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Abstract—This paper studies the vulnerability of uncon-
strained computing resources in Hadoop and the threat of
denial-of-service to a Hadoop cluster with multi-tenancy. We
model the problem of how many nodes in a Hadoop cluster can
be invaded by a malicious user with given allocated capacity as
a k-ping-pong balls to n-boxes problem, and solve the problem
by simulation. We construct a discrete event simulation model
to estimate MapReduce job completion time in a Hadoop
cluster under a DoS attack. Our study shows that even a small
amount of compromised capacity may be used to launch a DoS
attack and cause significant impacts on the performance of a
Hadoop/YARN cluster.
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I. INTRODUCTION

Driven by the needs of handling big data, MapReduce

[1], a scalable distributed parallel programming paradigm,

has quickly become a popular tool for big data. Hadoop

(hadoop.apache.org/), an open source implementation of

MapReduce, now is a major cloud-based platform for big

data, and has been widely deployed in the cloud. Given the

important role of Hadoop as a primary infrastructure for big

data, the trustworthiness of MapReduce job completion in

Hadoop is a concern.

Hadoop has evolved into a new generation – Hadoop 2,

in which the classic MapReduce module (used in Hadoop

v.1.x) is upgraded into a new computing platform, called

YARN (or MRv2) [2], [3]. YARN has many important

improvements. It is more scalable, i.e. capable to facilitate

larger Hadoop clusters with up to 6000 even 10, 000 nodes

(machines). YARN is more flexible. YARN supports not

only MapReduce but also many other parallel programming

models such as Dryad, Spark, Giraph, Storm, Tez, and others

[3]. YARN uses containers as a unified form of computing

resource to replace the map slots and reduce slots used in

classic MapReduce; a container can be used for a map task

or a reduce task, and each container could be configured with

different size. This is a fundamental improvement, which

facilitates high flexible and efficient usage of computing

resources in a Hadoop cluster. YARN uses ResourceMan-
ager to replace classic JobTracker, and uses Application-
Master to replace classic TaskTracker. ResourceManager,

uses a scheduler to allocate containers to multiple users

and their applications requesting computing resources in a

Hadoop cluster. Previously, all Hadoop schedulers manage

computing resources among multiple users based on memory

only. Other computing resources, such CPU, GPU, HD r/w,

and network bandwidth, are not considered in scheduling.

Just most recently, the updated fair scheduler [4] for YARN

permits to schedule based on both memory and CPU. To the

best of our knowledge, there are few studies on the security

and performance impacts of unconstrained shared resources

in Hadoop. This paper aims to address the vulnerability of

unconstrained computing resources in Hadoop and the threat

of denial-of-service attacks to a Hadoop cluster with multi-

tenancy.

The contents of this paper are organized as follows.

Section II discusses the related work; section III analyzes

the vulnerability of unconstrained resources, presents the

threat of denial-of-service, and formalizes the threat as a

k ping-pong ball to n boxes problem; section IV presents

our simulation model to estimate MapReduce job completion

time under DoS attacks, and discusses potential solutions;

finally, we conclude this work in section V.

II. RELATED WORK

MapReduce and its implementation, Hadoop, have re-

ceived a great deal of attention from both academic and in-

dustrial communities. However, the research on MapReduce

and Hadoop has mainly focused on the system performance

aspect, and the security issues seemly have not received

sufficient attention. Earlier designs of Hadoop assumed that

Hadoop is used within an organization in a secured envi-

ronment, so that no authentication and authorization mecha-

nisms were considered. As Hadoop becomes more and more

popular in the cloud, more security mechanisms have been

introduced or studied for Hadoop [5], [6]. Examples include:

Kerberos based authentication, mutual authentication applied

to prevent from unauthorized access, an encrypted shuffle,

and so on. To enhance Hadoop system security, authenti-

cation and authorization is definitely necessary. In addition

to that, there also exist other security issues that should not

be neglected. A study [7] on security incidents occurring

in large computing facilities shows that the majority of

incidents (55%) were attacks on authentication mechanisms;

credential compromise is the number one incident type.

This finding is particularly important to Hadoop systems

with multi-tenancy; as we will see in this paper, a single
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compromised credential can be used to launch a Denial-of-

Service attack and degrade the performance of a Hadoop

cluster significantly.

