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q Definition:
o Multiple clients collaborate in solving a machine 

learning problem, under the coordination of a 
central server or service provider.

o Each client’s raw data is stored locally and not 
exchanged.

q Examples:
o Mobile keyboard prediction for different users

What is Federated Learning?

Kairouz, Peter, et al. "Advances and open problems in federated learning." Foundations and Trends® in Machine Learning. 2021.
Hard, Andrew, et al. "Federated learning for mobile keyboard prediction." arXiv preprint arXiv:1811.03604 (2018).
Xu, Jie, et al. "Federated learning for healthcare informatics." Journal of Healthcare Informatics Research. 2021
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q Workflows:
o Client Update: Each client updates the local 

parameters w.r.t. its own private data;

o Forward Communication: Each client uploads 
its parameter updates to the central server;

o Server Update: The server synchronously 
aggregates the received parameters; 

o Backward Communication: The global 
parameters are sent back to the clients. 

A Federated Learning Framework
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McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." In AISTATS. 2017.
Kairouz, Peter, et al. "Advances and open problems in federated learning." Foundations and Trends® in Machine Learning. 2021.
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q FedAvg algorithm
o Motivation: Approximate the updating behavior of a centralized 

neural network
o Client update with local SGD: 

𝑤! ← 𝑤! − 𝛼
1
𝑛!
'
"#$

%!

𝐿 𝑓𝒟! 𝑥"
!; 𝑤! , 𝑡"!

o Server update: w' = ∑!#$( %!
%
𝑤!

Federated Learning Algorithm - FedAvg

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." In AISTATS. 2017.
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q Vulnerability of deep neural networks

Federated Learning Algorithm - FedAvg

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." In AISTATS. 2017.
Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR, 2015.
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q FedAvg is vulnerable to evasion attacks when it is trained over clients
o The global model is obtained on the server after decentralized training
o The trained model might not predict the adversarial examples correctly.

q Another similar problem: Vulnerability to Byzantine attacks
o Vulnerability: Corrupted client’s updates 
o Solution: Byzantine-robust aggregation variants 

Vulnerability of Federated Learning

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." In AISTATS. 2017.
Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR, 2015.
Yin, Dong, et al. "Byzantine-robust distributed learning: Towards optimal statistical rates." In ICML. 2018.

Vulnerability under evasion attacks on MNIST
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q Adversarially-robust federated learning
o Given: 

Ø 𝐾 clients with local data 𝒟! !"#
$

Ø A learning algorithm 𝑓 ⋅
Ø Loss function 𝐿 ⋅,⋅
Ø A public auxiliary training set 𝒟%

o Output: 
Ø A trained model on the central server that is robust against 

adversarial perturbations on the test set 𝒟&'%&

q Challenges
o Each client’s raw data is not allowed to be exchanged
o Local clients might have limited storage and computational 

resources

Problem Definition
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Adversarially-robust 𝒇 𝒙;𝒘𝑮

Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR. 2015.
Shafahi, Ali, et al. "Adversarial training for free!.” In NeurIPS. 2019.
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Bias-Variance Decomposition

Valentini, Giorgio, et al. "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods." JMLR, 2004.
Yang, Zitong, et al. "Rethinking bias-variance trade-off for generalization of neural networks." In ICML. 2020.

Generalization performance 𝔼𝒟,* 𝐿 𝑓𝒟 𝑥 , 𝑡

q For a test data point 𝑥, 𝑡 :
o 𝒟 is a set of training data points ⟹ 𝑓𝒟 𝑥

Bias 𝐵 𝑥 Variance 𝑉 𝑥 Noise 𝑁 𝑥

𝐵 𝑥 = 𝐿 𝑦+, 𝑦∗ 𝑉 𝑥 = 𝔼𝒟 𝐿 𝑓𝒟 𝑥 , 𝑦+ 𝑁 𝑥 = 𝔼* 𝐿 𝑦∗, 𝑡

𝑦∗: Optimal prediction, i.e., 𝑦∗ = argmin
#
𝔼$ 𝐿 𝑦, 𝑡

𝑦%: Main prediction, i.e., 𝑦% = argmin
#!

