At the end of this worksheet, think if you can generalize results for the following case. Let $\ln ^{\mathfrak{n}}(x)^{q}:=(\ln \circ \cdots \circ \ln (x))^{q}$ (alternatively, defined recursively by $\left(\ln ^{1}(x)\right)^{q}=(\ln (x))^{q}$ and $\left(\ln ^{n}(x)\right)^{q}:=\left(\ln \circ \ln ^{n-1}(x)\right)^{q}$. Then can we determine for what values p, q_{1}, \ldots, q_{n} the following integral converges:

$$
\int_{e}^{\infty} e^{e} \frac{d x}{x^{p} \prod_{j=1}^{n}(\operatorname{lnj}(x))^{q_{j}}} ?
$$

Exercise 0.1. 1. When $p>1, \int_{e}^{\infty} \frac{d x}{x^{p}(\ln (x))^{q}}<\infty$.
2. When $0<p<1$, the integral diverges.
3. When $p=1$, it converges for only $q>1$.

Proof. 1. Notice that $\ln (x)>1$ for all $x>e$, and and so $(\ln (x))^{q}>1$ for $x>e$, which implies that $x^{p}(\ln (x))^{1}>x^{p}$ when $x>e$; hence the reciprocals are swapped, $\frac{1}{x^{p}}<\frac{1}{x^{p}(\ln (x))^{q}}$ for $x>e$, and we conclude that

$$
\int_{e}^{\infty} \frac{d x}{x^{p}(\ln (x))^{q}}<\int_{e}^{\infty} \frac{d x}{x^{p}}<\infty .
$$

2. For this part, we want to use the fact that $\int \frac{1}{x^{p}}=\infty$ when $p<1$. We start by choosing some $p^{\prime} \in(p, 1)$, and rewrite the integrand

$$
\begin{equation*}
\frac{1}{x^{p}(\ln (x))^{q}}=\frac{x^{p^{\prime}}}{x^{p^{\prime}} x^{p}(\ln (x))^{q}}=\frac{x^{p^{\prime}-p}}{x^{p^{\prime}}(\ln (x))^{q}}=\frac{1}{x^{p^{\prime}}} \cdot \frac{x^{p^{\prime}-p}}{(\ln (x))^{q}} . \tag{1}
\end{equation*}
$$

What motivates this manipulation of the expression? Well, we are given that $\lim _{x \rightarrow \infty} \ln (x) / x^{b}=$ 0 for any $\mathrm{b}>0$, and if we can make that pop up somewhere, maybe we will be able to use it (hint: we will make it show up, and we will use it) ${ }_{\square}^{1}$
In fact, $\frac{x^{p^{\prime}-p}}{(\ln (x))^{q}}=\left(\frac{x^{\frac{\left(p^{\prime}-p\right)}{q}} \ln (x)}{\ln }\right)^{q}$ and $p^{\prime}>p$ implies that $\frac{p^{\prime}-p}{q}>0$, so by $R 3$, the stuff inside $(\cdot)^{q}$ goes to infinity as $x \rightarrow \infty$. But that implies that the whole thing goes to infinity. Sweet, so now we need to dust of our trusty $M-N$ definition of infinite limits: for every $M>0$ there is an N_{M} (N is a 'function' of M) such that

$$
\begin{equation*}
\left(\frac{x^{\frac{\left(p^{\prime}-p\right)}{q}}}{\ln (x)}\right)^{q}>M \tag{2}
\end{equation*}
$$

whenever $x>N_{M}$. So for kicks and giggles, if we let $M=1$ then the right hand expression of Equation (1) bounds $\frac{1}{x^{\mathrm{p}}}$ by above when $x>\mathrm{N}_{1}$. That implies:

$$
\int_{\mathrm{N}_{1}}^{\infty} \frac{\mathrm{d} x}{x^{p}(\ln (x))^{q}}>\int_{\mathrm{N}_{1}}^{\infty} \frac{\mathrm{d} x}{x^{p}}=\infty .
$$

[^0]Who cares what happens to $\int_{e}^{N_{1}} \frac{d x}{x^{p}(\ln (x))^{q}}$; it will be finite, and won't effect what happens to the integral at the tail. (For a bounded function (which $\frac{d x}{x^{p} \ln (x)^{9}}$ is on $[e, \infty$), divergence and convergence is a question of "tail behavior".)
3. When $p=1$, we are given the hint use $u=\ln (x)$ so that $d u=\frac{1}{x} d x, u(e)=\ln (e)=1$ and $u(\infty)^{\prime \prime}={ }^{\prime \prime} \ln (\infty)=\infty$. Then $\int_{e}^{\infty} \frac{d x}{x(\ln (x))^{q}}=\int_{1}^{\infty} \frac{d u}{u^{q}}=\left.\frac{1}{1-q} u^{1-q}\right|_{1} ^{\infty}= \begin{cases}\frac{1}{q-1} & \text { if } q>1 \\ \infty & \text { if }>q<1 .\end{cases}$
In other words, convergence if $q>1$ and divergence otherwise (case when $q=1$ given by R2).

