.008}$	$0.328_{\pm 0.014} \ 0.109_{\pm 0.015} \ 0.160_{\pm 0.013}$	$0.294_{\pm 0.020} \ 0.102_{\pm 0.006} \ 0.146_{\pm 0.009}$	$0.142_{\pm 0.009} \ 0.045_{\pm 0.006} \ 0.066_{\pm 0.007}$			
CoNet	$ 0.405_{\pm 0.018} \ 0.161_{\pm 0.002} \ 0.214_{\pm 0.006}$	$0.333_{\pm 0.010}$ $0.119_{\pm 0.018}$ $0.168_{\pm 0.015}$	$0.319_{\pm 0.023}$ $0.116_{\pm 0.020}$ $0.162_{\pm 0.020}$	$0.142_{\pm 0.025}$ $0.041_{\pm 0.011}$ $0.064_{\pm 0.014}$			
CGN	$0.357_{\pm 0.018}$ $0.120_{\pm 0.015}$ $0.175_{\pm 0.015}$	$0.476_{\pm 0.042}$ $0.192_{\pm 0.020}$ $0.255_{\pm 0.026}$	$0.359_{\pm 0.032}$ $0.136_{\pm 0.018}$ $0.187_{\pm 0.021}$	$0.205_{\pm 0.014}$ $0.071_{\pm 0.004}$ $0.102_{\pm 0.006}$			
PPGN	$0.419_{\pm 0.016}$ $0.179_{\pm 0.008}$ $0.231_{\pm 0.009}$	$0.564_{\pm 0.044}$ $0.278_{\pm 0.032}$ $0.336_{\pm 0.035}$	$0.489_{\pm 0.011}$ $0.239_{\pm 0.007}$ $0.291_{\pm 0.007}$	$0.296_{\pm 0.007}$ $0.154_{\pm 0.010}$ $0.184_{\pm 0.009}$			
EGI	$0.446_{\pm 0.011}$ $0.196_{\pm 0.003}$ $0.250_{\pm 0.006}$	$0.599_{\pm 0.007} \ 0.265_{\pm 0.015} \ 0.338_{\pm 0.009}$	$0.461_{\pm 0.021} \ 0.224_{\pm 0.017} \ 0.274_{\pm 0.014}$	$0.274_{\pm 0.024} \ 0.147_{\pm 0.008} \ 0.174_{\pm 0.011}$			
GRADE-H	$R 0.450_{\pm 0.006} 0.197_{\pm 0.002} 0.251_{\pm 0.003}$	$0.600_{\pm 0.011} \ \ 0.313_{\pm 0.007} \ \ 0.373_{\pm 0.008}$	$0.505_{\pm 0.022} \ 0.249_{\pm 0.004} \ 0.302_{\pm 0.008}$	$0.318_{\pm 0.006} \ \ 0.170_{\pm 0.009} \ \ 0.202_{\pm 0.006}$			
	Cross domain recommandation on Amazon data set						

Cross-domain recommendation on Amazon data set

Conclusion

References

AIFARMS **Artificial Intelligence for Future Agricultural**

Resilience, Management, and Sustainability

CIOSS-IICTWOIK HOUC CLASSIFICATION ON an port data set

□ Impact of Base Distribution Discrepancy and Base GNN

Problem: Cross-network transfer learning where knowledge is transferred from a source graph to relevant a target graph

□ **Algorithm**: Graph adaptive network (GRADE) which measures the graph distribution shift using graph subtree structures

Evaluation: Superior performance on both cross-network node classification and cross-domain recommendation

[1] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt. "Weisfeiler-lehman graph kernels." *Journal of Machine Learning Research*, 2011.

[2] Thomas N. Kipf, and Max Welling. "Semi-supervised classification with graph convolutional networks." *ICLR*, 2017.

[3] Gretton, Arthur, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. "A kernel two-sample test." Journal of Machine Learning Research, 2012.

