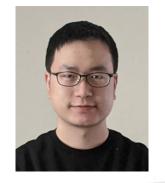


AIFARMS Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability

Domain Adaptation with Dynamic Open-Set Targets



Jun Wu UIUC junwu3@illinois.edu

Jingrui He UIUC jingrui@illinois.edu

Background

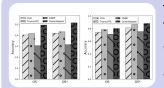
- Standard domain adaptation
- Limitations in real scenarios

Problem Definition

- Dynamic open-set domain adaptation
- Unique challenges

Proposed Model

- Theoretical analysis
- Algorithm: PU learning based adaptation



Experiments

- Effectiveness
- Efficiency

Conclusion

Unsupervised Domain Adaptation (UDA)

□ Knowledge transfer

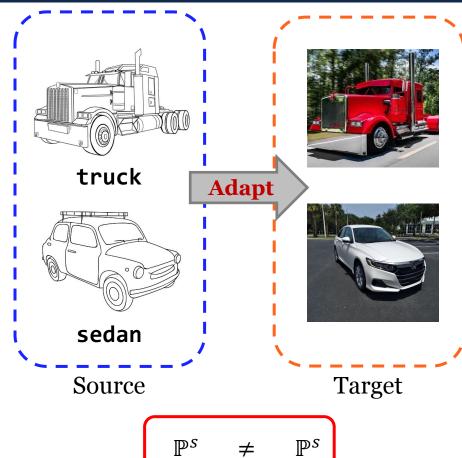
- Source domain: labeled samples
- Target domain: unlabeled samples
- Goal: learn the predictive function on target domain

Assumptions:

- **Closedness**: share the same group of categories
- **Relatedness**: share similar data distribution

□ Distribution shift induced by

- o Background
- o Style
- o Quality
- o ...



Unsupervised Domain Adaptation (UDA)

□ Knowledge transfer

- Source domain: labeled samples
- Target domain: unlabeled samples
- Goal: learn the predictive function on target domain

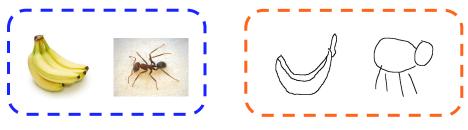
Assumptions:

- **Closedness**: share the same group of categories
- **Relatedness**: share similar data distribution

□ Distribution shift induced by

- Background
- o Style
- Quality
- 0 ...

Background shift (Office-31)



Style shift (DomainNet)

Image quality shift (ImageNet-C)

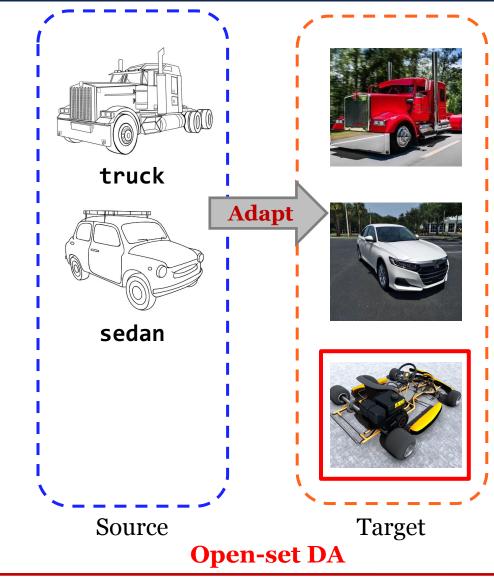
- Kate Saenko, et al. "Adapting visual category models to new domains." ECCV, 2010.
- Xingchao Peng, et al. "Moment matching for multi-source domain adaptation." ICCV, 2019.
- Dan Hendrycks, et al. "Benchmarking Neural Network Robustness to Common Corruptions and Perturbations." ICLR, 2019.

Limitations: Open-Set Scenario

□ Open-set domain adaptation

٠

- $\circ~$ Source and target have different groups of categories
- $\circ \ \mathcal{Y}_s \subset \mathcal{Y}_t$



Judy Hoffman, et al. "Continuous manifold based adaptation for evolving visual domains." CVPR, 2014.

• Pau Panareda Busto, et al. "Open set domain adaptation." ICCV, 2017.

