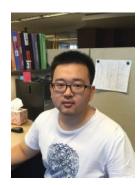
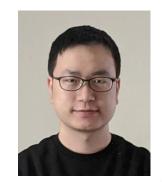


Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning



Yao Zhou* Instacart & UIUC yaozhou3@illinois.edu



Jun Wu* UIUC junwu3@illinois.edu

Haixun Wang Instacart haixun@gmail.com

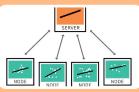
Jingrui He UIUC jingrui@illinois.edu

Roadmap

Background

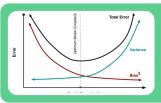
• Federated learning

• Vulnerability to adversarial perturbation



Problem Definition

- Adversarially robust federated learning
- Unique challenges



Methodology

Bias-Variance analysisGeneric framework

Experiments

- Effectiveness
- Efficiency

Conclusion

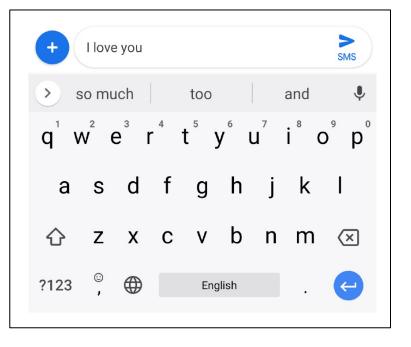
• Problem, algorithm, evaluation

Definition:

- Multiple clients collaborate in solving a machine learning problem, under the coordination of a central server or service provider.
- Each client's raw data is stored locally and not exchanged.

□ Examples:

• Mobile keyboard prediction for different users

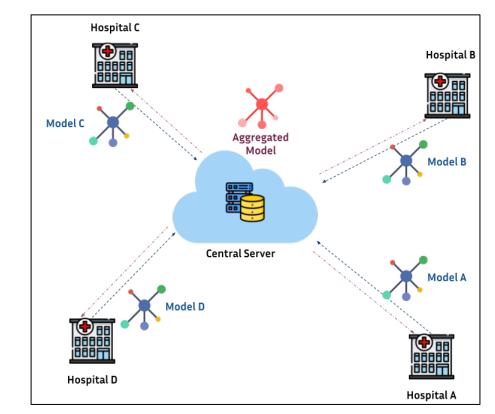


D Definition:

- Multiple clients collaborate in solving a machine learning problem, under the coordination of a central server or service provider.
- Each client's raw data is stored locally and not exchanged.

□ Examples:

- Mobile keyboard prediction for different users
- Healthcare data analysis among multiple hospitals

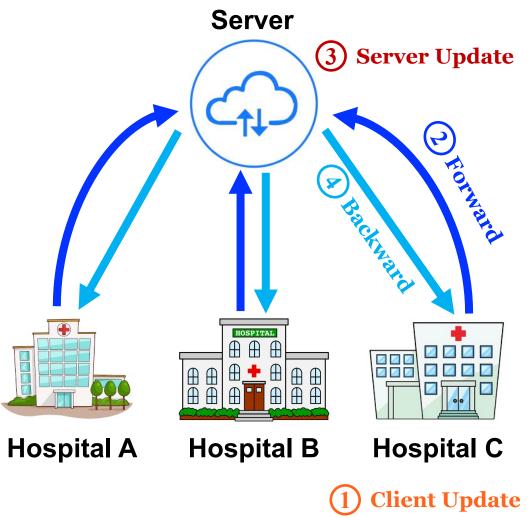


A Federated Learning Framework

□ Workflows:

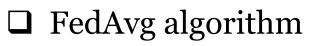
- 5 -

- **Client Update**: Each client updates the local parameters w.r.t. its own private data;
- **Forward Communication**: Each client uploads its parameter updates to the central server;
- **Server Update**: The server synchronously aggregates the received parameters;
- **Backward Communication**: The global parameters are sent back to the clients.



