ImVerde: Vertex-Diminished Random Walk for Learning Imbalanced Network Representation

Presenter: Jun Wu joint work with He and Dr. Yong

Dr. Jingrui He

Dr. Yongming Liu

Arizona State University Jingrui.he@asu.edu

Arizona State University Yongming.Liu@asu.edu

Roadmap

Motivation

- Proposed VDRW algorithm
- Proposed ImVerde framework
- Experiments
- Conclusion

Imbalanced data is everywhere...

 The data distribution from different classes are significantly skewed.

Imbalanced data is everywhere...

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. "Learning to model the tail." In Advances in Neural Information Processing Systems, pp. 7029-7039. 2017.

Data via Amazor

structure Graph

- 4 -

Grid-like structure

Representation learning

- Problem definition
 - Input: (i) a (directed or undirected) network G = (V, E),
 (ii) imbalanced class labels for nodes in V
 - Output: a low-dimensional vector representation for each node $v \in V$, so that the minority class is separated from majority class in the embedding feature

Wayne W. Zachary. "An information flow model for conflict and fission in small groups." *Journal of anthropological research*33, no. 4 (1977): 452-473.

- 6 -

Roadmap

Motivation

- Proposed VDRW algorithm
- Proposed ImVerde framework
- Experiments
- Conclusion

Intuition: the probability of a transition to one node would decrease each time when it is visited.

$$P(Y_{t+1} = j | \mathcal{F}_t) = \frac{R_{Y_t, j} f(S_j(t))}{\sum_i R_{Y_t, i} f(S_i(t))}$$
(1)

where

$$f(S_j(t)) = \alpha^{S_j(t)}$$
⁽²⁾

 R_{ij} : transition probability from node *i* to node *j* $S_j(t)$: the number of visits to node *j* up to time *t* $f(\cdot)$: a visiting function based on $S_j(t)$ α : hyper-parameter to be specified

Intuition: the probability of a transition to one node would decrease each time when it is visited.

Robin Pemantle. "Vertex-reinforced random walk." Probability Theory and Related Fields 92, no. 1 (1992): 117-136.

- 9

Convergence analysis

$$V_i(t) = \frac{f(S_i(t))}{\sum_i f(S_i(t))}$$

Theorem 1: With probability one, $dist(V(t), \mathcal{C} \cup \mathcal{C}_0) \rightarrow 0$ where

$$dist(x,A) = \inf\{|x-y|: y \in A\}$$

Corollary 3: If all the off-diagonal entries of R are positive and all the principal minors of R are invertible, V(t) converges almost surely.

Wayne W. Zachary. "An information flow model for conflict and fission in small groups." *Journal of anthropological research*33, no. 4 (1977): 452-473.

Wayne W. Zachary. "An information flow model for conflict and fission in small groups." *Journal of anthropological research*33, no. 4 (1977): 452-473.

- 12 -

Roadmap

Motivation

- Proposed VDRW algorithm
- Proposed ImVerde framework
- Experiments
- Conclusion

The loss of our semi-supervised framework:

$$\mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_u$$

– \mathcal{L}_s : supervised loss of predicting the label

14.

- \mathcal{L}_u : unsupervised loss of predicting the graph context
 - Assumption: nodes with the same context would have the similar embeddings

Unsupervised loss

$$\mathcal{L}_{u} = -\sum_{(v_{i}, v_{c})} \left[\log \sigma(w_{c}^{T} e_{i}) + k \cdot \mathbb{E}_{v_{n} \sim P_{n}(v_{c})} \log \sigma(-w_{n}^{T} e_{i}) \right]$$

 (v_i, v_c) : a node-context pair of node *i* and its corresponding context *c* e_i : embedding of node *i* w_c : representation of context *c*

Supervised loss (cross-entropy error)

$$\mathcal{L}_{s} = -\frac{1}{l} \sum_{i=1}^{l} \log \frac{\exp([h^{l_{1}}(x_{i}) \ h^{l_{2}}(e_{i})]^{T} y_{i})}{\sum_{y'} \exp([h^{l_{1}}(x_{i}) \ h^{l_{2}}(e_{i})]^{T} y')}$$

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. "Revisiting semi-supervised learning with graph embeddings." *In ICML* (2016).