Limitations: Dynamic Adaptation Scenario

□ Open-set domain adaptation

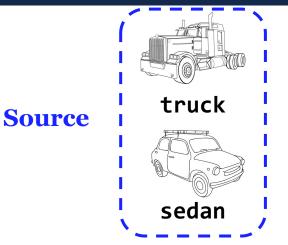
- Source and target have different groups of categories
- $\circ \ \mathcal{Y}_s \subset \mathcal{Y}_t$

□ Time-evolving target domain

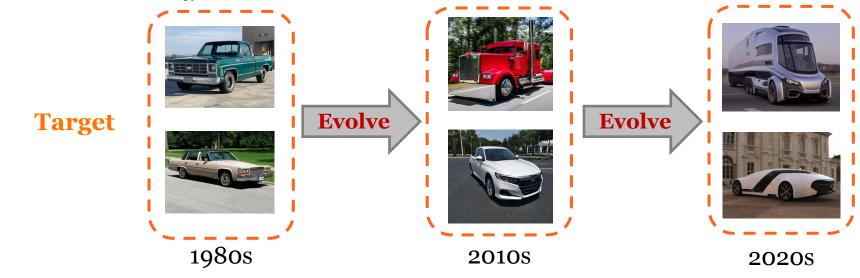
٠

 The relatedness between source and target domains is changing over time

$$\circ d(\mathcal{D}_{s}, \mathcal{D}_{t_{1}}) \leq d(\mathcal{D}_{s}, \mathcal{D}_{t_{2}}) \leq \cdots \leq d(\mathcal{D}_{s}, \mathcal{D}_{t_{N}})$$



Dynamic DA



Judy Hoffman, et al. "Continuous manifold based adaptation for evolving visual domains." CVPR, 2014.

• Pau Panareda Busto, et al. "Open set domain adaptation." ICCV, 2017.

Background

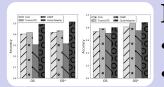
- Standard domain adaptation
- Limitations in real scenarios

Problem Definition

- Dynamic open-set domain adaptation
- Unique challenges

Proposed Model

- Theoretical analysis
- Algorithm: PU learning based adaptation



Experiments

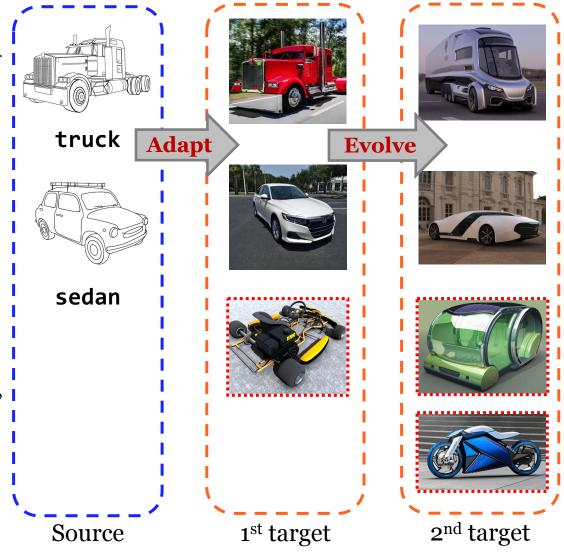
- Effectiveness
- Efficiency

Conclusion

Problem Definition

□ Dynamic open-set domain adaptation

- \circ Given:
 - ➤ A static source domain (fully labeled)
 - $\mathcal{Y}_s = \{1, 2, \cdots, C\}$
 - A time-evolving target domain (unlabeled) with novel unseen classes
 - $\mathcal{Y}_s \subset \mathcal{Y}_{t_j} = \{1, 2, \cdots, C, \text{"unknown"} \}$
- Output:
 - Classify the data of known classes correctly
 - Identify the data of unseen classes as "unknown"



