Defenses Against Oxidative Stress

  1. Mancini, S. & Imlay, J. A. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress. Mol. Microbiol. n/a–n/a (2015). doi:10.1111/mmi.12967
  2. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–54 (2013).
  3. Mishra, S. & Imlay, J. A. An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide. Mol. Microbiol. 90, 1356–1371 (2013).
  4. Singh, A. K., Shin, J. H., Lee, K. L., Imlay, J. A. & Roe, J. H. Comparative study of SoxR activation by redox-active compounds. Mol. Microbiol. 90, 983–996 (2013).
  5. Mishra, S. & Imlay, J. A. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–60 (2012).
  6. Arenas, F. a et al. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species. PLoS One 6, e15979 (2011).
  7. Imlay, J. A. and Hassett, D. J. (2011) Oxidative and nitrosative stress defense systems in Escherichia coli and Pseudomonas aeruginosa: A model organism of study versus a human opportunistic pathogen. In S. Kidd (Ed. ), Stress Response in Pathogenic Bacteria (pp. 3-32). Cambridge, MA and Oxfordshire, UK: CABI
  8. Gu, M. & Imlay, J. A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79, 1136–1150 (2011).
  9. Liu, Y., Bauer, S. C. & Imlay, J. A. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J. Bacteriol. 193, 2186–2196 (2011).
  10. Martin, J. E. & Imlay, J. a. The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol. Microbiol. 80, 319–34 (2011).
  11. Arenas, F. A. et al. The Escherichia coli btuE gene encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 398, 690–4 (2010).
  12. Jang, S. & Imlay, J. A. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol. 78, 1448–1467 (2010).
  13. Anjem, A., Varghese, S. & Imlay, J. A. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72, 844–858 (2009).
  14. Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77,755–776 (2008).
  15. Munroe, W. et al. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. J. Inorg. Biochem. 101,1875–1882 (2007).
  16. Gakh, O. et al. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum. Mol. Genet. 15, 467–479 (2006).
  17. Djaman, O., Outten, F. W. & Imlay, J. A. Repair of oxidized iron-sulfur clusters in Escherichia coli. J. Biol. Chem. 279, 44590–44599 (2004).
  18. Pericone, C. D., Park, S., Imlay, J. A. & Weiser, J. N. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. J. Bacteriol. 185, 6815–6825 (2003).
  19. Smith, A. H., Imlay, J. a & Mackie, R. I. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins. Appl. Environ. Microbiol. 69, 3406–3411 (2003).
  20. Korshunov, S. S. & Imlay, J. A. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol. Microbiol. 43,95–106 (2002).
  21. Imlay, J. A. What biological purpose is served by superoxide reductase? JBIC J. Biol. Inorg. Chem.7, 659–663 (2002).
  22. Seaver, L. C. & Imlay, J. A. Alkyl Hydroperoxide reductase is the primary scavenger of endogenous Hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, (2001).
  23. Schwartz, C. J., Djaman, O., Imlay, J. A. & Kiley, P. J. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 97, 9009–9014 (2000).
  24. Gort, A. S., Ferber, D. M. & Imlay, J. A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol. Microbiol. 32, 179–191 (1999).
  25. Maringanti, S. & Imlay, J. A. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181, 3792–3802 (1999).
  26. Gort, A. S., Imlay, J. A. & Gort, A. M. Balance between endogenous superoxide stress and antioxidant defenses J. Bacteriol. 180, 1402–1410 (1998).
  27. Imlay, K. R. & Imlay, J. A. Cloning and analysis of sodC , encoding the copper-zinc superoxide dismutase of Escherichia coli . Microbiology 178, 2564–2571 (1996).
  28. Kargalioglu, Y. & Imlay, J. A. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J. Bacteriol. 176, 7653–7658 (1994).
  29. Imlay, J. A. & Fridovich, I. Isolation and genetic analysis of a mutation that suppresses the auxotrophies of superoxide dismutase-deficient Escherichia coli K12. Mol. Gen. Genet. 228, 410–416 (1991).
  30. Linn, S. & Imlay, J. A. Toxicity, mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Cell Sci. Suppl. 6, 289–301 (1987).