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Proposed Framework: Experimental Results:

Motivation:

 Node-level representation learning

Single graph Node-level representation

 Graph-level representation learning

Graph-level representation

Graph set

Weisfeiler-Lehman graph kernel Graph convolution operation

 Graph convolution in graph neural networks has the 
similar steps as Weisfeiler-Lehman graph kernel.

(A) Feature initialization (B) Neighborhood detection

(C) Neighbors sorting (D) Feature aggregation

 Three properties on graph convolution:
Structurally different: different seed’s attribute

Structurally different: different seed’s degree value

Structurally identical: free from neighbors’ order
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Seed-oriented:

Degree-aware:

Order-free:

 Multi-task graph convolution:

 DEMO-Net framework:

Node-level 
representation learning

Graph-level 
representation learning

 Node classification:

 Graph classification:  Efficiency:

Theoretical Analysis:
 (Existence Theorem) There exist the functions 𝒇𝒇𝒔𝒔 and 𝒇𝒇𝒅𝒅𝒅𝒅𝒅𝒅|𝒅𝒅𝒅𝒅𝒅𝒅 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑮𝑮)

so that for any pair of subtrees, the composite function 𝑓𝑓𝑠𝑠 ∘ 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 could map them 
to different feature vectors if they are not structurally identical.

 (Graph Kernel Space) The learned graph-level representation lies in a 
Reproducing Kernel Hilbert Space (RKHS) induced by a degree-specific Weisfeiler-
Lehman graph kernel.

 Intuition: nodes with the identical degree value would share the 
same graph convolution function.

 Feature update:

Multi-task 
convolution

Feature hashing:

Weight sharing:

ℎ𝑣𝑣𝑘𝑘 = 𝑓𝑓𝑠𝑠 ℎ𝑣𝑣𝑘𝑘−1 ∘ 𝑓𝑓deg 𝑣𝑣 ℎ𝑢𝑢𝑘𝑘−1|𝑢𝑢 ∈ 𝑁𝑁 𝑣𝑣 = 𝜎𝜎 𝑊𝑊0
𝑘𝑘ℎ𝑣𝑣𝑘𝑘−1 ∘ 𝑓𝑓deg 𝑣𝑣 ℎ𝑁𝑁 𝑣𝑣
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𝑓𝑓deg 𝑣𝑣 ℎ𝑁𝑁 𝑣𝑣
𝑘𝑘−1 = 𝜎𝜎 �

𝑢𝑢∈𝑁𝑁(𝑣𝑣)

𝑊𝑊𝑔𝑔𝑘𝑘 + 𝑊𝑊deg 𝑣𝑣
𝑘𝑘 ℎ𝑢𝑢𝑘𝑘−1

𝑓𝑓deg 𝑣𝑣 ℎ𝑁𝑁 𝑣𝑣
𝑘𝑘−1 = 𝜎𝜎 �

𝑢𝑢∈𝑁𝑁(𝑣𝑣)

𝑊𝑊𝑘𝑘 𝜙𝜙𝑔𝑔 ℎ𝑢𝑢𝑘𝑘−1 + 𝜙𝜙deg 𝑣𝑣 (ℎ𝑢𝑢𝑘𝑘−1)

Degree-specific function

Conclusion:
 Association of three key properties for graph convolution with Weisfeiler-

Lehman isomorphism test.
 A novel degree-specific graph neural network model (DEMO-Net) for 

encoding the subtree structures from graphs.
 Extensive results demonstrating the proposed DEMO-Net method.

Higher
is 

better

 Application: In a transaction network, the fraudulent users can be detected 
using the node (user) representation.

 Application: In chemoinformatics, the toxic molecules (represented as graphs) 
can be classified using the graph (molecule) representation.
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