McMahan, Brendan, et al. "**Communication-efficient learning of deep networks from decentralized data**." In *AISTATS*. 2017. Kairouz, Peter, et al. "**Advances and open problems in federated learning**." *Foundations and Trends*® *in Machine Learning*. 2021.

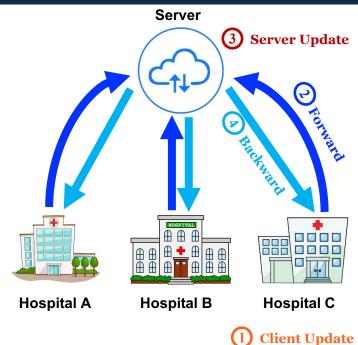
Federated Learning Algorithm - FedAvg



- Motivation: Approximate the updating behavior of a centralized neural network
- Client update with local SGD:

$$w_k \leftarrow w_k - \alpha \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k)$$

• Server update:
$$w_{\rm G} = \sum_{k=1}^{K} \frac{n_k}{n} w_k$$



Federated Learning Algorithm - FedAvg

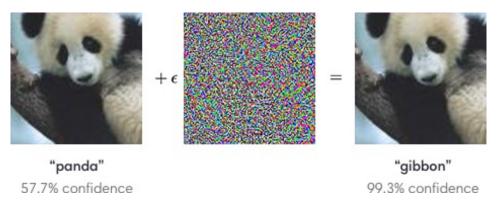
□ FedAvg algorithm

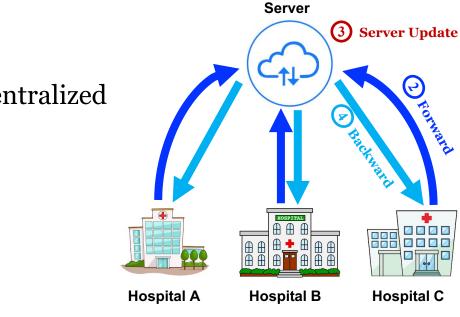
- Motivation: Approximate the updating behavior of a centralized neural network
- Client update with local SGD:

$$w_k \leftarrow w_k - \alpha \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k)$$

• Server update:
$$w_{\rm G} = \sum_{k=1}^{K} \frac{n_k}{n} w_k$$

□ Vulnerability of deep neural networks





McMahan, Brendan, et al. "**Communication-efficient learning of deep networks from decentralized data**." In *AISTATS*. 2017. Goodfellow, Ian J., et al. "**Explaining and harnessing adversarial examples**." In *ICLR*, 2015.

Vulnerability of Federated Learning

FedAvg is vulnerable to evasion attacks when it is trained over clients

- The global model is obtained on the server after decentralized training
- $\circ~$ The trained model might not predict the adversarial examples correctly.

 Method		IID		non-IID			
	Clean	FGSM	PGD-20	Clean	FGSM	PGD-20	
FedAvg	$0.989_{\pm 0.001}$	$0.669_{\pm 0.009}$	$0.267_{\pm 0.014}$	0.980 _{±0.002}	$0.491_{\pm 0.067}$	$0.158_{\pm 0.074}$	

Vulnerability under evasion attacks on MNIST

□ Another similar problem: Vulnerability to Byzantine attacks

- Vulnerability: Corrupted client's updates
- Solution: Byzantine-robust aggregation variants

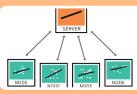
McMahan, Brendan, et al. "**Communication-efficient learning of deep networks from decentralized data**." In *AISTATS*. 2017. Goodfellow, Ian J., et al. "**Explaining and harnessing adversarial examples**." In *ICLR*, 2015. Yin, Dong, et al. "**Byzantine-robust distributed learning: Towards optimal statistical rates**." In *ICML*. 2018.

