

Background

Unsupervised Domain Adaptation: Knowledge transfe Class 1: Class 2: 🔺 Class 3: 🔴 Unlabeled:

Generalization Error Bound:

- Source error
- Marginal domain discrepancy
- Ideal hypothesis error

 $\epsilon_t(h) \leq \epsilon_s(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{Q}_X, \mathbb{P}_X) + \lambda^*$

□ A Unified View of Objective Function:

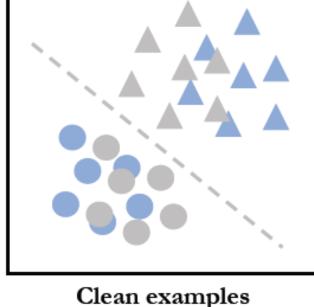
 $\min_{\theta,\phi} \frac{1}{n_s} \sum_{i=1}^{n_s} L(h_{\phi}(f_{\theta}(x_i^s)), y_i^s) + d(\mathbb{Q}_X, \mathbb{P}_X; \theta)$

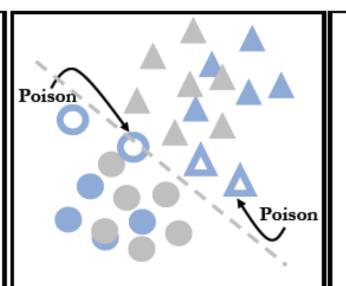
Marginal discrepancy

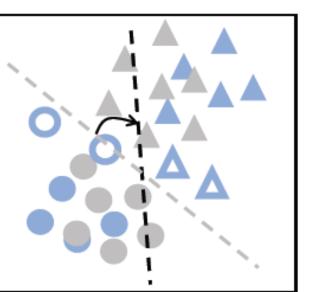
Empirical source error

Optional discrepancy measures:

- ✤ \mathcal{H} -divergence
- Maximum Mean Discrepancy (MMD)
- Wasserstein distance


Problem Definition


Data Poisoning Attacks:


- Input: Base algorithm, labeled source data, unlabeled target data
- ✤ Goal: Degrade the overall classification performance on target domain

Constraints:

- Imperceptive: Be indistinguishable from real inputs
- Indirect: Manipulate only source data
- Invisible: Not negatively affect source classification error and marginal domain discrepancy

Source: 🔵 🔺

(Feature perturbation) Poisoned Source: 🔿 🛆

Target: 🔵 🔺

Clean + Poisoned examples Poisoned decision boundary

Proposed Framework

Indirect Invisible Attack (I2Attack)

Attacking function: Maximize the joint data distribution

difference between poisoned and raw source domains

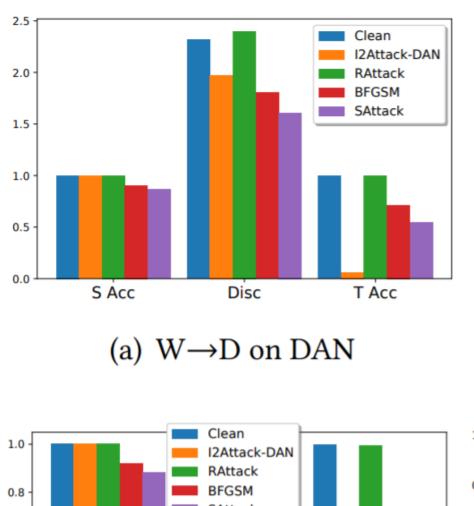
Jun Wu, Jingrui He **University of Illinois at Urbana-Champaign**

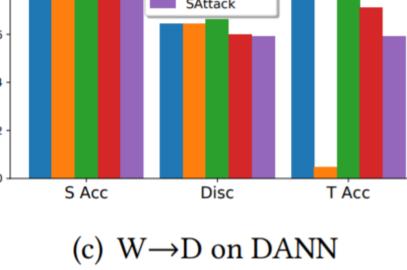
junwu3@illinois.edu, jingrui@illinois.edu