- 8 -

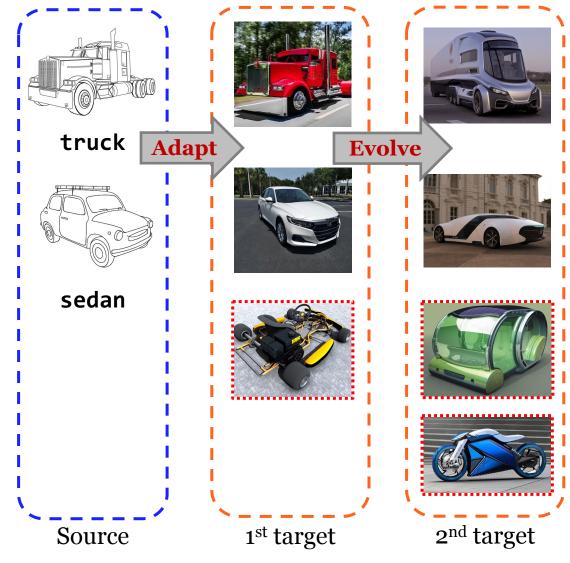
Unique Challenges

□ C1: Evolving distribution

• The target distribution is continuously evolving

C2: Varying class proportions

 $\circ~$ The ratio of known target examples changes



Background

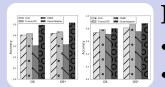
- Standard domain adaptation
- Limitations in real scenarios

Problem Definition

- Dynamic open-set domain adaptation
- Unique challenges

Proposed Model

- Theoretical analysis
- Algorithm: PU learning based adaptation



Experiments

- Effectiveness
- Efficiency

Conclusion

Distribution Shift under Open-Set Targets

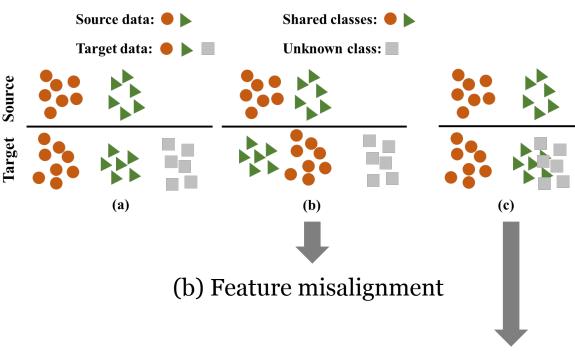
Distribution discrepancy

Existing discrepancy measure \Rightarrow (b)(c) Ο

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{Q}_X^s, \mathbb{P}_X^t) = \sup_{\mathbf{h}, \mathbf{h}' \in \mathcal{H}} \left| \Pr_{\mathbb{Q}_X^s}[B] - \Pr_{\mathbb{P}_X^t}[B] \right|$$

Open-set discrepancy measure \Rightarrow **(a)** Ο

$$d_{\mathcal{OS}}(\mathbb{Q}^{s},\mathbb{P}^{t}) = d_{\mathcal{C}}(\mathbb{Q}^{s},\mathbb{P}^{t}_{\leq C}) - \rho \cdot \frac{d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{Q}^{s}_{X},\mathbb{P}^{t}_{X|Y=C+1})}{d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{Q}^{s}_{X},\mathbb{P}^{t}_{X|Y=C+1})}$$



(c) Indistinguishable "unknown" data

Limitations of $d_{\mathcal{H} \wedge \mathcal{H}}(\mathbb{Q}_X^s, \mathbb{P}_X^t)$

Shai Ben-David, et al. "A theory of learning from different domains." Machine learning, 2010.

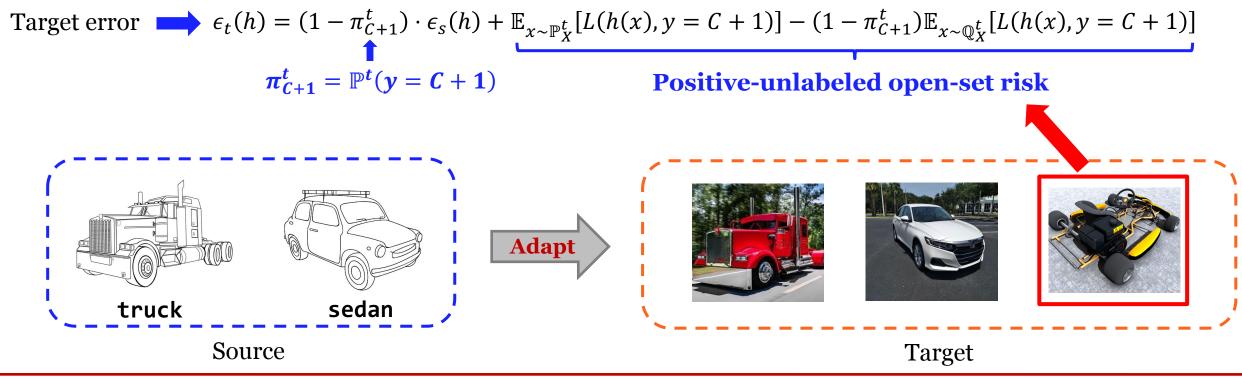
Jun Wu, et al. "Continuous Transfer Learning with Label-informed Distribution Alignment." arXiv preprint arXiv:2006.03230, 2020.

