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Conclusion

q Problem: A novel dynamic open-set domain adaptation problem 
is studied where novel unknown classes might appear over time. 

q Analysis: We derive the generalization error bounds based on the 
proposed 𝒪𝒮-divergence.

q Algorithm: A novel PU-learning based algorithm OuterAdapter is 
proposed to minimize the error upper bound.

q Evaluation: Extensive experiments confirm the effectiveness and 
efficiency of the OuterAdapter algorithm.

Problem Definition

q Dynamic open-set domain adaptation

q Challenges:

Background

q Unsupervised domain adaptation

q Limitations in some real-world scenarios

Theoretical Analysis

q Distribution shift under open-set targets

q PU-learning under open-set targets

q Error upper bound on 𝝐𝒕𝑵"𝟏 𝒉

Proposed Algorithm: OuterAdapter

q Objective function

Evaluation

q Effectiveness: 

q Hyper-parameter sensitivity and computational efficiency:

Source Target

Adapt

sedan

truck

Source

Target

Source

Target

Adapt

o Open-set scenario: “unknown” category in the target domain

o Dynamic adaptation scenario: time-evolving target domain
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o Given: (1) A static source domain (fully labeled); and (2) A 
time-evolving target domain (unlabeled) with novel unseen classes

o Goal: (1) Classify the data of known classes correctly; (2) Identify 
the data of unseen classes as “unknown”

o Evolving distribution: The target distribution is evolving

o Varying class proportions: The ratio of known target 
examples changes
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positive-unlabeled open-set risk.
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o Existing ℋ-divergence ⇒ (b)(c)

o Proposed open-set discrepancy ⇒ (a)

Issue of ℋ-divergence

Misalignment
Indistinguishable 
“unknown” data

o Positive: source examples (𝐶 shared classes)
o Unlabeled: target examples (𝐶 shared classes or “unknown” class)
o Specially, if there is no distribution shift,

𝜖& ℎ = 1 − 𝜋)*+& ⋅ 𝜖9 ℎ + 𝔼,~ℙ*( 𝐿 ℎ 𝑥 , 𝑦 = 𝐶 + 1 − 1 − 𝜋)*+& 𝔼,~ℚ*( 𝐿 ℎ 𝑥 , 𝑦 = 𝐶 + 1

Positive-unlabeled open-set risk𝝅𝑪*𝟏𝒕 = ℙ𝒕 𝒚 = 𝑪 + 𝟏

o Classification error on historical task 
- Learn class membership on shared classes 

o Open-set distribution discrepancy 𝑑𝒪𝒮 ⋅,⋅
- Measure distribution shift

o PU-learning based open-set risk ∆45
- Identify the “unknown” class in the target domain

o PU loss: Discriminative feature learning under open-set targets

o 𝒪𝒮-divergence: Domain-invariant feature learning
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o OS: Average classification accuracy over all the classes
o OS*: Average classification accuracy over all the known classes
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