Roadmap

Background

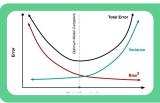
• Federated learning

• Vulnerability to adversarial perturbation



Problem Definition

- Adversarially robust federated learning
- Unique challenges



Methodology

Bias-Variance analysisGeneric framework

Experiments

- Effectiveness
- Efficiency

Conclusion

• Problem, algorithm, evaluation

Output: Ο

A trained model on the central server that is **robust against adversarial perturbations** on the test set \mathcal{D}_{test}

□ Challenges

- 10 -

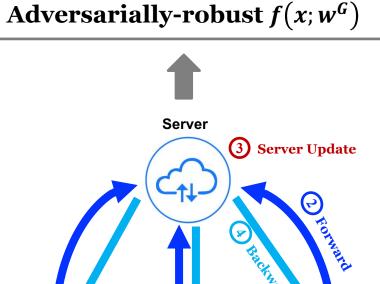
- Each client's raw data is not allowed to be exchanged Ο
- Local clients might have limited storage and computational Ο resources

Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR. 2015. Shafahi, Ali, et al. "Adversarial training for free!." In NeurIPS. 2019.

Adversarially-robust federated learning

Given: Ο

- \succ K clients with local data $\{\mathcal{D}_k\}_{k=1}^K$
- > A learning algorithm $f(\cdot)$
- \succ Loss function $L(\cdot, \cdot)$
- \blacktriangleright A public auxiliary training set \mathcal{D}_s



Hospital A

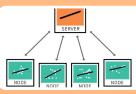
Hospital C Client Update

Roadmap

Background

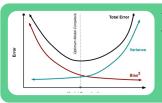
• Federated learning

• Vulnerability to adversarial perturbation



Problem Definition

- Adversarially robust federated learning
- Unique challenges



Methodology

Bias-Variance analysisGeneric framework

Experiments

- Effectiveness
- Efficiency

Conclusion

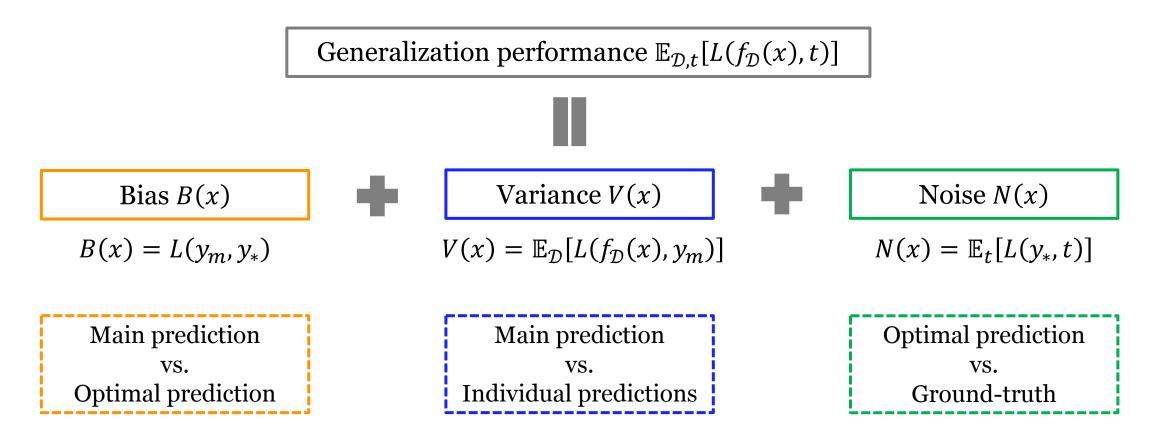
• Problem, algorithm, evaluation

Bias-Variance Decomposition

\Box For a test data point (*x*, *t*):