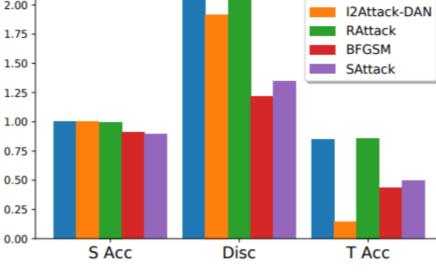
$O(\hat{X}_{s}, X_{s}, Y_{s}) = d(\hat{X}_{s} \circ Y_{s}, X_{s} \circ Y_{s})$ Overall objective function: Label-informed domain discrepancy $\max_{\|\hat{X}_{s}-X_{s}\|_{\infty}\leq\epsilon}d(\hat{X}_{s}\circ Y_{s},X_{s}\circ Y_{s};\theta^{*},\phi^{*})$ **Perturbation constraint** s.t. $\theta^*, \phi^* = \arg\min_{\theta, \phi} L\left(h_{\phi}\left(f_{\theta}(\hat{X}_s)\right), Y_s\right) + d\left(f_{\theta}(\hat{X}_s), f_{\theta}(X_t)\right)$ **Constraint of optimal model parameters** Instantiated Algorithms ✤ I2Attack-CORAL • Two-stage: map into common space; learn a classifier • Discrepancy measure: Second-order statistics (covariance) $\max_{\|\hat{X}_{s}-X_{s}\|_{\infty}\leq\epsilon}\left\|A_{*}^{T}\hat{C}_{s}^{XY}A_{*}-C_{s}^{XY}\right\|_{F}^{2}$ Label-informed correlation s.t. $A_* = \arg \min_{A} \|A^T \hat{C}_s^X A - C_t^X\|_F^2$ **Marginal correlation** I2Attack-DAN Unified: domain-invariant representation in latent feature space • Discrepancy measure: Maximum Mean Discrepancy (MMD) Label-informed MMD $\max_{\|\hat{X}_{s}-X_{s}\|_{\infty}\leq\epsilon}d_{k}(f_{\theta^{*}}(\hat{X}_{s})\circ Y_{s},f_{\theta}(X_{s})\circ Y_{s})$ s.t. $\theta^*, \phi^* = \arg\min_{\theta, \phi} L\left(h_{\phi}\left(f_{\theta}(\hat{X}_s)\right), Y_s\right) + d_k\left(f_{\theta}(\hat{X}_s), f_{\theta}(X_t)\right)$ **Empirical source error** Marginal MMD Discussion o **Optimization:** First-order model-agnostic meta-learning • *Time Complexity*: Linear to the number of source examples • *Flexibility*: It allows to attack any marginal discrepancy based domain adaptation algorithms.

=

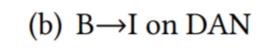
Indirect Invisible Poisoning Attacks on Domain Adaptation

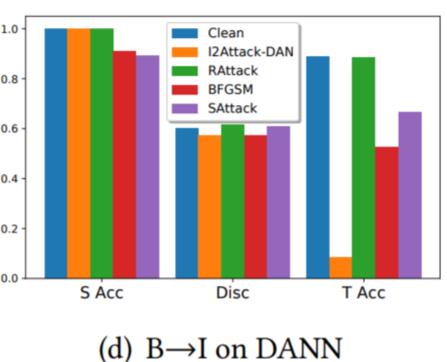

Results


Performance of Data Poisoning Attacks


		Digits		Office-31			Office-Home		
		M→U	S→M	W→A	W→D	D→A	Ar→Cl	Pr→Rw	
DAN (base model)	S Acc	0.997	0.916	1.000	1.000	1.000	1.000	0.999	
	Disc	0.078	0.085	2.459	2.315	2.156	1.835	1.931	
	T Acc	0.861	0.724	0.654	0.994	0.656	0.498	0.750	
2Attack-DAN	S Acc	1.000-	1.000	0.996-	0.998-	0.994-	0.998-	0.999–	
	Disc	0.079-	0.079	2.304	1.975	2.152-	1.579	1.684	
	T Acc	0.664	0.495	0.065	0.062	0.046	0.293	0.660	
DANN (base model)	S Acc	0.997	0.911	1.000	1.000	1.000	1.000	0.999	
	Disc	0.567	0.520	0.646	0.642	0.609	0.506	0.500	
	T Acc	0.896	0.795	0.679	0.998	0.668	0.513	0.756	
2Attack-DANN	S Acc	1.000-	0.948↑	0.996-	1.000-	0.998-	0.994	0.999-	
	Disc	0.569-	0.516-	0.588	0.643-	0.550	0.501-	0.500-	
	T Acc	0.801	0.510	0.078	0.046	0.105	0.378	0.673	
MDD (base model)	S Acc	0.997	0.901	1.000	1.000	1.000	1.000	0.999	
	Disc	1.373	1.496	1.374	1.493	1.028	1.735	1.697	
	T Acc	0.908	0.753	0.693	0.998	0.679	0.505	0.781	
2Attack-MDD	S Acc	1.000-	0.944	0.996-	0.991-	0.996-	0.993-	0.991-	
	Disc	1.317	1.453	1.056	1.473	0.938	1.603	1.645	
	T Acc	0.789	0.585	0.050	0.024	0.137	0.382	0.679	

