At the end of this worksheet, think if you can generalize results for the following case. Let $\ln^{n}(x)^{q} := (\ln \circ \cdots \circ \ln(x))^{q}$ (alternatively, defined recursively by $(\ln^{1}(x))^{q} = (\ln(x))^{q}$ and $(\ln^{n}(x))^{q} := (\ln \circ \ln^{n-1}(x))^{q}$. Then can we determine for what values p, q_{1}, \ldots, q_{n} the following integral converges:

$$\int_{e^{e^{n}}}^{\infty} \frac{dx}{x^{p} \prod_{j=1}^{n} (\ln^{j}(x))^{q_{j}}}?$$

Exercise 0.1. 1. When p > 1, $\int_{e}^{\infty} \frac{dx}{x^{p}(\ln(x))^{q}} < \infty$.

- 2. When 0 , the integral diverges.
- 3. When p = 1, it converges for only q > 1.
- *Proof.* 1. Notice that $\ln(x) > 1$ for all x > e, and and so $(\ln(x))^q > 1$ for x > e, which implies that $x^p(\ln(x))^1 > x^p$ when x > e; hence the reciprocals are swapped, $\frac{1}{x^p} < \frac{1}{x^p(\ln(x))^q}$ for x > e, and we conclude that

$$\int_e^\infty \frac{\mathrm{d}x}{x^p(\ln(x))^q} < \int_e^\infty \frac{\mathrm{d}x}{x^p} < \infty.$$

2. For this part, we want to use the fact that $\int \frac{1}{x^p} = \infty$ when p < 1. We start by choosing some $p' \in (p, 1)$, and rewrite the integrand

$$\frac{1}{x^{p}(\ln(x))^{q}} = \frac{x^{p'}}{x^{p'}x^{p}(\ln(x))^{q}} = \frac{x^{p'-p}}{x^{p'}(\ln(x))^{q}} = \frac{1}{x^{p'}} \cdot \frac{x^{p'-p}}{(\ln(x))^{q}}.$$
 (1)

What motivates this manipulation of the expression? Well, we are given that $\lim_{x\to\infty} \ln(x)/x^b = 0$ for *any* b > 0, and if we can make *that* pop up somewhere, maybe we will be able to use it (hint: we *will* make it show up, and we *will* use it).¹

In fact, $\frac{x^{p'-p}}{(\ln(x))^q} = \left(\frac{x \frac{(p'-p)}{q}}{\ln(x)}\right)^q$ and p' > p implies that $\frac{p'-p}{q} > 0$, so by R3, the stuff inside $(\cdot)^q$ goes to infinity as $x \to \infty$. But that implies that the whole thing goes to infinity. Sweet, so now we need to dust of our trusty M - N definition of infinite limits: for every M > 0 there is an N_M (N is a 'function' of M) such that

$$\left(\frac{x^{\frac{(p'-p)}{q}}}{\ln(x)}\right)^{q} > M$$
(2)

whenever $x > N_M$. So for kicks and giggles, if we let M = 1 then the right hand expression of Equation (1) bounds $\frac{1}{x^p}$ by above *when* $x > N_1$. That implies:

$$\int_{N_1}^{\infty} \frac{dx}{x^p(\ln(x))^q} > \int_{N_1}^{\infty} \frac{dx}{x^p} = \infty.$$

¹Bt dubs, we are also given that $\int_{e}^{\infty} \frac{dx}{x^{p} \ln(x)}$ diverges when $p \le 1$, but you don't know that this is true when you raise $\ln(x)$ to the power q > 1.

Who cares what happens to $\int_{e}^{N_1} \frac{dx}{x^p(\ln(x))^q}$; it will be finite, and won't effect what happens to the integral at the tail. (For a bounded function (which $\frac{dx}{x^p\ln(x)^q}$ is *on* $[e, \infty)$, divergence and convergence is a question of "tail behavior".)

