

Problem Definition

□ Motivation

FedAvg

Client update with local SGD

$$w_k \leftarrow w_k - \alpha \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k)$$

> Server update

$$w_{\rm G} = \sum_{k=1}^{K} \frac{n_k}{n} w_k$$

Server

• Vulnerable to adversarial perturbation for model inference

□ Adversarially-robust federated learning

- Given
- $\succ K$ clients with local data $\{\mathcal{D}_k\}_{k=1}^K$
- \succ A learning algorithm $f(\cdot)$
- \succ Loss function $L(\cdot, \cdot)$
- \succ A public auxiliary training set \mathcal{D}_s
- Output
- > A trained model on the central server that is **robust against adversarial perturbations** on the test set \mathcal{D}_{test}

Conclusion

- **Problem:** The adversarial robustness of federated learning is studied under the observation that federated learning model is vulnerable to evasion attacks when it is deployed.
- □ **Algorithm**: By investigating the generalization error of clients' local models, we propose a bias-variance oriented adversarial training algorithm Fed_BVA for robust federated learning.
- **Evaluation**: Extensive experiments confirm the effectiveness and efficiency of the Fed_BVA algorithm.

Acknowledgments

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902, IIS-2137468, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agriculture. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government.

Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning

Yao Zhou^{*1,2}, Jun Wu^{*1}, Haixun Wang², Jingrui He¹

¹University of Illinois at Urbana-Champaign, ²Instacart yaozhou3@illinois.edu, junwu3@illinois.edu, haixun@gmail.com, jingrui@illinois.edu

Algorithm: Fed_BVA

(1) Client Update

□ Server update

- Model aggregation: $w_G = \text{Aggregate}(w_1, w_2, \dots, w_K)$
- Adversarial example generation: For any $x \in \mathcal{D}_s$
 - $\max_{\hat{x} \in \Omega(x)} B(\hat{x}; w_1, w_2, \cdots, w_K) + V(\hat{x}; w_1, w_2, \cdots, w_K)$
 - \succ BV-FGSM:
 - $\hat{x} \leftarrow x + \epsilon \cdot \operatorname{sign}\left(\nabla_x (B(x; w_1, w_2, \cdots, w_K) + V(x; w_1, w_2, \cdots, w_K))\right)$
 - \succ For cross-entropy loss function,

$$\nabla_{x}B_{CE}(x;w_{1},w_{2},\cdots,w_{K}) = \frac{1}{K}\sum_{k=1}^{K}\nabla_{x}L(f_{\mathcal{D}_{k}}(x;w_{k}),t)$$
$$\nabla_{x}V_{CE}(x;w_{1},w_{2},\cdots,w_{K}) = \frac{1}{K}\sum_{k=1}^{K}\sum_{c=1}^{C}\left(\log y_{m}^{(j)}+1\right).$$

□ Backward communication

• Send global model parameters w_G and poisoned examples \hat{x} to candidate client **Client update**

Robust training:

$$\min_{w_k} \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k) + \frac{1}{n_s} \sum_{j=1}^{n_s} L(f_{\mathcal{D}_k}(\hat{x}_j^s; w_k), t_j^s)$$

□ Forward communication

• Upload local parameter updates to the server

Experimental Results

D Performance comparison

Method	IID			
	Clean	FGSM	PGD-20	Clean
Centralized	$0.991_{\pm 0.000}$	$0.689_{\pm 0.000}$	$0.182_{\pm 0.000}$	n/a
FedAvg	$0.989_{\pm 0.001}$	$0.669_{\pm 0.009}$	$0.267_{\pm 0.014}$	$0.980_{\pm 0.002}$
FedAvg_AT	$0.988_{\pm 0.000}$	$0.802_{\pm 0.001}$	$0.512_{\pm 0.042}$	$0.974_{\pm 0.005}$
Fed_Bias	$0.986_{\pm 0.000}$	$0.812_{\pm 0.009}$	$0.583_{\pm 0.036}$	$0.971_{\pm 0.004}$
Fed_Variance	$0.985_{\pm 0.001}$	$0.803_{\pm 0.007}$	$0.572_{\pm 0.019}$	$0.973_{\pm 0.005}$
Fed_BVA	$0.986_{\pm 0.001}$	$0.818_{\pm 0.003}$	$0.613_{\pm 0.020}$	$0.969_{\pm 0.002}$
EAT	$0.981_{\pm 0.000}$	$0.902_{\pm 0.001}$	$0.811_{\pm 0.004}$	$0.972_{\pm 0.002}$
EAT+Fed_BVA	$0.980_{\pm 0.001}$	$0.901_{\pm 0.006}$	$0.821_{\pm 0.013}$	$0.965_{\pm 0.005}$

Robustness on MNIST under IID and non-IID settings

□ Ablation study

Loss Clean BiasOnly VarianceOnly BiasOnly VarianceOnly 0.763 $_{(47.58s)}$ 0.759 $_{(63.46s)}$ 0.7 MSE 0.601 $_{(39.67s)}$ 0.711 $_{(65.03s)}$ 0.711 $_{(162.40s)}$ 0.7 Opened Entropy Opened Entropy Opened Entropy	LossCleanBiasOnlyVarianceOnlyCE $0.588_{(38.13s)}$ $0.763_{(47.58s)}$ $0.759_{(63.46s)}$ 0.7 MSE $0.601_{(39.67s)}$ $0.711_{(65.03s)}$ $0.711_{(162.40s)}$ 0.7 (a) Cross-Entropy (CE) vs. Mean Squared Er	Logo	Clean		Fed_BVA	
CE $0.588_{(38.13s)}$ $0.763_{(47.58s)}$ $0.759_{(63.46s)}$ $0.763_{(63.46s)}$ MSE $0.601_{(39.67s)}$ $0.711_{(65.03s)}$ $0.711_{(162.40s)}$ $0.712_{(162.40s)}$ Crosse Entropy (CE) we Mean Sequenced Entropy	CE MSE $0.588_{(38.13s)}$ $0.601_{(39.67s)}$ $0.763_{(47.58s)}$ $0.711_{(65.03s)}$ $0.759_{(63.46s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ $0.711_{(162.40s)}$ $0.763_{(47.58s)}$ (a) Cross-Entropy (CE) vs. Mean Squared Er			BiasOnly	VarianceOnly	
Crock Entropy (CE) vs. Moon Canonad En	(a) Cross-Entropy (CE) vs. Mean Squared Er	CE MSE	$0.588_{(38.13s)}$ 0.601_{(39.67s)}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.759_{(63.46s)}$ $0.711_{(162.40s)}$	0.7
ALL POSSER DIPODVILLELIVS IVIEAD SOLIAPED	(a) Cross Entropy (CE) vs. mean squared	CE MSE	$\begin{array}{ c c c c c } 0.588_{(38.13s)} \\ 0.601_{(39.67s)} \\ ss-Entropy \\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.759_{(63.46s)} \\ 0.711_{(162.40s)}$	

Method		IID			non-II	
	FGSM	PGD-10	PGD-20	FGSM	PGD-1	
FedAvg	0.588	0.620	0.205	0.147	0.525	
Fed_BVA _(BV-FGSM)	0.776	0.793	0.570	0.670	0.695	
Fed_BVA(BV-PGD)	0.757	0.840	0.632	0.659	0.784	

(b) BV-FGSM vs. BV-PGD

 $\nabla_{x} f_{\mathcal{D}_{k}}(x; w_{k})$

	1.6 -	* *	_
	14 -		_
	12 -		
loss			-,

.

 \Box Hyperparameter sensitivity – size of public data set n_s

AIFARMS

Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability