Math 231E. Worksheet 2B. September 6, 2018 A Brief History of π

People have been using series to compute π since at least the 17^{th} century. We will use some things that we know about series to explore these ideas in this worksheet.

Problem 1. One popular starting point for computations of π is the Taylor series for the arctangent

$$\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

a) Use the formula above together with $\arctan(1) = \frac{\pi}{4}$ to find the series $\pi = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}...)$. This formular is known as "Gregory's series" and dates from the late 17^{th} century. Use the first four terms to find an approximation to π . (It won't be very good!)

b) The series above converges very slowly. In fact we will see later in the course that this series is only conditionally convergent. We expect better convergence if x is smaller. Use the fact that $\arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}$ to find the series $\pi = \frac{6}{\sqrt{3}} \left(1 - \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \ldots\right)$. Use the first four terms to approximate π . How does your answer compare to the previous estimate?

c) A more rapidly convergent series comes from the fact that $\pi = 16 \arctan(\frac{1}{5}) - 4 \arctan(\frac{1}{239})$. Approximate π using four terms of the series for $\arctan(\frac{1}{5})$. How many terms of the series for $\arctan(\frac{1}{239})$ should you then keep? Explain your reasoning. **Problem 2.** Many of you may have seen the number $\frac{22}{7}$ as a rational approximation to π . This was originally due to Archimedes in the Third century BCE, who approximated the circle by a 96-gon to show that $\frac{223}{71} < \pi < \frac{22}{7}$. This was later improved by the Chinese mathematician Liu Hui (260 CE) who used an 192-gon.

In fact one has the following identity, which can be proved by a tedious integration

$$\pi = 22/7 - \int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx$$

Throughout this exercise you may find the following identity useful: if n and m are integers then

$$\int_0^1 x^n (1-x)^m dx = \frac{n!m!}{(n+m+1)!}$$

a) Use your calculator to draw a graph of the function $\frac{x^4(1-x)^4}{1+x^2}$ on the interval [0, 1]. You should find that the function $\frac{x^4(1-x)^4}{1+x^2}$ achieves its maximum value at approximately $x \approx \frac{1}{2}$.¹

b) Find the first two terms of the Taylor series for $\frac{1}{1+x^2}$ about $a = \frac{1}{2}$.

c) Take the integral $\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx$ and replace the $\frac{1}{1+x^2}$ by the *first* term in its Taylor series about $a = \frac{1}{2}$ to approximate the integral $\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx$.

d) What does this give you as an approximation to π . How does it compare with $\frac{22}{7}$?

¹Actually it is at
$$\frac{1}{9} \left(1 - \frac{7 5^{2/3}}{\sqrt[3]{38+9\sqrt{39}}} + \sqrt[3]{5(38+9\sqrt{39})} \right) \approx .475$$