PU-Learning under Open-Set Targets

Open-set DA as positive-unlabeled (PU) learning

- **Positive**: source examples (*C* classes)
- **Unlabeled**: target examples (*C* classes + unknown classes)

• Observation: if there is no distribution shift,

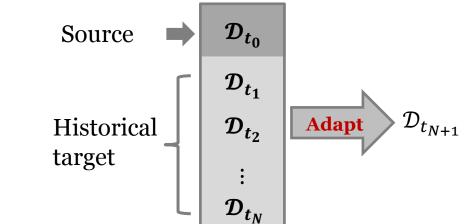


Mohammad Reza Loghmani, et al. "Positive-unlabeled learning for open set domain adaptation." Pattern Recognition Letters, 2020.

Theoretical Analysis

□ Error upper bound on $\epsilon_{t_{N+1}}(h)$

- $\circ~$ Classification error on historical task
 - Learn class membership on shared classes
- Open-set distribution discrepancy $d_{OS}(\cdot, \cdot)$
 - Measure distribution shift
- $\circ~$ PU-learning based open-set risk Δ_{PU}
 - Identify the "unknown" class in the target domain



Theorem 1: Assume that the loss function $L(\cdot, \cdot)$ is bounded, i.e., $|L(\cdot, \cdot)| \le M$. For any hypothesis $h \in \mathcal{H}$ and $\sum_{j=0}^{N} \alpha_j = 1$ where $\alpha_j \ge 0$ ($j = 0, 1, \dots, N$), the expected error $\epsilon_{t_{N+1}}(h)$ of the target task at the (N + 1)th time stamp is bounded as:

$$\epsilon_{t_{N+1}}(h) \leq \left(1 - \pi_{C+1}^{t_{N+1}}\right) \left(\sum_{j=0}^{N} \alpha \left[\mathbb{E}_{(x,y) \sim \mathbb{P}_{\leq C}^{t_j}}[L(h(x),y)]\right] + 4M \sum_{j=0}^{N} \alpha \left[d_{\mathcal{OS}}\left(\mathbb{P}_{\leq C}^{t_j}, \mathbb{P}^{t_{N+1}}\right)\right] + \Delta_{PU} + CONST$$

where $\Delta_{PU} = \mathbb{E}_{x \sim \mathbb{P}_X^{t_{N+1}}}[L(h(x), y = C + 1)] - \left(1 - \pi_{C+1}^{t_{N+1}}\right) \sum_{j=0}^{N} \alpha_j \mathbb{E}_{(x,y) \sim \mathbb{P}_{\leq C}^{t_j}}[L(h(x), y = C + 1)]$ is the positive-unlabeled open-set risk.

Proposed Algorithm: OuterAdapter

Annuel

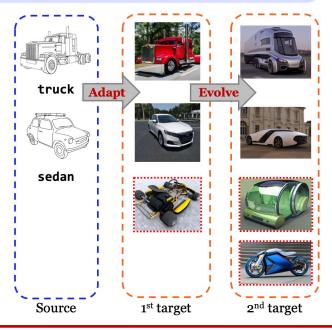
Objective function

• PU loss: Discriminative feature learning under open-set targets

$$\min_{\theta} \sum_{j=0}^{N} \frac{\left(1 - \pi_{C+1}^{t_{N+1}}\right) \alpha_{j}}{n_{t_{j}}} \sum_{i=1}^{n_{t_{j}}} \left(L\left(h\left(x_{t_{j}}^{i}\right), \hat{y}_{t_{j}}^{i}; \theta\right) - L\left(h\left(x_{t_{j}}^{i}\right), y = C + 1; \theta\right) \right) + \frac{1}{m_{t_{N+1}}} \sum_{i=1}^{m_{t_{N+1}}} L\left(h\left(x_{t_{N+1}}^{i}\right), y = C + 1; \theta\right)$$

$$+\beta\sum_{j=0}^{N}\alpha_{j}d_{\mathcal{OS}}\left(\mathbb{P}^{t_{j}}_{\leq C},\mathbb{P}^{t_{N+1}};\theta\right)$$