In most schedulers of Hadoop, only memory is considered

in computing resources allocation among multiple users

sharing a same Hadoop cluster; other resources remain

unconstrained. Just recently, the fair scheduler [4] can be

configured to consider both memory and CPU in resource

allocation, using the concept of “Dominant Resource Fair-

ness” (DRF) [8], which is a model of scheduling with

multiple type of resources for multiple users. The basic idea

of DRF is that the user having a smaller “dominant share”

will have a higher priority for its new resource requests;

the “dominant share” of a user is the maximal share of

the resources allocated to that user. We believe, any shared

resources left unconstrained in resource management will

be a vulnerability. To the best of our knowledge, there are

few studies on the security and performance impacts of this

vulnerability to a Hadoop cluster with multi-tenancy.

MapReduce job completion time is critical to many ap-

plications. Highly relevant to our concerns, Verma et al

constructed a MapReduce job makespan model [9], [10],

which calculates the average and maximal completion time

of a MapReduce job running on the classic MapReduce

system, based on the estimated average and maximal tasks’

completion time in four phrases: map, “first shuffle” (starting

before map ends), “typical shuffle” (starting after map ends),

and reduce. This work provides us useful clues. Different

from the work, first, we will estimate MapReduce job

completion time in a Hadoop/YARN cluster rather than in

a classic Hadoop MapReduce system; secondly, we use the

approach of stochastic discrete-event simulation, rather than

static analytic approach as in Verma’s model; as a result,

our estimation is a cumulative distribution function of a

MapReduce job completion rather than estimated average

and maximal values; thirdly, we focus on the DoS impact

on Map/Reduce task completion time.

III. VULNERABILITY AND THREAT

As discussed in §II, Hadoop employs a scheduler to

assign computing resources in a cluster to each application

launched by users, based on the computing capacity assigned

to each user. Memory was the only computing resource

considered in capacity allocation; just recently, CPU has

been taken into account in the fair scheduler. Other resources

such as HD r/w, GPU, and network bandwidth are still

not constrained. We believe, the existence of unconstrained

resources in a Hadoop cluster with multi-tenancy poses a

vulnerability; this vulnerability not only can lead to unfair

use of shared resources, but also can be exploited with

denial-of-service (DoS) attacks. A malicious user, who may

be an intruder using a compromised credential, an insider,

or even a legitimate user with intent to attack a targeted

user for business competition, can launch applications using

minimal constrained resources but exhausting unconstrained

resources in a Hadoop cluster shared with a targeted user.

The overused resources become the bottleneck in each node

running such DoS attack “tasks”. This type of exploitation

can potentially lead to a significant decrease of system

performance, thus causing the loss to other cloud users. This

paper attempts to study how bad this vulnerability could be.

A. Threat model

In our analysis for the above identified threat, we have

the following assumption.

Assumption: In order to maximize the impact of a DoS
attack, attackers will take the strategy of using the capacity
they gained to occupy unconstrained shared resources as
many as possible, in particular, to hold as many containers
as possible, and to distribute those containers in as many
nodes as possible.

First, we introduce the variables to be used as follows.

n denotes the total number of living nodes that a Hadoop

cluster currently has; cind denotes the total capacity of

resource i on each node; here for simplicity, we assume

that all of the nodes in a cluster are identical. cimin denotes

the minimum capacity of resource i that a container is

allowed to have; cimax denotes the maximum capacity of

resource i that a container is allowed to have; Ci denotes

the compromised capacity of resource i, represented as a

percentage of the total capacity in a cluster; m denotes the

number of nodes running DoS attack “tasks”; k denotes the

number of containers (in a Hadoop cluster) that a malicious

user can have within his allocated capacity cap.

We can characterize the scale of the addressed DoS attacks

in two dimensions: (1) attack broadness, which is defined

as b = m/n; (2) attack strength, denoted as s, which

is the portion of resources occupied by the DoS attack

in an infected node. For example, given attack broadness

b = 78.5%, and attack strength s = 80%, a task will cost as

1/(1− s) (here 5) times long as usual to complete, with the

probability of b (here 78.5%). A MapReduce job consisting

of many map/reduce tasks may be further delayed, because

some tasks under DoS attack may fail to complete within

maximum time limits, so they were treated as failures and

rescheduled. In the following, we mainly focus on attack

broadness.