- 16 -

 Key intuition: node-context pairs within the same class are crucial for learning node representation in the minority class.

Context sampling

- Node-context pair sampling:
 - Label information: nodes with the same label would be seen as the contexts for each other
 - Network structure: short VDRW can explore the context for each node within the class

Context sampling

Node-context pair sampling:

- Labe Algorithm 2 Context Sampling						
		Inp	put: Graph G with transition matrix R , labels $y_{1:l}$			
	be se	ee	initial node v_s			
			jumping probability r	1		
	Netw	0	length of walking sequences T	he		
	oont	Ou	tput: Node-context pairs (v_i, v_c)			
	COIL		Initialize: Add v_s to walking path p ;			
		2:	for $t = 0$ to $T - 1$ do			
		3:	if Node is labeled then			
		4:	With r , select one node v with the same label;			
		5:	With $1 - r$, select its neighbor v based on R ;			
		6:	else			
		7:	Select its neighbor v based on \mathbf{R} ;			
		8:	end if			
		9:	Update \mathbf{R} using VDRW;			
		10:	Update the walking path p ;			
11: end for						
12: Return the node-context pairs sampled from path p .						

Balanced-batch sampling

- It adopted the under-sampling method to select the seeds for mini-batch training
 - All the labeled minority instances are selected $|S_{min}|$
 - Randomly select the labeled majority instances $|S'_{maj}| = |S_{min}|$
 - Randomly select the unlabeled instances $|S_{other}| = Batchsize - |S'_{mai}| - |S_{min}|$

Roadmap

Motivation

- Proposed VDRW algorithm
- Proposed ImVerde framework
- Experiments
- Conclusion

Experiments

Data sets:

	# nodes	# edges	# classes	# features
Cora	2,708	5,439	7	1,433
Citeseer	3,327	4,732	6	3,703
Pubmed	19,717	44,338	3	500
NTSB	1,473	11,784	4	4,424

- Baseline methods:
 - Planetoid
 - Node2vec
 - DeepWalk

SMOTE

NTSB: each node represents one accident report from National Transportation Safety Board database, and each edge reflects the similarity between two reports using TF-IDF features. Node labels correspond to the accident causes.

Binary node classification

	Planetoid	DeepWalk	node2vec	SMOTE	ImVerde-VDRW
Cora_1	0.639	0.650	0.612	0.473	0.720
Cora_2	0.749	0.778	0.761	0.664	0.852
Cora_3	0.900	0.863	0.840	0.707	0.910
Cora_4	0.783	0.657	0.761	0.723	0.826
Cora_5	0.637	0.610	0.471	0.641	0.769
Cora_6	0.557	0.722	0.505	0.584	0.805
Cora_7	0.501	0.474	0.503	0.404	0.657
Citeseer_1	0.238	0.116	0.169	0.252	0.304
Citeseer_2	0.396	0.225	0.250	0.550	0.513
Citeseer_3	0.651	0.616	0.693	0.605	0.666
Citeseer_4	0.608	0.352	0.415	0.729	0.732
Citeseer_5	0.706	0.512	0.610	0.790	0.785
Citeseer_6	0.591	0.310	0.432	0.644	0.651
Pubmed_1	0.298	0.335	0.203	0.631	0.631
Pubmed_2	0.454	0.632	0.497	0.669	0.663
Pubmed_3	0.489	0.736	0.462	0.685	0.653

Average precision for the binary node classification (The best results are indicated in bold)

Binary node classification

Multi-class node classification

	Accuracy
Planetoid	0.311
DeepWalk	0.458
node2vec	0.408
ImVerde-VRRW	0.416
ImVerde-VDRW	0.460

The accuracy of multi-class text classification on NTSB data set

Imbalance analysis

The average precision with different imbalance ratio on Pubmed data set

Roadmap

Motivation

- Proposed VDRW algorithm
- Proposed ImVerde framework
- Experiments
- Conclusion

Conclusion

- Vertex-Diminished Random Walk (VDRW) is proposed, which is effective to extract the nodecontext pairs from imbalanced network
- A novel semi-supervised framework, *ImVerde*, is presented to learn the network representation from imbalanced data
- Experimental results on real-world data sets demonstrated the effectiveness of the proposed model

Thanks! & Questions?

Presenter: Jun Wu

Email: junwu6@asu.edu

Arizona State University