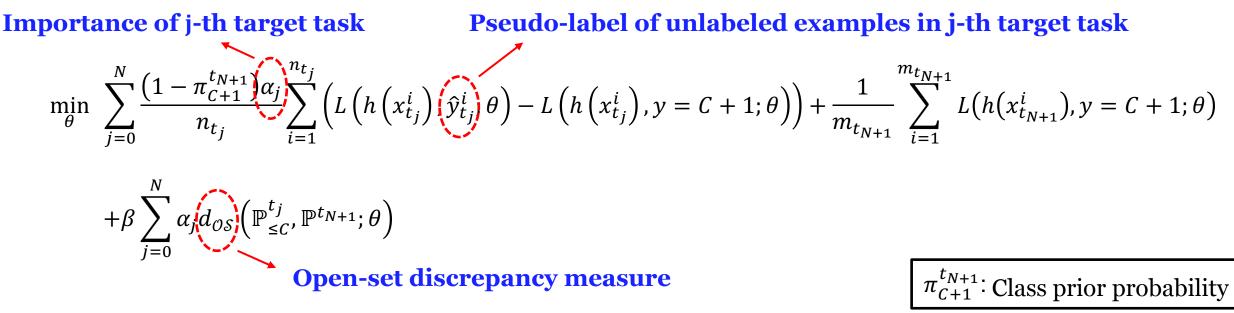
• OS-divergence: Domain-invariant feature learning



Proposed Algorithm: OuterAdapter

Objective function

• PU loss: Discriminative feature learning under open-set targets



• *OS*-divergence: Domain-invariant feature learning

- 15 -

- 16 -

Ο

Algorithm Details

□ Key components

- Estimation of pseudo-label $\hat{y}_{t_i}^i$ for historical target task
 - Incrementally update the model h:
 - ➢ Generate the pseudo-label $\hat{y} = h(x)$:

Estimation of
$$d_{\mathcal{OS}}\left(\mathbb{P}_{\leq C}^{t_j}, \mathbb{P}^{t_{N+1}}; \theta\right)$$

 $\succ d_{\mathcal{OS}}\left(\mathbb{P}_{\leq C}^{t_j}, \mathbb{P}^{t_{N+1}}\right) = d_{\mathcal{C}}\left(\mathbb{P}_{\leq C}^{t_j}, \mathbb{P}_{\leq C}^{t_{N+1}}\right) - \rho \cdot d_{\mathcal{H}\Delta\mathcal{H}}\left(\mathbb{P}_{X|\leq C}^{t_j}, \mathbb{P}_{X|Y=C+1}^{t_{N+1}}\right)$

Label-informed C-divergence

Domain-adversarial learning

OuterAdapter_{μ} :

 $\alpha_j \leftarrow \frac{\mu^{N-j}}{\sum_{k=0}^{N} \mu^{N-k}}$

 $\mathcal{D}_s \to \mathcal{D}_{t_1} \to \mathcal{D}_{t_2} \to \cdots \to \mathcal{D}_{t_N}$

 $\begin{array}{cccc} \downarrow & \downarrow & \downarrow \\ \hat{y}_{t_1}^i & \hat{y}_{t_2}^i & \hat{y}_{t_N}^i \end{array}$

- Estimation of α_j
 - Self-attention scheme

$$\succ \quad \alpha_j \leftarrow \exp\left(\text{LeakyReLU}\left(\sum_{c=1}^{C=1} a_c^T \cdot \sum_{i=1}^{n_{t_j}} x_{t_j}^i \mathbb{I}\left[\hat{y}_{t_j}^i = c\right]\right)\right)$$

- Yaroslav Ganin, et al. "Domain-adversarial training of neural networks." The Journal of Machine Learning Research, 2016.
- Jun Wu, et al. "Continuous Transfer Learning with Label-informed Distribution Alignment." arXiv preprint arXiv:2006.03230, 2020.