By the attack strategy stated earlier, k will be

k = min
i
{n · cind · Ci/cimin}. (1)

At least, this number of containers will be allocated to the

attacker and will be used for DoS attack “tasks”. Those

containers will be assigned to a set of nodes by a scheduler

at run time. With respect to what nodes will be assigned

to those containers with DoS attack “tasks”, it will depend

on the run time environment, such as data location in the

494949



Number of 
nodes 

Capacity per 
node 

Minimal 
capacity per 
container 

Compromised 
capacity 

Number of 
nodes 
affected by 
DoS  attack 

Percentage of 
affected 
nodes 

1000 16GB 0.5GB 2% 20 - 640 2% - 64% 

1000 16GB 0.5GB 3% 30 - 960 3% - 96% 
6000 64GB 0.5GB 0.5% 30 - 3840 0.5% - 64% 
6000 64GB 1GB 1% 60 - 3840 1% - 64% 

6000 64GB 0.5GB 1% 60 - 6000 1% - 100% 

Figure 1. Scenarios: possible impacts of DoS attack on a Hadoop cluster

cluster, other jobs, scheduler type, scheduler configuration,

and so on.
When the capacity obtained by the attacker is fully used,

the number of nodes running DoS attack “tasks”, m, ranges

in an interval [mlb,mub], where the lower bound, mlb, is

the least number of nodes to run the attacker’s containers;

the upper bound, mub, is the number of nodes when each

container is on a different node. That is,

mlb = max
i
{�(k · cimin/c

i
nd)�}; (2)

mub =

{
k if k < n
n if k ≥ n

(3)

Let us consider some scenarios as given in figure 1.

In these scenarios, only memory is considered as most of

schedulers do. The first scenario tells that a Hadoop cluster

has 1000 nodes, each of which has 16GB RAM; the minimal

size for a container is 0.5GB RAM; a compromised client

has capacity of 2%; then through this compromised client,

a DoS attack, such as running CPU-intensive, or disk r/w

intensive, or network bandwidth-intensive jobs, can impact

20 to 640 (or 2% to 64% of) nodes in the cluster. The other

scenarios have even bigger possible impacts.
An attacker will try to make the infected nodes m as

large as possible. We have discussed the possible range of

impacted nodes m; now we discuss how to estimate the

possible value of it by simulation.
By earlier assumption about a DoS attack, using the

obtained portion of the capacity in a Hadoop cluster, the

attacker will request as many containers as possible and

put them in as many different nodes as possible. Therefore,

the attacker’s Application Master will request each of his

containers in a new node that does not have his containers

yet. In current schedulers, e.g. capacity scheduler [11], if

the requested node is available, the request will be granted;

otherwise, a container in a node located at the same rack

as the requested node will be assigned, if available; in the

case of that all nodes in that rack are not available, a node

in another rack will be assigned. Let pt be the probability

that the targeted node is available; pn be the probability that

a requested container is assigned to a new node; m now

represents the current number of nodes that have containers

assigned to the attacker; m changes with the process of

deploying attack tasks to the nodes in the cluster.

We model the possible maximal number of nodes an

attacker can reach as the following problem of throwing

ping-pong balls into a cluster of boxes.

k-Ping-Pong balls to n-boxes problem: A player is given
k ping-pong balls and n boxes, and he scores every time
when he throws a ball into an empty box. Those n boxes
are arranged one by one tightly full of a small pool; so
that each ping-pong ball must fall into one of the boxes.
The player can see whether or not a box is empty. So, the
player will try to throw those balls into as many boxes as
possible. Targeting at an empty box, the player may throw
a ball into that targeted box accurately, with probability pt;
the ball may bounce over the boxes, but eventually will fall
into one of the boxes; and the ball may still fall into another
empty box, with probability (n−m− 1)/n, where m is the
current number of boxes with balls. The question is what
is the most possible number of boxes with ping-pong balls
when the game is over.

Obviously, the probability of a ping-pong ball falling into

an empty box is

pn = pt + (1− pt) · n−m− 1

n
. (4)

If pt at each throw is the same, the maximal number

of boxes with ping-pong balls can be found analytically.

Unfortunately, as discussed earlier, this probability pt is not

a constant for each request in our real problem regarding

whether or not a request to assign a container in a specific

machine is granted by the scheduler. Correspondingly, in

the k-ping-pong balls to n-boxes game, there could be

some uncertain factors such as unstable wind, so that the

probability of a ping-pong ball entering into a targeted box

at each different throw is also uncertain. We will find a

solution of this problem by using discrete event simulation

in the next section.

