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Conclusion
v Problem: Formulation of an indirect invisible data 

poisoning attack problem on unsupervised domain 
adaptation algorithms.

v Framework: Bi-level optimization objective function 
(I2Attack) of maximizing the label-informed domain 
discrepancy under mild constraints.

v Experiments: Verification of I2Attack on degrading the 
overall prediction performance of the existing domain 
adaptation approaches.Problem Definition

q Data Poisoning Attacks:
v Input: Base algorithm, labeled source data, unlabeled 

target data
v Goal: Degrade the overall classification performance 

on target domain

q Constraints:
v Imperceptive: Be indistinguishable from real inputs 
v Indirect: Manipulate only source data
v Invisible: Not negatively affect source classification 

error and marginal domain discrepancy

Background

q Unsupervised Domain Adaptation:

q Generalization Error Bound:
v Source error
v Marginal domain discrepancy
v Ideal hypothesis error

q A Unified View of Objective Function:

Optional discrepancy measures:
v ℋ-divergence
v Maximum Mean Discrepancy (MMD)
v Wasserstein distance

Proposed Framework

q Indirect Invisible Attack (I2Attack)

v Attacking function: Maximize the joint data distribution 
difference between poisoned and raw source domains 

v Overall objective function:

q Instantiated Algorithms

v I2Attack-CORAL

v I2Attack-DAN

v Discussion

Results

q Performance of Data Poisoning Attacks

q Performance Comparison

q Transferable Attacks

q Universal Attacks

q Model Analysis

v Impact of perturbation magnitude 𝜖

v Computational efficiency

v Visualization 
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Marginal discrepancyEmpirical source error

Label-informed domain discrepancy

Perturbation constraint

Constraint of optimal model parameters
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Label-informed MMD

Marginal MMDEmpirical source error
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Label-informed correlation

Marginal correlation

o Two-stage: map into common space; learn a classifier
o Discrepancy measure: Second-order statistics (covariance) 

o Unified: domain-invariant representation in latent feature space
o Discrepancy measure: Maximum Mean Discrepancy (MMD)

o Optimization: First-order model-agnostic meta-learning
o Time Complexity: Linear to the number of source examples
o Flexibility: It allows to attack any marginal discrepancy based 

domain adaptation algorithms.

o E.g., generated by I2Attack-DAN, then applied to DANN 

o E.g., generated from B → I, then applied to other target domains 

(‘−’: almost unchanged; ‘↑’: improved; ‘↓’: degraded).
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