 $0 \le \mu \le 1$

Background

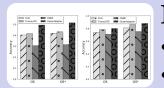
- Standard domain adaptation
- Limitations in real scenarios

Problem Definition

- Dynamic open-set domain adaptation
- Unique challenges

Proposed Model

- Theoretical analysis
- Algorithm: PU learning based adaptation



Experiments

- Effectiveness
- Efficiency

Conclusion

Experiments

D Experimental settings

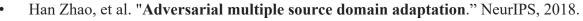
- Data sets:
 - ➤ Office-31
 - > Office-Home
 - ➢ Syn2Real-O

• Baselines:

- Static closed-set adaptation: SourceOnly, DANN
- Multi-source adaptation: MDAN, DARN
- Dynamic closed-set adaptation: CUA, TransLATE
- Static open-set adaptation: OSBP, DAMC
- Dynamic open-set adaptation: OSBP+CUA, DAMC+CUA

• Evaluation metric :

- **OS**: Average classification accuracy over all the classes
- OS*: Average classification accuracy over all the known classes
 - Kuniaki Saito, et al. "Open set domain adaptation by backpropagation." ECCV, 2018.



S

• Andreea Bobu, et al. "Adapting to continuously shifting domains." ICLR Workshop, 2018.

Data	# domains	# images	# categories
Office-31	3	4, 652	31
Office-Home	4	15, 500	65
Syn2Real-O	2	200, 000	12

Results

	Dynamic open-set domain adaptation on Office-31 (Amazon \rightarrow DSLR)												
	Method —	\mathcal{D}	b_{t_1}	Ĺ	D_{t_2}	Ĺ	D_{t_3}	Ĺ	D_{t_4}	Ĺ	\mathbf{D}_{t_5}	\mathcal{D}	t_6
		OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*
Static closed-set	SourceOnly DANN		$\begin{array}{c} 0.958_{\pm 0.009} \\ 0.980_{\pm 0.007} \end{array}$		$\begin{array}{c} 0.905_{\pm 0.008} \\ 0.903_{\pm 0.003} \end{array}$		$\begin{array}{c} 0.759_{\pm 0.003} \\ 0.853_{\pm 0.010} \end{array}$	$\begin{array}{c} 0.733_{\pm 0.027} \\ 0.804_{\pm 0.020} \end{array}$		$\begin{array}{c} 0.649_{\pm 0.009} \\ 0.767_{\pm 0.019} \end{array}$		$\begin{array}{c} 0.542_{\pm 0.008} \\ 0.742_{\pm 0.014} \end{array}$	
Multi-source	MDAN DARN		$\begin{array}{c} 0.990_{\pm 0.005} \\ 0.972_{\pm 0.008} \end{array}$		$\begin{array}{c} 0.953_{\pm 0.019} \\ 0.914_{\pm 0.025} \end{array}$			$\begin{array}{c} 0.834_{\pm 0.011} \\ 0.815_{\pm 0.025} \end{array}$		$\begin{array}{c} 0.797_{\pm 0.016} \\ 0.797_{\pm 0.022} \end{array}$		$\begin{array}{c} 0.792_{\pm 0.014} \\ 0.803_{\pm 0.024} \end{array}$	
Dynamic closed-set	CUA TransLATE		$\begin{array}{c} 0.967_{\pm 0.003} \\ 0.987_{\pm 0.007} \end{array}$					$\begin{array}{c} 0.834_{\pm 0.007} \\ 0.862_{\pm 0.015} \end{array}$		$\begin{array}{c} 0.836_{\pm 0.006} \\ 0.856_{\pm 0.026} \end{array}$		$\begin{array}{c} 0.834_{\pm 0.010} \\ 0.846_{\pm 0.021} \end{array}$	
Static open-set	OSBP DAMC		0.993 _{±0.001} 0.980 _{±0.000}		$\begin{array}{c} 0.929_{\pm 0.010} \\ 0.962_{\pm 0.010} \end{array}$		$\begin{array}{c} 0.868_{\pm 0.034} \\ 0.901_{\pm 0.007} \end{array}$	$\begin{array}{c} 0.788_{\pm 0.003} \\ 0.792_{\pm 0.025} \end{array}$		$\begin{array}{c} 0.813_{\pm 0.007} \\ 0.770_{\pm 0.028} \end{array}$		$\begin{array}{c} 0.777_{\pm 0.033} \\ 0.749_{\pm 0.017} \end{array}$	
Dynamic open-set	OSBP+CUA DAMC+CUA							$\begin{array}{c} 0.852_{\pm 0.003} \\ 0.839_{\pm 0.010} \end{array}$		$\begin{array}{c} 0.855_{\pm 0.001} \\ 0.840_{\pm 0.031} \end{array}$		$\begin{array}{c} 0.846_{\pm 0.003} \\ 0.823_{\pm 0.016} \end{array}$	
	OuterAdapter $_{\mu}$ OuterAdapter												$\begin{array}{c} 0.951 _{\pm 0.008} \\ \textbf{0.962} _{\pm \textbf{0.010}} \end{array}$