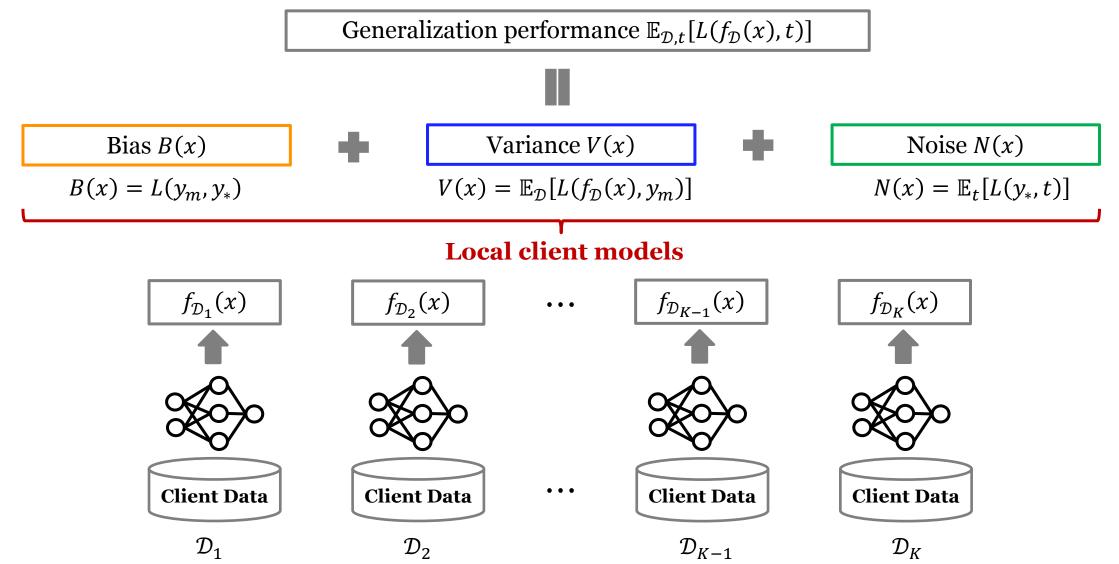
• \mathcal{D} is a set of training data points $\Rightarrow f_{\mathcal{D}}(x)$

 y_* : **Optimal prediction**, i.e., $y_* = \arg\min_{y} \mathbb{E}_t[L(y, t)]$ y_m : **Main prediction**, i.e., $y_m = \arg\min_{y'} \mathbb{E}_D[L(f_D(x), y')]$



Valentini, Giorgio, et al. "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods." *JMLR*, 2004.
 Yang, Zitong, et al. "Rethinking bias-variance trade-off for generalization of neural networks." In *ICML*. 2020.

Bias-Variance Analysis of Federated Learning



Valentini, Giorgio, et al. "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods." *JMLR*, 2004.
13 - Yang, Zitong, et al. "Rethinking bias-variance trade-off for generalization of neural networks." In *ICML*. 2020.

Server Update:

- Model aggregation: $w_G = \text{Aggregate}(w_1, w_2, \cdots, w_K)$
- Adversarial examples: For any $x \in D_s$

 $\max_{\hat{x}\in\Omega(x)}B(\hat{x};w_1,w_2,\cdots,w_K)+V(\hat{x};w_1,w_2,\cdots,w_K)$

Backward Communication:

• Send both global model parameters w_G and poisoned examples \hat{x} to each client

Client Update:

• Adversarial training

$$\min_{w_k} \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k) + \frac{1}{n_s} \sum_{j=1}^{n_s} L(f_{\mathcal{D}_k}(\hat{x}_j^s; w_k), t_j^s)$$

Given Communication:

 $\circ~$ Upload local parameter updates to the server

Server Update:

- Model aggregation:
- $w_G = \text{Aggregate}(w_1, w_2, \cdots, w_K)$

Backward Communication:

• Send both global model parameters w_G to each client

Client Update:

• Standard training

$$\min_{w_k} \frac{1}{n_k} \sum_{i=1}^{n_k} L(f_{\mathcal{D}_k}(x_i^k; w_k), t_i^k)$$

- **Given Communication:**
 - Upload local parameter updates to the server

McMahan, Brendan, et al. "**Communication-efficient learning of deep networks from decentralized data**." In *AISTATS*. 2017. Goodfellow, Ian J., et al. "**Explaining and harnessing adversarial examples**." In *ICLR*, 2015.