3. When p = 1, we are given the hint use $u = \ln(x)$ so that $du = \frac{1}{x}dx$, $u(e) = \ln(e) = 1$ and $u(\infty)^{"} = {}^{"} \ln(\infty) = \infty$. Then $\int_{e}^{\infty} \frac{dx}{x(\ln(x))^{q}} = \int_{1}^{\infty} \frac{du}{u^{q}} = \frac{1}{1-q}u^{1-q}|_{1}^{\infty} = \begin{cases} \frac{1}{q-1} & \text{if } q > 1\\ \infty & \text{if } > q < 1. \end{cases}$ In other words, convergence if q > 1 and divergence otherwise (case when q = 1 given by R2).

Exercise 0.2. 1. When p > 1, the integral $\int_{e^e}^{\infty} \frac{dx}{x^p(\ln(x))^q(\ln(\ln(x)))^r}$ converges.

- 2. The integral diverges when 0 or if <math>p = 1 and 0 < q < 1.
- 3. What happens when p = q = 1
- *Proof.* 1. Notice that $\ln(\ln(e^e)) = \ln(e) = 1$, and so $\ln(\ln(x)) > 1$ for all x > 1 (and in general, $\ln^n(\exp^n(1)) = 1$ for all n (recall from the beginning (and also translate for exp) that $\exp^n(x)$ noes *not* mean $(\exp(x))^n$. It means the n-fold composition of exp then taking x as its argument)). Therefore the integrand

$$\frac{1}{x^p(\ln(x))^q(\ln(\ln(x)))^r} < \frac{1}{x^p(\ln(x)^q)}$$

and we already saw that the integral of the right hand integrand converges for p > 1 (converges, integrating from $e \to \infty$, and *a fortiori* on $e^e \to \infty$).

The next part is like problem 1.b, so let's take a break to reexamine the technique applied there.

2. The hint asks us to show that $\lim_{x\to\infty} \frac{(\ln(\ln(x))^{\alpha}}{(\ln(x))^{\beta}} = 0$ for any $\alpha, \beta > 0$. When $\alpha = 1$, one application of L'Hôpital gives that this limit is $\lim_{x\to\infty} \frac{1}{\beta(\ln(x))^{\beta}} = 0$. Good, next we're gonna

apply the same trick as in Equation (2): for $\alpha \neq 1$,

$$\frac{(\ln(\ln(x))^{\alpha}}{(\ln(x))^{\beta}} = \left(\frac{(\ln(\ln(x)))}{(\ln(x))^{\beta/\alpha}}\right)^{\alpha} \xrightarrow{x \to \infty} 0$$

because the inside does.

At this point, we want to make a grandiose assumption about how the universe operates, namely that the future resembles the past, (https://plato.stanford.edu/entries/ induction-problem/), and hope for the best that we can basically copy what we did in problem 1.c

Indeed, let $q' \in (q, 1)$ and note that

$$\frac{1}{x^{p}(\ln(x))^{q}(\ln(\ln(x)))^{r}} = \frac{(\ln(x))^{q'}}{x^{p}(\ln(x))^{q}(\ln(x))^{q'}(\ln(\ln(x)))^{r}} = \frac{1}{x^{p}(\ln(x))^{q'}} \cdot \frac{(\ln(x))^{q'-q}}{(\ln(\ln(x)))^{r}}.$$

By the hint, the right hand multiple of the expression on the right hand side goes to infinity (note: q' - q > 0!), so for some N₁, $\frac{(\ln(x))q'-q}{(\ln(\ln(x)))^r} > 1$ for $x > N_1$ (without loss of generality, we can [and need to] take N₁ > e^e). Then

$$\int_{N_1}^{\infty} \frac{\mathrm{d}x}{x^p(\ln(x))^q(\ln(\ln(x)))^r} > \int_{N_1}^{\infty} \frac{\mathrm{d}x}{x^p(\ln(x))^q} = \infty,$$

where now we're citing our results from part 1. Beautiful.

3. When p = q = 1, we make the substitution $u = \ln^2(x) = \ln(\ln(x))$, so $du = \frac{dx}{x\ln(x)}$ and $u(e^e) = 1$, etc., so

$$\int_{e^e}^{\infty} \frac{dx}{x \ln(x)(\ln(\ln(x))^r)} = \int_{1}^{\infty} \frac{du}{u^r}.$$

The final integral (i.e. after substitution) is the exact same as that of problem 1.c!