Exercise 0.2. 1. When $p>1$, the integral $\int_{e^{e}}^{\infty} \frac{d x}{x^{p}(\ln (x))^{q}(\ln (\ln (x)))^{r}}$ converges.
2. The integral diverges when $0<p<1$ or if $p=1$ and $0<q<1$.
3. What happens when $p=q=1$

Proof. 1. Notice that $\ln \left(\ln \left(e^{e}\right)\right)=\ln (e)=1$, and so $\ln (\ln (x))>1$ for all $x>1$ (and in general, $\ln ^{n}\left(\exp ^{n}(1)\right)=1$ for all n (recall from the beginning (and also translate for exp) that $\exp ^{n}(x)$ noes not mean $(\exp (x))^{n}$. It means the n-fold composition of exp then taking x as its argument)). Therefore the integrand

$$
\frac{1}{x^{p}(\ln (x))^{q}(\ln (\ln (x)))^{r}}<\frac{1}{x^{p}\left(\ln (x)^{q}\right)}
$$

and we already saw that the integral of the right hand integrand converges for $p>1$ (converges, integrating from $e \rightarrow \infty$, and a fortiori on $e^{e} \rightarrow \infty$).
The next part is like problem 1.b, so let's take a break to reexamine the technique applied there.

2. The hint asks us to show that $\lim _{x \rightarrow \infty} \frac{\left(\ln (\ln (x))^{\alpha}\right.}{(\ln (x))^{\beta}}=0$ for any $\alpha, \beta>0$. When $\alpha=1$, one application of L'Hôpital gives that this $\operatorname{limit}^{\sin } \lim _{x \rightarrow \infty} \frac{1}{\beta(\ln (x))^{\beta}}=0$. Good, next we're gonna
apply the same trick as in Equation (2): for $\alpha \neq 1$,

$$
\frac{\left(\ln (\ln (x))^{\alpha}\right.}{(\ln (x))^{\beta}}=\left(\frac{(\ln (\ln (x))}{(\ln (x))^{\beta / \alpha}}\right)^{\alpha} \xrightarrow{x \rightarrow \infty} 0
$$

because the inside does.
At this point, we want to make a grandiose assumption about how the universe operates, namely that the future resembles the past, (https://plato.stanford.edu/entries/ induction-problem/), and hope for the best that we can basically copy what we did in problem 1.c
Indeed, let $q^{\prime} \in(q, 1)$ and note that

$$
\frac{1}{x^{p}(\ln (x))^{q}(\ln (\ln (x)))^{r}}=\frac{(\ln (x))^{q^{\prime}}}{x^{p}(\ln (x))^{q}(\ln (x))^{q^{\prime}}(\ln (\ln (x)))^{r}}=\frac{1}{x^{p}(\ln (x))^{q^{\prime}}} \cdot \frac{(\ln (x))^{q^{\prime}-q}}{(\ln (\ln (x)))^{r}} .
$$

By the hint, the right hand multiple of the expression on the right hand side goes to infinity (note: $q^{\prime}-q>0$!), so for some $N_{1}, \frac{(\ln (x))^{q^{\prime}-q}}{(\ln (\ln (x)))^{r}}>1$ for $x>N_{1}$ (without loss of generality, we can [and need to] take $N_{1}>e^{e}$). Then

$$
\int_{N_{1}}^{\infty} \frac{d x}{x^{p}(\ln (x))^{q}(\ln (\ln (x)))^{r}}>\int_{N_{1}}^{\infty} \frac{d x}{x^{p}(\ln (x))^{q}}=\infty,
$$

where now we're citing our results from part 1. Beautiful.
3. When $\mathrm{p}=\mathrm{q}=1$, we make the substitution $\mathrm{u}=\ln ^{2}(\mathrm{x})=\ln (\ln (\mathrm{x}))$, so $\mathrm{du}=\frac{\mathrm{dx}}{\mathrm{x} \ln (x)}$ and $u\left(e^{e}\right)=1$, etc., so

$$
\int_{e^{e}}^{\infty} \frac{d x}{x \ln (x)\left(\ln (\ln (x))^{r}\right.}=\int_{1}^{\infty} \frac{d u}{u^{r}} .
$$

The final integral (i.e. after substitution) is the exact same as that of problem 1.c!

[^0]: ${ }^{1}$ Bt dubs, we are also given that $\int_{e}^{\infty} \frac{d x}{x^{p} \ln (x)}$ diverges when $p \leq 1$, but you don't know that this is true when you raise $\ln (x)$ to the power $q>1$.