Fed_BVA Algorithm

- □ Adversarial example generation
 - BV-FGSM:

$$\hat{x} \leftarrow x + \epsilon \cdot \operatorname{sign}\left(\nabla_x \left(B(x; w_1, w_2, \cdots, w_K) + V(x; w_1, w_2, \cdots, w_K)\right)\right)$$

- \circ For cross-entropy loss function,
 - > Main prediction: $y_m = \arg\min_{y'} \mathbb{E}_{\mathcal{D}}[L(f_{\mathcal{D}}(x), y')] = \frac{1}{K} \sum_{k=1}^{K} f_{\mathcal{D}_k}(x; w_k)$
 - ► Bias: $B_{CE}(x) = \frac{1}{K} \sum_{k=1}^{K} L(f_{\mathcal{D}_k}(x; w_k), t)$
 - ▷ Variance: $V_{CE}(x) = H(y_m)$

$$\nabla_{x}B_{CE}(x;w_{1},w_{2},\cdots,w_{K}) = \frac{1}{K}\sum_{k=1}^{K}\nabla_{x}L(f_{\mathcal{D}_{k}}(x;w_{k}),t)$$

$$\nabla_{x} V_{CE}(x; w_{1}, w_{2}, \cdots, w_{K}) = \frac{1}{K} \sum_{k=1}^{K} \sum_{c=1}^{C} \left(\log y_{m}^{(j)} + 1 \right) \cdot \nabla_{x} f_{\mathcal{D}_{k}}(x; w_{k})$$

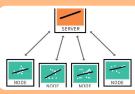
Goodfellow, Ian J., et al. "Explaining and harnessing adversarial examples." In ICLR, 2015.

Roadmap

Background

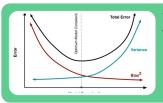
• Federated learning

• Vulnerability to adversarial perturbation



Problem Definition

- Adversarially robust federated learning
- Unique challenges



Methodology

Bias-Variance analysisGeneric framework

Experiments

- Effectiveness
- Efficiency

Conclusion

• Problem, algorithm, evaluation

Experimental Setup

□ Image data sets:

- o MNIST
- Fashion-MNIST
- CIFAR-10
- CIFAR-100

□ Baselines:

- MNIST Fashion-MNIST CIFAR-10 CIFAR-100 (coarse) # comms. 100 100 100 100 # clients (K) 100 100 20 20 fraction (F) 0.10.1 0.2 0.2 # epochs (E) 50 50 5 5 local batch (B) 128 64 64 128 # shared (n_s) 64 64 30 60 *#* categories 10 10 10 20
- $\circ~$ Centralized: the training with one centralized model
- FedAvg: Federated averaging model
- FedAvg_AT: Generate adversarial examples on top of FedAvg's aggregation
- Fed_Bias: Bias-only variant
- Fed_Variance: Variance-only variant
- **Fed_BVA**: The proposed algorithm
- EAT: Ensemble adversarial training, which performs local adversarial training on each client
- EAT+Fed_BVA: a combination of EAT (local) and Fed_BVA (global)