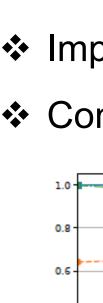
('-': almost unchanged; ' \uparrow ': improved; ' \downarrow ': degraded).

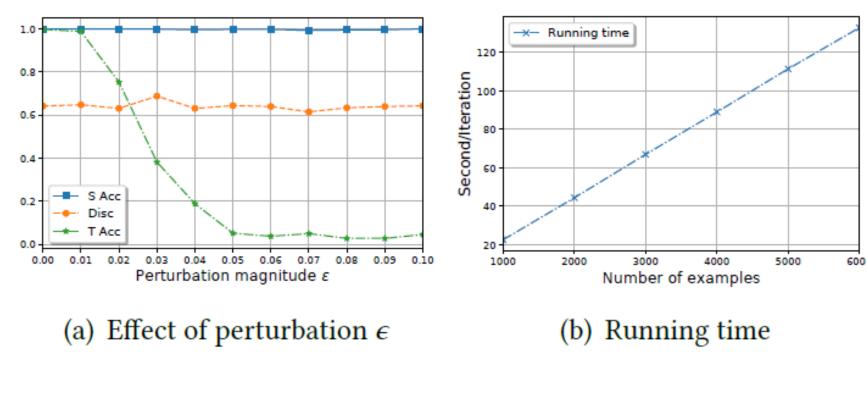

Performance Comparison



Clean

□ Transferable Attacks


E.g., generated by I2Attack-DAN, then applied to DANN


	DAN			DANN			
	S Acc	Disc	T Acc	S Acc	Disc	T Acc	
Clean	1.000	2.315	0.994	1.000	0.642	0.998	
I2Attack-DAN	0.998	1.975	0.062	0.996	0.622	0.020	
I2Attack-DANN	0.999	2.031	0.068	1.000	0.643	0.046	
I2Attack-MDD	0.991	2.156	0.092	0.994	0.649	0.032	

Universal Attacks

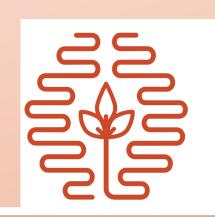
 \circ E.g., generated from B \rightarrow I, then applied to other target domains

	Clean			I2Attack			
	S Acc	Disc	T Acc	S Acc	Disc	T Acc	_
B→I	1.000	2.137	0.848	1.000	1.919	0.113	-
$B \rightarrow C$	1.000	2.215	0.907	1.000	1.921	0.120	
В→Р	1.000	1.927	0.717	1.000	1.755	0.098	

AIFARMS

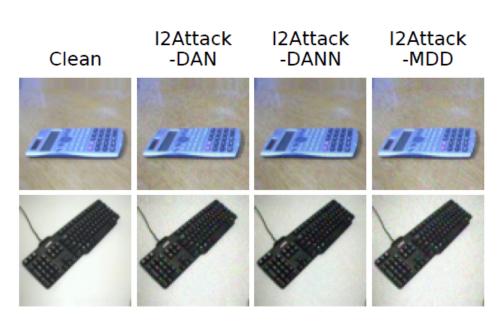
Artificial Intelligence for Future Agricultural

Resilience, Management, and Sustainability



Acknowledgments

This work is supported by National Science Foundation under Award No. IIS-1947203 and IIS-2002540, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agriculture. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government.



Model Analysis

• Impact of perturbation magnitude ϵ

Computational efficiency

Visualization

Conclusion

Problem: Formulation of an indirect invisible data poisoning attack problem on unsupervised domain adaptation algorithms.

Framework: Bi-level optimization objective function (I2Attack) of maximizing the label-informed domain discrepancy under mild constraints.

Experiments: Verification of I2Attack on degrading the overall prediction performance of the existing domain adaptation approaches.

J[**ILINOIS**