Target Problems:

» Node-level representation learning

d Application: In a transaction network, the fraudulent users can be detected
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Proposed Framework:

» Multi-task graph convolution:

Experimental Results:

J Node classification:

DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification
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> Graph-level o | ] d Intuition: nodes with the identical degree value would share the SRSACE Facebook | Wiki-Vote | BlogCatalog |  Flickr Brazil Europe USA
_ ] ) 5raphSAGE [5 0.389 +0.019 | 0.245 £0.000 | 0.828 £0.007 | 0.641 +0.006 | 0.404 £0.035 | 0.272 +0.022 | 0.316 £0.022
rapn-ieve representatlon earning Same gi‘aph convolution function. GCN [9] 0575 20.013 | 0.329 £0.029 | 0.720 +0.013 | 0.546 £0.019 | 0.432 £0.064 | 0.371 £0.046 | 0.432 £0.022
d Application: In chemoinformatics, the toxic molecules (represented as graphs) O Feature update' GCN_cheby [9] 0.646 £0.012 | 0.495£0.016 | 0.686 £0.037 | 0.479 £0.023 | 0.516 £0.070 | 0.460 £0.038 | 0.526 +0.045
can be classified using the graph (molecule) representation. ) Union [12] 0.600 £0.000 | 0.463 £0.000 | 0.730 £0.000 | 0.566 +0.000 | 0.466 +0.006 | 0.418 £0.002 | 0.582 +0.000
K K1 1 Kik—1\ Vo Intersection [12] 0.598 +0.000 | 0.462 £0.000 | 0.725 £0.000 | 0.557 +0.000 | 0.459 £0.003 | 0.443 +0.002 | 0.573 £0.000
h — fg(h ) fdeg(v) ({h |u € N(U)}) — O'(WO h ) °'fdeg(v)(hN(v) GAT [18] 0.570 +0.036 | 0.594 £0.070 | 0.663 £0.000 | 0.359 +0.000 | 0.382 £0.126 | 0.424 +0.073 | 0.585 £0.021
DEMO-Net(hash) 0.887 £0.020 | 0.997 £0.000 | 0.849 +0.006 | 0.678 +0.010 | 0.614 +0.069 | 0.479 +0.064 | 0.659 +0.020
) DEMO-Net(weight) | 0.919 +0.003 | 0.998 +0.000 | 0.849 +0.000 | 0.656 +0.000 | 0.543 £0.034 | 0.459 £0.025 | 0.647 +0.021
" - Feature hashing: Degree-specific function  [Copmwonemn e = rox Higher
. IS
hyon) =0 W*(¢,(hE1) + hE~1)) y |
Graph-level representation fdeg(v) ( N(U) ¢g u ¢deg(v) ( u ) g” g” better
Single graph Node-level representation T Multi-task 4 UEN(V) Sl ST
Graph set . ] ] | I _
convolution | Weight sharing: ,
i
Ps ° fd ( ) ( h O— (W k W (ic )hk -1 I-"I’echentag;e{of} tlraaLinir:g é;amples: I;'echentag;e :J;}lﬁg;ng é;;amples o .
- (S % u a) Brazi
Motivation: zw (M) ZN() g T Wdeg)
ueN (v . )
> G h lution i h | net ks has th d Graph classification: 4 EfflClency
ra convoiution in gra neural NetworkKs nas tne ] g
_ p _ 9 ] P » DEMO-Net framework: MUTAG | PTC | PROTEINS | ENZYMES | (oo Nt |
similar steps as Weisfeiler-Lehman graph kernel. § ¢+ DeepWL [23] 0733 | 0537 | 0.680 0.210 || e ot et
L : ! DCNN [1] 0.670 | 0.572 0.579 0.160 | [Er
| | PATCHY-SAN [13] 0.795 | 0.568 0.714 0.170 8"
/ Y | : DIFFPOOL [24] 0.663 | 0.251 0.733 0.184 ~ 1:
Given labeled gra hs(;and(; ls_titeration' o . I 0 I DEJ’HO—NEI’_IH(]’IHS}]) 0.760 0.586 0.617 0.236 § |
grap Result of steps 1 and 2: multiset-label determination and sorting | 0 l v 06
| ‘ [ (3) DEMO-Net_m(weight) 0.798 0.550 0.616 0.251 L
@)\QE @@ ! 0 : Node-level DEMO-Net(hash) 0.771 0.563 0.705 0.251 0'2 i
{EEEB;@ @4@ ‘ : 8 | representation learning DEMO-Net(weight) 0.814 0.572 0.708 0.272 'D
| l 1K 2K 3K 4K 5K B TH 8K 9K 10K
0 0 b CA> 4> G CQa> 235 G’ (A) Feature initialization (B) Neighborhood detection : (d) Node representation : —

Ist iteration
Result of step 4: relabeling

d Gw

Graph convolution operation

Ist iteration
Result of step 3: label compression

Conclusion:

(1 Association of three key properties for graph convolution with Weisfeiler-
Lehman isomorphism test.
A novel degree-specific graph neural network model (DEMO-Net) for

encoding the subtree structures from graphs.
Extensive results demonstrating the proposed DEMO-Net method.
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Theoretical Analysis:

» Three properties on graph convolution:
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1 (Existence Theorem) There exist the functions f; and {fdeg|deg S degree(G)}
so that for any pair of subtrees, the composite function f; o f;., could map them
to different feature vectors if they are not structurally identical.
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ﬁ Seed-oriented:

Structurally different: different seed’s attribute

ﬂ Degree-aware:

Structurally different: different seed’s degree value

J (Graph Kernel Space) The learned graph-level representation lies in a
Reproducing Kernel Hilbert Space (RKHS) induced by a degree-specific Weisfeiler-

é Order-free:

Structurally identical: free from neighbors’ order

Lehman graph kernel.
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