DOID

Observations:

• Open-set approaches can better classify the data within the shared classes

□ OuterAdapter outperforms the baselines by a large margin

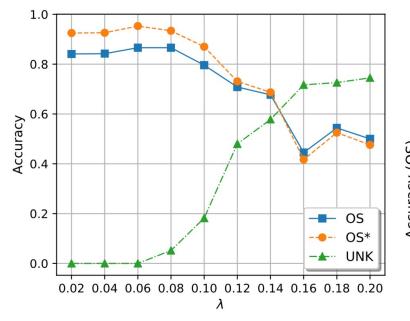
Model Analysis

(a) Ablation study

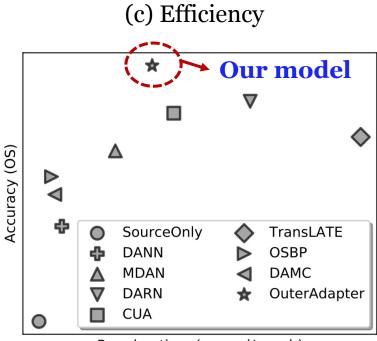
Method	OS	OS*
OuterAdapter w/o PU-Learning	0.545	0.600
OuterAdapter w/o historical data	0.730	0.803
OuterAdapter w/o $O\mathcal{S}$ -divergence	0.782	0.860
OuterAdapter w ${\cal H}$ -divergence	0.829	0.912
OuterAdapter w \mathcal{C} -divergence	0.839	0.922
OuterAdapter	0.848	0.933

Both *OS*-divergence and historical target data improve knowledge transfer in the dynamic setting

(b) Hyper-parameter sensitivity



 $\lambda = 1 - \pi_{C+1}^{t_{N+1}}$ affects the tradeoff of correctly classifying the data within shared classes and identifying "unknown" data



Running time (second/epoch)

OuterAdapter achieves better model performance with **less computational complexity**

Background

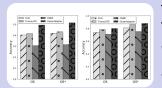
- Standard domain adaptation
- Limitations in real scenarios

Problem Definition

- Dynamic open-set domain adaptation
- Unique challenges

Proposed Model

- Theoretical analysis
- Algorithm: PU learning based adaptation



Experiments

- Effectiveness
- Efficiency

Conclusion

Conclusion

Problem: Dynamic open-set domain adaptation
 • Evolving distribution and varying class proportion

Analysis: Generalization error bound
 o Error upper bound based on PU learning

□ **Algorithm**: PU learning based adaptation

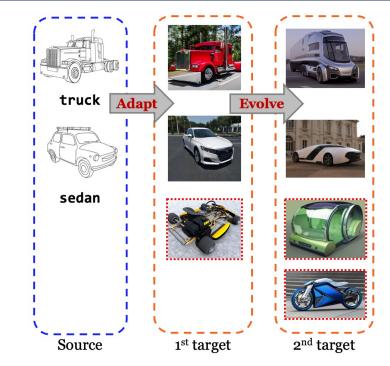
• *OS*-divergence

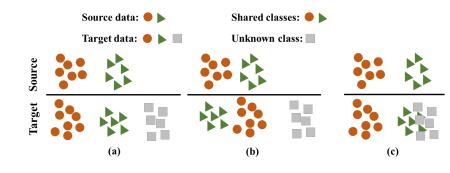
- 22 -

• Open-set discriminative feature learning

Evaluation: Effectiveness and efficiency

• Trade-off of correctly classifying the data within shared classes and identifying "unknown" data





THANK YOU: & QUESTIONS?

Contact: Jun Wu (Email: junwu3@illinois.edu)

- 23 -