This abstraction of k-ping-pong balls to n-boxes problem

is general, reflecting common features of different problems

in the real world, e.g. airdropping humanitarian aid load to

a disaster area.

B. Simulating k-Ping-Pong Balls to n-Boxes Problem

The k-ping-pong balls to n-boxes problem can be easily

modeled and simulated by using Mobius [12]. Mobius is

a stochastic discrete event system modeling and simulation

software tool. Mobius supports several types of models. One

of them is Stochastic Activity Network (SAN). SAN is a

stochastic extension to Petri Net. SAN allows different types

of places including float and complex data structures; SAN

has timed activities; SAN has more flexible and expressible

firing (Input Gate) conditions and output functions (Out-

put Gate).
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Figure 2. Simulated solutions of expected maximal number of occupied
boxes in the k-ping-pong balls to n-boxes problem for different k

Because pt (the probability of a ball falling into a targeted

box) is uncertain in each throw, we treat it as a random

variable over [0, 1] with uniform distribution.

The simulation results for several typical scenarios are

given in figure 2.

We define a success rate, λ, as the ratio of the expected

number of occupied boxes to the targeted number of boxes,

λ =

{
E(m)/k if k < n
E(m)/n if k ≥ n

As shown in figure 2, for a given number of boxes (n =
1000), the success rate (λ) changes with the growth of the

number of ping-pong balls(k); when k is much smaller than

n, λ is close to 100%; when k gets closer to n, it gradually

becomes smaller; when k equals to n, λ reaches it minimum

78.5%; when k gets larger than n, λ becomes larger; when

k = 1.4n, λ is 99.8%, approaching to 1.0. In the experiment

with larger total number of boxes (n), the results are similar.

For example, when n = 1, 000, 000, and k is equivalent,

λ = 78.43%, slightly smaller; when k = 1.4n, λ becomes

1.0.

The above results can be interpreted in the context of

DoS attacks in Hadoop, by regarding k as the number of

containers that an attacker has, regarding n as the number

of nodes in a Hadoop cluster. For a cluster of 6, 000 nodes

with 48GB RAM, the least container being allowed to have

0.5GB, a DoS attack, obtaining 1% of capacity, could have

5760 containers, and deploy attack tasks to 4560 nodes,

covering 76% of the cluster. If the attacker gains 1.5%
capacity of the cluster, he could deployed attack “tasks” to

the whole cluster.

IV. SIMULATING MAPREDUCE JOB COMPLETION TIME

UNDER DOS ATTACKS

In this section, first, we briefly introduce MapReduce;

then we present how to simulate a MapReduce job.

A. MapReduce

MapReduce processes a large volume of data in parallel

in two phrases: the map phrase and the reduce phrase.

Each phrase is completed by a number of tasks, each of

which handles a subset of data characterized by the types of

key/value pairs. Basically, MapReduce uses two primitive

functions[1]: a map function that processes a key/value

pair to generate a list of intermediate key/value pairs; a

reduce function that accepts an intermediate key and a list

of intermediate values with the same intermediate key, to

generate a list of new key/value pairs [13], that is,

map : (K1, V1)→ list(K2, V2);

reduce : (K2, list(V2))→ list(K3, V3).
(5)

The above functions and the types of keys/values needs to

be defined by users; a MapReduce system will take care how

to compute them. MapReduce is an elegant abstraction. It

is simple, but captures the general and essential features of

a large variety of parallel data processing problems in the

real world; it allows users to easily map their problems into

the MapReduce problem in an unified form, and to left the

computing details on parallelization, optimization, and fault

tolerance to computers.

In MapReduce, before the execution of a reduce function,

the values with the same intermediate key, which are outputs

from map tasks, need to be collected, sorted, and presented

to the reduce function. This process is called “shuffle”.

Shuffle is executed by each reduce task as the first phrase

of reduce [13].

B. Simulation Model

We have constructed a stochastic discrete event simulation

model with Mobius to estimate the completion time of

a MapReduce job (called an application in YARN) in a

Hadoop/YARN cluster under a DoS attack.
1) Overall structure: The overall structure of our simula-

tion model is illustrated by figure 3. Based on the workflow

of MapReduce jobs running on YARN [2], [14], this model

simulates a MapReduce job in four stages: initialization,

map, reduce (including shuffle phrase and reduce phrase),

and completion; each stage is simulated by a corresponding

component. In addition, “resource management” component

dynamically calculates the available resources to the sim-

ulated MapReduce job; “DoS attack” component simulates

deploying DoS attack tasks to nodes in a Hadoop/YARN

cluster, by using simulation model of k-ping-pong balls to

n-boxes problem.