Performance Comparison

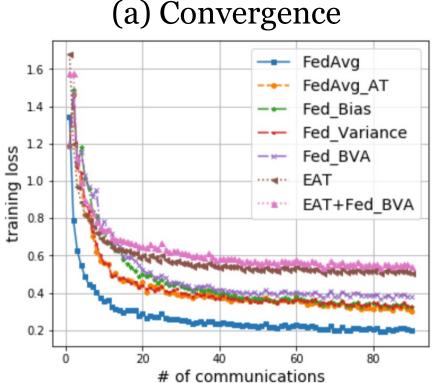
MNIST data set		lata is unifo ned into ea	•	Each client will have data with at most two classes				
Metho	d	IID			non-IID			
	Clean	FGSM	PGD-20	Clean	FGSM	PGD-20		
Centra	lized $ 0.991_{\pm 0.000} $	$0.689_{\pm 0.000}$	$0.182_{\pm 0.000}$	n/a	n/a	n/a		
FedAv	g $0.989_{\pm 0.001}$	$0.669_{\pm 0.009}$	$0.267_{\pm 0.014}$	$0.980_{\pm 0.002}$	$0.491_{\pm 0.067}$	$0.158_{\pm 0.074}$		
FedAv	$g_AT = 0.988_{\pm 0.000}$	$0.802_{\pm 0.001}$	$0.512_{\pm 0.042}$	$0.974_{\pm 0.005}$	$0.649_{\pm 0.066}$	$0.363_{\pm 0.066}$		
Fed_Bi	ias $0.986_{\pm 0.000}$	$0.812_{\pm 0.009}$	$0.583_{\pm 0.036}$	$0.971_{\pm 0.004}$	$0.679_{\pm 0.040}$	$0.394_{\pm 0.103}$		
Fed Va	ariance 0.985 _{+0.001}	$0.803_{\pm 0.007}$	$0.572_{\pm 0.019}$	$0.973_{\pm 0.005}$	$0.684_{\pm 0.004}$	$0.395_{\pm 0.049}$		
Fed_B	VA $0.986_{\pm 0.001}$	$0.818_{\pm 0.003}$	$0.613_{\pm 0.020}$	$0.969_{\pm 0.002}$	$0.705_{\pm 0.009}$	$0.469_{\pm 0.031}$		
EAT	$0.981_{\pm 0.000}$	$0.902_{\pm 0.001}$	$0.811_{\pm 0.004}$	$0.972_{\pm 0.002}$	$0.789_{\pm 0.016}$	$0.415_{\pm 0.035}$		
EAT+F	$ed_BVA 0.980_{\pm 0.001}$	$0.901_{\pm 0.006}$	$0.821_{\pm 0.013}$	$0.965_{\pm 0.005}$	$0.811_{\pm 0.020}$	0.670 _{±0.014}		

Observations:

□ Our Fed_BVA algorithm outperforms other global baselines by a large margin.

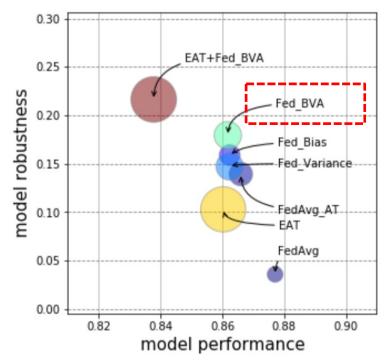
□ When local adversarial training is allowed, EAT+Fed_BVA will mostly have the best robustness

Convergence and Efficiency



(a) Convergence

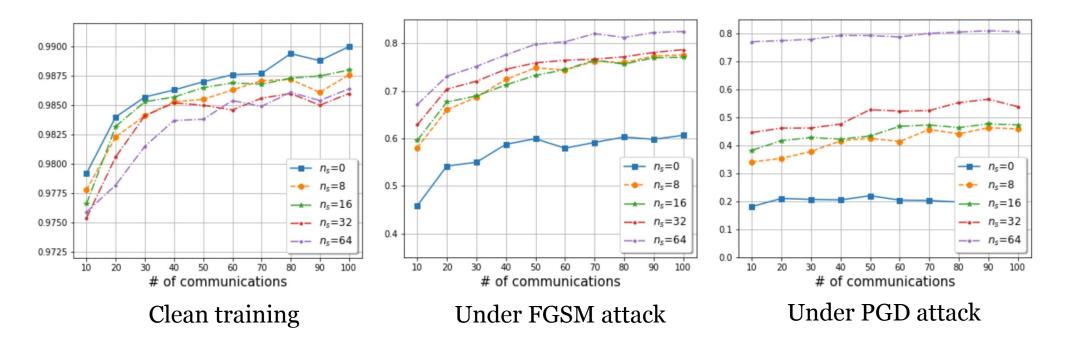
Compared to FedAvg, robust training methods have a 0 slightly higher loss value upon convergence for **providing robustness** for small capacity networks



- The pie plot size represents the running time
- Bias-variance based adversarial training is 0 effective and efficient for robust federated learning.

