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Conclusions
 Association of attribute network embedding with a 

RKHS to minimize the information discrepancy in the 
attributed network

 A novel unsupervised attributed network embedding 
algorithm (MARINE) for encoding the heterogeneous 
graph information

 Extensive results demonstrating the proposed 
MARINE method on several graph mining tasks

Motivation
Assumption:
• The learned node representation from heterogeneous graph 

information should share similar data distribution

• The objective function is formulated as follow.
ℒ 𝑈𝑈 = 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴,𝑈𝑈 + 𝜆𝜆 � 𝑀𝑀𝑀𝑀𝐷𝐷2 𝑈𝑈,𝑋𝑋

Target Problem
Unsupervised Attributed Network Embedding:

• Input: An attributed network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸,𝑋𝑋 with adjacent 
matrix 𝐴𝐴 ∈ ℝ 𝑉𝑉 × 𝑉𝑉 and node attributes 𝑋𝑋 ∈ ℝ 𝑉𝑉 ×𝐷𝐷

• Output: A low-dimensional vector representation 𝑢𝑢𝑖𝑖 ∈ ℝ𝑑𝑑 for 
every node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 where node representation consistently 
encodes both the graph structure and individual node 
attributes

• Application: node classification, node clustering, link 
prediction, etc.

Challenges:
• Information heterogeneity: graph topological structure and 

individual node attributes

• Long-range spatial dependency: each node is associated 
with others within the connected component of the graph

• Scalability: real networks are induced by millions of nodes 
and edges or high-dimensional node attributes

Method
Manifold-Regularized Network Embedding (MARINE)
• The objective function for the proposed model is:

ℒ 𝑈𝑈 = 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴,𝑈𝑈 + 𝜆𝜆 ��
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• Graph Laplacian term: it encodes the global graph 
structure by assuming that two linked node have the 
similar embedding representation
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• Information consistence: the node embedding 
representation shared similar data distribution with 
individual node attributes. Specifically, there exists a 
mapping function 𝑓𝑓 � to reconstruct the node 
attribute from the learned representation
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Alternative Interpretations
• Encode-decoder architecture: 

• Matrix factorization: when 𝑓𝑓 𝑢𝑢 = 𝑊𝑊𝑊𝑊, it can be seen 
as a matrix factorization problem on node attributes 𝑋𝑋
associated with the manifold regularization loss that 
captures the graph structure information.

• Feature diffusion (propagation): when 𝑓𝑓 𝑢𝑢 = 𝑢𝑢, it has 
the closed-form solution as follow.
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Results
 Data Sets

 Performance Evaluation

Results
 Efficiency Analysis

 Sensitivity Analysis

Table 1: Statistics of four publicly available networks

Table 2: Node classification on real networks (the accuracy is reported)

Table 3: Node clustering on real networks (K-means clustering is 
applied for node clustering using the learned node representation, 
and three popular measures are employed to evaluate the clustering 
performance including Normalized Mutual Information (NMI), 
clustering Accuracy (AC) and Adjusted Rand Index (ARI).)

Table 4: Link prediction on real networks (the AUC score is reported)

 Node Classification

 Node Clustering

 Link Prediction

Higher is better for all the 
experimental results

Figure 1: Scalability analysis on a synthetic network (It scales linearly 
with respect to the number of edges in the network ) 

Figure 2: Parameter sensitivity analysis on real networks

Graph Laplacian regularization 
(encode the graph structure information)

Information discrepancy between the structure-
and attribute-based representation distribution in a 
Reproducing Kernel Hilbert Space (RKHS)

Graph Laplacian

Information consistence
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Manifold ranking scores
measuring the node similarity on the graph
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