A MapReduce job consists of a set of map tasks and a set

of reduce tasks. In our simulation model, each map or reduce

task is simulated by an atomic model of Mobius; all of the

map tasks (or reduce tasks) are combined together through

a Replicate type of composed model in Mobius. Based on

the YARN model, we simulate the execution process of a

set of map tasks followed by a set of reduce tasks.
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Figure 3. Overall structure of simulation

2) Simulation of a task: Now we discuss in more details

the sub-model for simulating the completion time of a map

(or reduce) task, in the running environment with DoS

attacks. The model for a map task and the one for a reduce

task have very similar components and structure. The only

difference is that a reduce task has an extra shuffle phrase.

The model structure for a reduce task is illustrated in figure

4; and the one for a map task is similar but without shuffle.

To execute a map (or reduce) task, first of all, the

ApplicationMaster (AM) that manages the MapReduce job

requests a container for this task from ResourceManager
(RM); the RM will respond to assign a container in an

available node; then that AM contacts the NodeManager
(NM) of the assigned node to set up the container for this

task. A container carrying out a map task, or a reduce

task, is called a mapper, or a reducer correspondingly.

The completion time of this container-assignment process

is simulated as a random variable within an interval.

MapReduce is designed to assume the existence of oper-

ation failures in a Hadoop cluster. Our simulation considers

this feature. After the container for a map (or reduce) task is

set up, this task will be executed in that container within a

specified maximum time limit; if this task fails to complete

within the time limit, the task will be retried for a number

of times, saying 3 times; if all tries are failed, this task

will be treated as a failure, and that AM will contact RM
to set up another container (possibly in another node) for

this task, until this task is completed or the MapReduce

job is terminated. We could also consider the failure of a

node where the container resides. The failure could be node

crash due to hardware failure or security attacks. For the

purpose of this paper on the impact of DoS attacks, we do

not consider node crash and set the probability as 0.

A mapper or a reducer possibly resides in a node with DoS

attack “tasks”. The chance for this to occur can be estimated

as the ratio of the number of the nodes infected by DoS

attacks, which is estimated by “DoS attacks” component, to

the total number of living nodes in the cluster, i.e. m/n.

A mapper (or reducer) running on a node infected by

DoS attack will receive degraded service, and may become

very slow, because some computing resources necessary to

the completion of the task but unconstrained by YARN

scheduler are exhausted by DoS attack “tasks”. The strength

or effectiveness of a DoS attack is represented with a number

between 0 and 1 (exclusive), representing the portion of

computing resources occupied by the DoS attack, called

“degraded degree”; 0 corresponds to no DoS attack; a

number close to 1 corresponds to the most severe attack

in which all computing resources are exhausted. We further

assume an linear relation between the task completion time

and the computing resource used for the task. With this

assumption, the completion time of a task under a DoS attack

is estimated as

t′ = t/(1− d), (6)

where t is the task completion time without DoS attacks,

and d is the degree of degraded service; for example, d =
80% means that a DoS attack task consumes 80% of the

computing resource of the resided node, such as CPU, GPU,

HD I/O, and network bandwidth. In our simulation, if t′,
the completion time of a simulated task, falls within the

maximum time limit Tmax, the task is completed; otherwise,

the task is treated as failure in this run; in the case of failure,

as real MapReduce system does, the task will be retried for

a number of times in the same container on the same node,

and if the task is still failed, it will be rescheduled to run in

a newly assigned container and possibly on a different node.

3) Completion time of an activity: We treat the com-

pletion time of an activity (execution of map function, or

shuffle, or reduce function) as random variable following

Gamma probability distribution.

f(x;α, β) =

{
1

Γ(α)β (
x
β )

α−1e−
x
β x ≥ 0

0 x < 0

where α > 0 is called shape parameter, β > 0 is called

scale parameter, and Γ(α) is Gamma function. When α is

large (saying, α ≥ 10), the distribution is close to normal

distribution. The expected value of the random variable

will be E(X) = αβ; the mode, i.e. the peak in the

probability density function of Gamma distribution, or the

most likely value, will be Mode(X) = (α−1)β. We set scale

parameter (β) of Gamma distribution for this type of tasks as

β = Tmode/(α− 1), or β = Tmean/α, where Tmean is the

observed mean completion time of that type of activities, in

normal Hadoop cluster operation environment (without DoS

attacks); Tmode is the completion time which is most likely

to appear for that type of activities.