Hyperparameter Analysis

□ Size of public data set $n_s = 0, 8, 16, 32, 64$



Observations:

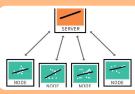
- \Box The robustness on test set \mathcal{D}_{test} increases dramatically with increasing n_s
- \Box Choosing large n_s has high model robustness, but also suffers from the high communication cost

Roadmap

Background

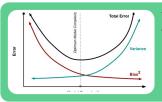
• Federated learning

• Vulnerability to adversarial perturbation



Problem Definition

- Adversarially robust federated learning
- Unique challenges



Methodology

Bias-Variance analysisGeneric framework

Experiments

- Effectiveness
- Efficiency

Conclusion

• Problem, algorithm, evaluation

Conclusion

Problem: Adversarially robust federated learning

Robustness against adversarial noise during inference Ο

□ Algorithm: Bias-Variance oriented robust training

- Bias-Variance based adversarial training
- An instantiated algorithm Fed_BVA with tractable bias and Ο variance estimator

Evaluation: Effectiveness and efficiency

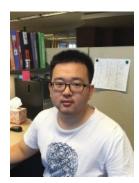
- Better robustness over baselines \bigcirc
- Flexibility in incorporating with local adversarial training Ο



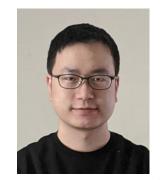
model performance

0.30

Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning



Yao Zhou* Instacart & UIUC yaozhou3@illinois.edu



Du* Jun Wu* UIUC UIUC nois.edu junwu3@illinois.edu

haixun@gmail.com

Haixun Wang Instacart

Jingrui He UIUC jingrui@illinois.edu

I ILLINOIS *instacart*

Source Code: https://github.com/jwu4sml/FedBVA

Black-Box Attacks

□ Source threat models:

• ResNet18 (R), VGG11 (V), Xception (X), and MobileNetV2 (M)

CIFAR-10	Source (FGSM attack)				Source (PGD-20 attack)				
Target	R	V	Х	М	R	V	Х	M	
FedAvg	0.707	0.688	0.689	0.793	0.611	0.623	0.597	0.787	
FedAvg_AT	0.742	0.710	0.720	0.808	0.695	0.670	0.661	0.808	
Fed_Bias	0.740	0.703	0.715	0.799	0.690	0.667	0.654	0.799	
Fed_Variance	0.738	0.704	0.719	0.810	0.677	0.656	0.648	0.809	
Fed_BVA	0.744	0.706	0.722	0.809	0.693	0.669	0.664	0.809	
EAT	0.821	0.806	0.815	0.823	0.819	0.808	0.813	0.822	
EAT+Fed_BVA	0.828	0.808	0.817	0.828	0.825	0.809	0.812	0.829	

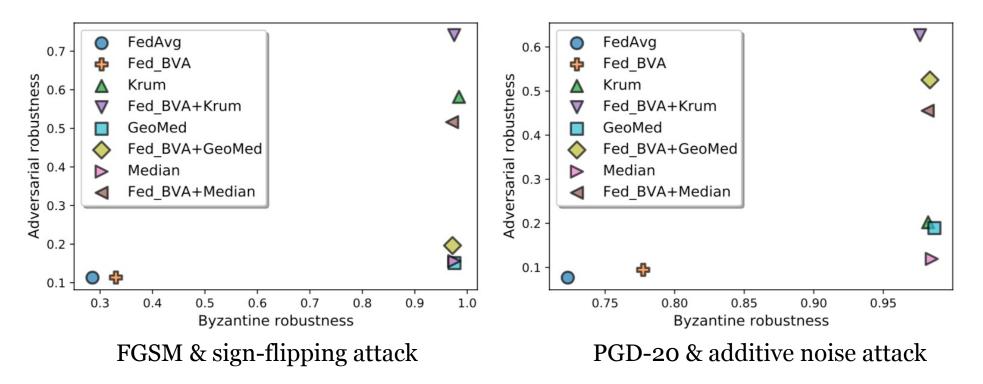
Observations:

Without adversarial training, FedAvg is vulnerable to black-box evasion attacks
 Local adversarial training of Fed_BVA improves the model robustness