𝔼𝒟 𝐿 𝑓𝒟 𝑥 , 𝑦'

Main prediction 
vs. 

Optimal prediction

Main prediction 
vs. 

Individual predictions

Optimal prediction 
vs. 

Ground-truth
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Bias-Variance Analysis of Federated Learning

Valentini, Giorgio, et al. "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods." JMLR, 2004.
Yang, Zitong, et al. "Rethinking bias-variance trade-off for generalization of neural networks." In ICML. 2020.

Client Data Client Data Client Data Client Data

𝒟# 𝒟) 𝒟$*# 𝒟$

𝑓𝒟! 𝑥 𝑓𝒟" 𝑥 𝑓𝒟#$! 𝑥 𝑓𝒟# 𝑥

⋯

⋯

Generalization performance 𝔼𝒟,& 𝐿 𝑓𝒟 𝑥 , 𝑡

Bias 𝐵 𝑥 Variance 𝑉 𝑥 Noise 𝑁 𝑥

𝐵 𝑥 = 𝐿 𝑦-, 𝑦∗ 𝑉 𝑥 = 𝔼𝒟 𝐿 𝑓𝒟 𝑥 , 𝑦- 𝑁 𝑥 = 𝔼& 𝐿 𝑦∗, 𝑡

Local client models
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q Server Update:
o Model aggregation: 𝑤- = Aggregate 𝑤$, 𝑤., ⋯ , 𝑤(
o Adversarial examples: For any 𝑥 ∈ 𝒟/
max
/0∈2 0

𝐵 6𝑥;𝑤#, 𝑤), ⋯ , 𝑤$ + 𝑉 6𝑥;𝑤#, 𝑤), ⋯ , 𝑤$

q Backward Communication:
o Send both global model parameters 𝑤- and 

poisoned examples @𝑥 to each client 
q Client Update:

o Adversarial training

min
3%

1
𝑛!
>
4"#

5%

𝐿 𝑓𝒟% 𝑥4
!; 𝑤! , 𝑡4! +

1
𝑛%
>
6"#

5&

𝐿 𝑓𝒟% 6𝑥6%; 𝑤! , 𝑡6%

q Forward Communication:
o Upload local parameter updates to the server

A Generic Framework

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." In AISTATS. 2017.
Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR, 2015.

q Server Update:
o Model aggregation: 
𝑤- = Aggregate 𝑤$, 𝑤., ⋯ , 𝑤(

q Backward Communication:
o Send both global model 

parameters 𝑤- to each client 
q Client Update:

o Standard training

min
3%

1
𝑛!
>
4"#

5%

𝐿 𝑓𝒟% 𝑥4
!; 𝑤! , 𝑡4!

q Forward Communication:
o Upload local parameter updates to 

the server

Standard FL
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q Adversarial example generation
o BV-FGSM:

@𝑥 ← 𝑥 + 𝜖 ⋅ sign ∇0 𝐵 𝑥;𝑤$, 𝑤., ⋯ , 𝑤( + 𝑉 𝑥;𝑤$, 𝑤., ⋯ , 𝑤(
o For cross-entropy loss function,

Ø Main prediction: 𝑦- = argmin
7'

𝔼𝒟 𝐿 𝑓𝒟 𝑥 , 𝑦8 = #
$
∑!"#$ 𝑓𝒟% 𝑥;𝑤!

Ø Bias: 𝐵9: 𝑥 = #
$
∑!"#$ 𝐿 𝑓𝒟% 𝑥;𝑤! , 𝑡

Ø Variance: 𝑉9: 𝑥 = H 𝑦-

Fed_BVA Algorithm

∇0𝐵9: 𝑥;𝑤#, 𝑤), ⋯ , 𝑤$ =
1
𝐾
>
!"#

$

∇0𝐿 𝑓𝒟% 𝑥;𝑤! , 𝑡

∇0𝑉9: 𝑥;𝑤#, 𝑤), ⋯ , 𝑤$ =
1
𝐾>
!"#

$

>
;"#

9

log 𝑦-
(6) + 1 ⋅ ∇0𝑓𝒟% 𝑥;𝑤!

Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR, 2015.
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q Image data sets:
o MNIST
o Fashion-MNIST
o CIFAR-10
o CIFAR-100

q Baselines:
o Centralized: the training with one centralized model
o FedAvg: Federated averaging model
o FedAvg_AT: Generate adversarial examples on top of FedAvg’s aggregation
o Fed_Bias: Bias-only variant
o Fed_Variance: Variance-only variant
o Fed_BVA: The proposed algorithm
o EAT: Ensemble adversarial training, which performs local adversarial training on each client
o EAT+Fed_BVA: a combination of EAT (local) and Fed_BVA (global)

Experimental Setup
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Performance Comparison
The data is uniformly 

partitioned into each client
Each client will have data 
with at most two classes

Observations:
q Our Fed_BVA algorithm outperforms other global baselines by a large margin.
q When local adversarial training is allowed, EAT+Fed_BVA will mostly have the best robustness

q MNIST data set
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Convergence and Efficiency
(a) Convergence (b) Efficiency

o Compared to FedAvg, robust training methods have a 
slightly higher loss value upon convergence for 
providing robustness for small capacity networks

o The pie plot size represents the running time
o Bias-variance based adversarial training is 

effective and efficient for robust federated 
learning. 
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Hyperparameter Analysis

q Size of public data set 𝑛F = 0, 8, 16, 32, 64

Clean training Under FGSM attack Under PGD attack

Observations:
q The robustness on test set 𝓓𝒕𝒆𝒔𝒕 increases dramatically with increasing 𝑛%
q Choosing large 𝑛% has high model robustness, but also suffers from the high communication cost
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q Problem: Adversarially robust federated learning
o Robustness against adversarial noise during inference

q Algorithm: Bias-Variance oriented robust training
o Bias-Variance based adversarial training
o An instantiated algorithm Fed_BVA with tractable bias and 

variance estimator

q Evaluation: Effectiveness and efficiency
o Better robustness over baselines
o Flexibility in incorporating with local adversarial training

Conclusion
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Black-Box Attacks

q Source threat models:
o ResNet18 (R), VGG11 (V), Xception (X), and MobileNetV2 (M) 

Observations:
q Without adversarial training, FedAvg is vulnerable to black-box evasion attacks
q Local adversarial training of Fed_BVA improves the model robustness
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Adversarial vs. Byzantine Attacks

q Intuition
o Fed_BVA is flexible to incorporate with Byzantine-robust aggregation variants

Ø Adversarial robustness against the corrupted test data set 
Ø Byzantine robustness against the corrupted local model updates 

Blanchard, Peva, et al. "Machine learning with adversaries: Byzantine tolerant gradient descent." In NeurIPS. 2017.
Yin, Dong, et al. "Byzantine-robust distributed learning: Towards optimal statistical rates." In ICML. 2018.
Chen, Yudong, et al. "Distributed statistical machine learning in adversarial settings: Byzantine gradient descent." In POMACS. 2017.

FGSM & sign-flipping attack PGD-20 & additive noise attack
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Cross-Entropy vs. Mean Squared Error

q Cross-Entropy (CE) vs. Mean Squared Error (MSE)
o The gradients of bias and variance are estimates

Classification accuracy

Running time (seconds)

Ø Using CE loss: Ø Using MSE loss: 
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BV-FGSM vs. BV-PGD

q Fast Gradient Sign Method (FGSM) vs. Projected Gradient Descent (PGD)
o BV-FGSM:

@𝑥 ← 𝑥 + 𝜖 ⋅ sign ∇0 𝐵 𝑥;𝑤$, 𝑤., ⋯ , 𝑤( + 𝑉 𝑥;𝑤$, 𝑤., ⋯ , 𝑤(
o BV-PGD:

@𝑥12$ ← Proj3(0) 𝑥1 + 𝜖 ⋅ sign ∇ 60( 𝐵 @𝑥1; 𝑤$, 𝑤., ⋯ , 𝑤( + 𝑉 @𝑥1; 𝑤$, 𝑤., ⋯ , 𝑤(

Classification accuracy