The real completion time of an activity will depend on the

run-time operation environment in the Hadoop cluster such

as input data, the number of running jobs, or more exactly,

the cluster capacity usage at run-time. The environment fac-

tors are uncertain. It is reasonable to assume that MapReduce

task completion time follows Gamma distribution. The long

tail of Gamma distribution reflects the lagging effects of

some run-time environment factors.
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Figure 4. Modeling and simulation of a reduce task completion time

4) Simulation of shuffle: Now we discuss the execution

of a shuffle phrase. Shuffle is performed by each reduce task

as its first stage, to collect the outputs of some map tasks.

Although reduce tasks can start to do shuffle before all of

map tasks are completed, usually the shuffle of a reducer

needs to collect outputs from a large number of mappers;

thus being possibly unable to complete, before all of the

mappers that the shuffle needs to read complete. A distin-

guishing improvement of YARN over classic MapReduce

is that resources are no longer divided into map slots and

reduce slot; containers can be used for both map and reduce

tasks. Because of this feature, it is inefficient and a waste

of allocated resources to start reducers, if there are mappers

still waiting for execution, and some reducers’ shuffle will

have to wait for map completion.

For this reason, a better strategy for scheduling a MapRe-

duce job is to do map tasks first, and schedule reduce tasks

later when no more map tasks are in waiting. Although the

strategy is not enforced in a scheduler, we assume that the

AM of the simulated MapReduce job uses the following

conditions to start a reducer: (1) no mappers are still waiting

for execution, that is,

nmap = ndone
map − nrun

map (7)

meaning that all mappers are either completed or already

assigned with containers and in execution, even though some

of them may be failed later and rescheduled to execute;

(2) there are enough available resources for the requested

container.

To estimate completion time of shuffle, at the time point

when a reducer starts its shuffle phrase, we calculate the

completion rate of map phrase as

p = ndone
map /nmap. (8)

This number can be used to estimate how much work of

a shuffle phrase left to finish at the time point that the

map phrase completes. For example, at the time point that

a reducer was launched to start its shuffle phrase, the map

completion rate was 30%, which means there would be a

large overlap between map and shuffle; later at the time

point when all mappers complete, it is reasonable to think

that the majority of work of shuffle (saying 70%) has been

done, and roughly, only 30% left to execute. In another case,

if the completion rate of map phrase is 100% when a shuffle

starts, the shuffling work amount left is 100%.

C. Scenarios of DoS impact on job completion time

We simulated a number of scenarios with different levels

of DoS attacks. In the experiments, we assume that a

Hadoop/YARN cluster has 1000 nodes (n=1000); each of

them has 16GB RAM; minimal capacity per container is 1

GB; the simulated MapReduce job is assigned with 5% of

capacity of the cluster; the number of map tasks is 1024;

the number of reduce tasks is 256; capacity scheduler is

assumed to be used. The cumulative distribution functions

of the completion time of this MapReduce job in different

scenarios under different scales of DoS attacks are illustrated

in figure 5.
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Figure 5. Cumulative distribution functions of the simulated MapReduce
job completion time in different scenarios with DoS attacks (1).
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Figure 6. Cumulative distribution functions of the simulated MapReduce
job completion time in different scenarios with DoS attacks (2).

• Scenario 1 – no DoS attacks: it is the normal case;

at time point 5, the degree of belief (in the sense of

probability) in job completion is 99.7%;

• Scenario 2– “mild” DoS attack: compromised capacity

= 6.25%, correspondingly k/n = 1, and roughly attack

broadness m/n = 78.2%; attack strength = 50%; job

completion time is roughly doubled;

• Scenario 3 – stronger DoS attack: compromised capac-

ity = 6.25%, and attack strength = 80%; job completion

time becomes about 8 times later;

• Scenario 4 – broader and stronger DoS attack: compro-

mised capacity = 9.375%, corresponds to k/n = 1.5,

and m/n = 100%; and attack strength = 80%; in this

scenario, all nodes are infected, and job completion

time is further delayed, compared with scenario 3;

• Scenario 5 – broader and strong DoS attack: compro-

mised capacity = 9.375%, and attack strength = 90%;

in this scenario, the CDF of job completion time almost

stays as 0 in the time window of observation;

• Scenario 6 – longer maximum task time limit: compro-

mised capacity = 6.25%, attack strength = 80%, and the

maximum time limits for tasks are longer; compared

with scenario 3, job completion time is improved in

this scenario. This is because the longer maximum time

limit allows tasks delayed by DoS attack to finish.