Adversarial vs. Byzantine Attacks

□ Intuition

- Fed_BVA is flexible to incorporate with Byzantine-robust aggregation variants
 - Adversarial robustness against the corrupted test data set
 - Byzantine robustness against the corrupted local model updates



Blanchard, Peva, et al. "**Machine learning with adversaries: Byzantine tolerant gradient descent**." In *NeurIPS*. 2017. Yin, Dong, et al. "**Byzantine-robust distributed learning: Towards optimal statistical rates**." In *ICML*. 2018. Chen, Yudong, et al. "**Distributed statistical machine learning in adversarial settings: Byzantine gradient descent**." In *POMACS*. 2017.

Cross-Entropy vs. Mean Squared Error

Cross-Entropy (CE) vs. Mean Squared Error (MSE)

- $\circ~$ The gradients of bias and variance are estimates
- > Using CE loss:

$$\nabla_x B_{CE}(x) = \frac{1}{K} \sum_{k=1}^K \nabla_x L(f_{\mathcal{D}_k}(x; w_k), t)$$
$$\nabla_x V_{CE}(x) = -\frac{1}{K} \sum_{k=1}^K \sum_{j=1}^C (\log y_m^{(j)} + 1) \cdot \nabla_x f_{\mathcal{D}_k}^{(j)}(x; w_k)$$

$$\begin{aligned} \nabla_{x}B_{MSE}(x) &= \left(\frac{1}{K}\sum_{k=1}^{K}f_{\mathcal{D}_{k}}(x;w_{k}) - t\right) \cdot \left(\frac{1}{K}\sum_{k=1}^{K}\nabla_{x}f_{\mathcal{D}_{k}}(x;w_{k})\right) \\ \nabla_{x}V_{MSE}(x) &= \frac{1}{K-1}\sum_{k=1}^{K}\left(f_{\mathcal{D}_{k}}(x;w_{k}) - \frac{1}{K}\sum_{k=1}^{K}f_{\mathcal{D}_{k}}(x;w_{k})\right) \cdot \\ &\left(\nabla_{x}f_{\mathcal{D}_{k}}(x;w_{k}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{x}f_{\mathcal{D}_{k}}(x;w_{k})\right) \end{aligned}$$

Loss	Clean		Fed_BVA		
		BiasOnly	VarianceOnly	BVA	 Classification accuracy
CE MSE	$0.588_{(38.13s)}$ 0.601_{(39.67s)}	$\begin{array}{ } 0.763_{(47.58s)} \\ 0.711_{(65.03s)} \end{array}$	$0.759_{(63.46s)} \\ 0.711_{(162.40s)}$	$0.776_{(63.67s)}$ - 0.712 _(179.60s)	Running time (seconds)

BV-FGSM vs. BV-PGD

Fast Gradient Sign Method (FGSM) vs. Projected Gradient Descent (PGD)
 o BV-FGSM:

$$\hat{x} \leftarrow x + \epsilon \cdot \operatorname{sign}\left(\nabla_x \left(B(x; w_1, w_2, \cdots, w_K) + V(x; w_1, w_2, \cdots, w_K)\right)\right)$$

 \circ BV-PGD:

$$\hat{x}^{l+1} \leftarrow \operatorname{Proj}_{\Omega(x)}\left(x^{l} + \epsilon \cdot \operatorname{sign}\left(\nabla_{\hat{x}^{l}}\left(B(\hat{x}^{l}; w_{1}, w_{2}, \cdots, w_{K}\right) + V(\hat{x}^{l}; w_{1}, w_{2}, \cdots, w_{K})\right)\right)\right)$$

Method		IID	non-IID			
	FGSM	PGD-10	PGD-20	FGSM	PGD-10	PGD-20
FedAvg	0.588	0.620	0.205	0.147	0.525	0.089
Fed_BVA _(BV-FGSM)	0.776	0.793	0.570	0.670	0.695	0.472
Fed_BVA _(BV-PGD)	0.757	0.840	0.632	0.659	0.784	0.575