
Integral Comparison Problems

At the end of this worksheet, think if you can generalize results for the following case. Let
lnn(x)q := (ln ◦ · · · ◦ ln(x))q (alternatively, defined recursively by (ln1(x))q = (ln(x))q and
(lnn(x))q := (ln ◦ lnn−1(x))q. Then can we determine for what values p,q1, . . . ,qn the follow-
ing integral converges: ∫∞

e...
e

dx

xp
∏n
j=1(ln

j(x))qj
?

Exercise 0.1. 1. When p > 1,
∫∞
e

dx

xp(ln(x))q
<∞.

2. When 0 < p < 1, the integral diverges.

3. When p = 1, it converges for only q > 1.

Proof. 1. Notice that ln(x) > 1 for all x > e, and and so (ln(x))q > 1 for x > e, which implies
that xp(ln(x))1 > xp when x > e; hence the reciprocals are swapped, 1

xp <
1

xp(ln(x))q for x > e,
and we conclude that ∫∞

e

dx

xp(ln(x))q
<

∫∞
e

dx

xp
<∞.

2. For this part, we want to use the fact that
∫
1

xp
=∞ when p < 1. We start by choosing some

p ′ ∈ (p, 1), and rewrite the integrand

1

xp(ln(x))q
=

xp
′

xp
′
xp(ln(x))q

=
xp
′−p

xp
′
(ln(x))q

=
1

xp
′ ·

xp
′−p

(ln(x))q
. (1)

What motivates this manipulation of the expression? Well, we are given that lim
x→∞ ln(x)/xb =

0 for any b > 0, and if we can make that pop up somewhere, maybe we will be able to use it
(hint: we will make it show up, and we will use it).1

In fact, xp
′−p

(ln(x))q =

(
x
(p ′−p)

q

ln(x)

)q
and p ′ > p implies that p

′−p
q > 0, so by R3, the stuff inside (·)q

goes to infinity as x → ∞. But that implies that the whole thing goes to infinity. Sweet, so
now we need to dust of our trusty M−N definition of infinite limits: for every M > 0 there
is an NM (N is a ‘function’ ofM) such thatx (p ′−p)

q

ln(x)

q

> M (2)

whenever x > NM. So for kicks and giggles, if we let M = 1 then the right hand expression
of Equation (1) bounds 1

xp by above when x > N1. That implies:∫∞
N1

dx

xp(ln(x))q
>

∫∞
N1

dx

xp
=∞.

1Bt dubs, we are also given that
∫∞
e

dx

xpln(x)
diverges when p ≤ 1, but you don’t know that this is true when you

raise ln(x) to the power q > 1.
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Who cares what happens to
∫N1

e

dx

xp(ln(x))q
; it will be finite, and won’t effect what happens

to the integral at the tail. (For a bounded function (which dx
xpln(x)q is on [e,∞), divergence

and convergence is a question of “tail behavior”.)

3. When p = 1, we are given the hint use u = ln(x) so that du = 1
xdx, u(e) = ln(e) = 1 and

u(∞)‘‘ = ′′ ln(∞) =∞. Then
∫∞
e

dx

x(ln(x))q
=

∫∞
1

du

uq
=

1

1− q
u1−q|∞1 =

{
1
q−1 if q > 1∞ if > q < 1.

In other words, convergence if q > 1 and divergence otherwise (case when q = 1 given by
R2).

Exercise 0.2. 1. When p > 1, the integral
∫∞
ee

dx

xp(ln(x))q(ln(ln(x)))r
converges.

2. The integral diverges when 0 < p < 1 or if p = 1 and 0 < q < 1.

3. What happens when p = q = 1

Proof. 1. Notice that ln(ln(ee)) = ln(e) = 1, and so ln(ln(x)) > 1 for all x > 1 (and in gen-
eral, lnn(expn(1)) = 1 for all n (recall from the beginning (and also translate for exp) that
expn(x) noes not mean (exp(x))n. It means the n-fold composition of exp then taking x as its
argument)). Therefore the integrand

1

xp(ln(x))q(ln(ln(x)))r
<

1

xp(ln(x)q)

and we already saw that the integral of the right hand integrand converges for p > 1 (con-
verges, integrating from e→∞, and a fortiori on ee →∞).

The next part is like problem 1.b, so let’s take a break to reexamine the technique applied
there.

2. The hint asks us to show that lim
x→∞ (ln(ln(x))α

(ln(x))β
= 0 for any α,β > 0. When α = 1, one

application of L’Hôpital gives that this limit is lim
x→∞ 1

β(ln(x))β
= 0. Good, next we’re gonna
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apply the same trick as in Equation (2): for α 6= 1,

(ln(ln(x))α

(ln(x))β
=

(
(ln(ln(x))

(ln(x))β/α

)α
x→∞−−−→ 0

because the inside does.

At this point, we want to make a grandiose assumption about how the universe oper-
ates, namely that the future resembles the past, (https://plato.stanford.edu/entries/
induction-problem/), and hope for the best that we can basically copy what we did in
problem 1.c

Indeed, let q ′ ∈ (q, 1) and note that

1

xp(ln(x))q(ln(ln(x)))r
=

(ln(x))q
′

xp(ln(x))q(ln(x))q
′
(ln(ln(x)))r

=
1

xp(ln(x))q
′ ·

(ln(x))q
′−q

(ln(ln(x)))r
.

By the hint, the right hand multiple of the expression on the right hand side goes to infinity

(note: q ′ − q > 0!), so for some N1,
(ln(x))q

′−q

(ln(ln(x)))r > 1 for x > N1 (without loss of generality,

we can [and need to] take N1 > ee). Then∫∞
N1

dx

xp(ln(x))q(ln(ln(x)))r
>

∫∞
N1

dx

xp(ln(x))q
=∞,

where now we’re citing our results from part 1. Beautiful.

3. When p = q = 1, we make the substitution u = ln2(x) = ln(ln(x)), so du = dx
xln(x) and

u(ee) = 1, etc., so ∫∞
ee

dx

xln(x)(ln(ln(x))r
=

∫∞
1

du

ur
.

The final integral (i.e. after substitution) is the exact same as that of problem 1.c!

https://plato.stanford.edu/entries/induction-problem/
https://plato.stanford.edu/entries/induction-problem/