The simulations for much larger Hadoop/YARN clusters

with nodes up to 6000 or 10, 000 have similar curves of

cumulative probability functions in comparable scenarios.

Figure 6 shows some simulations for a cluster of 10, 000
nodes with 64 GB RAM. The job is the same as earlier one.

In all scenarios except 9, the allocated capacity is 0.125%,

thus having the same amount of capacity as scenarios in

figure 5.

• Scenario 7: no DoS attack;

• Scenario 8: to have the same attack broadness and at-

tack strength as earlier scenario 3, we set compromised

capacity = 1.5625%, correspondingly k/n = 1, and

attack strength = 80%; totally, this scenario is similar

to earlier scenario 3;

• Scenario 9: compromised capacity = 1.5625%%, attack

strength = 80%, and the allocated capacity for the job

is sufficiently big so that all tasks of the job can be

executed in parallel; compared with scenario 8, job

completion time has a little improvement;

• Scenario 10: compromised capacity = 1.5625%%, at-

tack strength = 80%, and the maximum time limits

for tasks are longer; compared with scenario 8, job

completion time is improved, as earlier scenario 6 does;

• Scenario 11: compromised capacity = 2.3%, which

makes k/n = 1.472 and the attack broadness almost

100%; and attack strength = 80%; this scenario is

similar to earlier scenario 4;

• Scenario 12: compromised capacity = 2.3%, and attack

strength = 90%; similar to earlier scenario 5.

Although the completion time of a MapReduce job under

DoS attack can be improved to a certain extent by allowing

longer maximum execution time for tasks, this improvement

is limited by the general DoS attack scale as discussed in

§III-A; in other words, the job completion time will still cost

at least as 1/(1 − s) times long as normal, in probability

m/n.

D. Further Discussion

The presented DoS threat can be addressed in several

ways. First, since the root of this problem is that there

exist computing resources unconstrained by Hadoop/YARN

schedulers, the most straightforward recipe is to manage

all types of computing resources in schedulers. Secondly, it

would be interesting to have a mechanism to avoid providing

to ApplicationMaster the real location of each container, thus

shielding YARN system from the DoS threat. However, in

the current YARN design, the ApplicationMaster needs to

know which node an assigned container resides, and will

contact with the NodeManager of that node to set up the

container and to monitor the task in that container. Thirdly,

the DoS attacks exists in multi-tenancy environment, so it is

important for a user to learn the security and the resource

usage patterns of other users sharing the cluster. However,

it is unclear whether or not, or how much, a cloud provider

should provide information about users sharing the same

cluster, for security and privacy concerns. Finally, it is of

interest to us to develop metrics to characterize the status

of a node, a rack, and a cluster, the patterns of resource

consumption by a job, and by a tenant. By using the metrics,

a Hadoop system may easily identify DoS attacks and un-

fair resource consumption, and react correspondingly. Such

metrics can be used as a new “transparency” mechanism
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to make cloud services more trustworthy [15]. The metrics

can also be used by the ApplicationMasters for each job,

to optimize the execution of those jobs, at the same time,

optimizing task distribution in the cluster.

V. CONCLUDING REMARKS

In this paper, we studied the vulnerability of unconstrained

computing resources in Hadoop and the threat of denial-

of-service attacks to a Hadoop/YARN cluster with multi-

tenancy. We formalized the problem about how many nodes

in a Hadoop cluster can be invaded by a malicious user

with a given amount of allocated capacity as a k-ping-

pong balls to n-boxes problem, and solved the problem by

simulation. We developed a discrete event simulation model

to estimate MapReduce job completion time in a Hadoop

cluster under DoS attack. Our study shows that even a small

amount of compromised capacity may be used to launch a

DoS attack and can cause significant impact on the perfor-

mance of a Hadoop/YARN cluster. Although our simulation

assumes the use of YARN capacity scheduler, the result

applies to Hadoop systems using other schedulers having

unconstrained resources shared among multiple users.

Regarding future research, we will move forward to

developing metrics to measure the resilience of MapReduce

systems, and extending our trust calculus [16] for estimating

and optimizing the trustworthiness of cloud workflow for

handling big data.
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