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Conclusion

q Problem: The adversarial robustness of federated learning is 
studied under the observation that federated learning model is 
vulnerable to evasion attacks when it is deployed.

q Algorithm: By investigating the generalization error of clients’ 
local models, we propose a bias-variance oriented adversarial 
training algorithm Fed_BVA for robust federated learning.

q Evaluation: Extensive experiments confirm the effectiveness 
and efficiency of the Fed_BVA algorithm.

Experimental Results

q Performance comparison

q Ablation study

Problem Definition

q Motivation

q Adversarially-robust federated learning

Algorithm: Fed_BVA

q Server update

q Backward communication

q Client update

q Forward communication
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Local client models

Robustness on MNIST under IID and non-IID settings

q Model analysis

(a) Convergence (b) Performance (c) Efficiency

(a) Clean training (b) Under FGSM attack (b) Under PGD attack

q Hyperparameter sensitivity – size of public data set 𝒏𝒔

(a) Cross-Entropy (CE) vs. Mean Squared Error (MSE)

(b) BV-FGSM vs. BV-PGD
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o Send global model parameters 𝑤! and poisoned examples 1𝑥 to candidate client
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o Upload local parameter updates to the server

o FedAvg

o Vulnerable to adversarial perturbation 
for model inference 

Ø Client update with local SGD

Ø Server update
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ØA learning algorithm 𝑓 ⋅
ØLoss function 𝐿 ⋅,⋅
ØA public auxiliary training set 𝒟%

Ø A trained model on the central server that is robust 
against adversarial perturbations on the test set 𝒟89%8
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