
δ− ε Continuity Problems

Extra Problems on Continuity

Definition 1. A function f : R → R is said to be lipschitz on open interval (a,b) ⊂ R if there is a
positive constant C > 0 such that |f(x) − f(y)| < C|x− y| whenever a < x < y < b.

Further recall the definition of continuity:

Definition 2. A function f : R → R is said to be continuous at p if for every ε > 0 there is an
associated δε > 0 (depending on ε) such that |f(x) − f(p)| < ε whenever |x− p| < δε. A function is
continuous (with no qualification) if it is continuous at p for every p in the domain.

Here is an illustration of how these proofs go.

Exercise 0.1 (Example). For any a ∈ R, function ax is continuous on R.

Proof. Let a ∈ R be given, and suppose (one case) that a > 0 (what do you do when a = 0 and
when a < 0?). Next, fix p ∈ R. It doesn’t matter what p is, but we need it to be a fixed value to
continue with the proof.1 Next, suppose ε > 0 is given (not chosen). We need to find a suitable
δ so that if |x− p| < δ then we can be assured that |f(x) − f(p)| < ε. Well, let’s start with what
we want to achieve: we want that |ax− ap| < ε. This holds if and only if (after factoring out a),
|a(x − p)| < ε which holds if and only if |x − p| < ε/a. In other words, if |x − p| < ε/a, then
|ax− ap| will surely be less than ε. So let δ = ε/a.

If we want to be really complete, we can reverse the steps to verify that this δ works (but it
isn’t necessary):

|x− p| < δ⇔ |x− p| < ε/a⇔ a|x− p| < ε⇔ |a(x− p)| < ε⇔ |ax− ap| < ε⇔ |f(x) − f(p) < ε

In particular since A⇔ B implies that A⇒ B, we have that |x− p| < δ→ |f(x) − f(p)| < ε.

Notice that we fixed p in the beginning, so technically we only showed continuity at p. But
then again, I didn’t really tell you where p was, so p could have been anywhere. This establishes
that the argument works for any p and hence that ax is continuous everywhere. (This is actually
sortof what we do with ε, since technically ε can be anything, but we need it to be fixed in order
to find δ.)

Ok, I’m gonna give another example which is a little bit more involved.

Exercise 0.2 (Example). Show that log(x) is continuous on (0,∞).
1This is a technical point about the definition of continuity, which is that continuity is continuity at a point. So even

though ε can be whatever, it is whatever after you have selected which point you want to show continuity around.
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Proof. Let p ∈ (0,∞), and suppose that ε > 0 is given. Start with what we need: |f(x) − f(p)| < ε,
and from this let’s try to derive what would be required of |x− p|. Well, | log(x) − log(p)| < ε if
and only if −ε < log(x) − log(p) < ε if and only if log(p) − ε < log(x) < log(p) + ε if and only if
elog(p)−ε < x < elog(p)+ε (think about why the inequality direction is preserved when we apply the
exponential).

Therefore if x ∈ (elog(p)−ε, elog(p)+ε), then we are guaranteed that |f(x) − f(p)| < ε. Great!, but
we don’t yet have |x− p| < δ. That’s ok: we know that elog(p)−ε < p < elog(p)+ε (how?: recall that
p = elog(p)!), or in other words that p is “somewhere” in the middle. Chances are it’s closer to one
side than the other. So let

δ = min
{
|p− elog(p)−ε|, |p− elog(p)+ε|

}
.

Beautiful, so given this δ, if |x− p| < δ, then for sure x ∈ (elog(p)−ε, elog(p)+ε), and from our
calculation above that implies that |f(x) − f(p)| < ε. (Again, this can be verified by repeating an
analogous computation as in the preceding problem, but usually this is not necessary; just become
comfortable with why we can stop here.)

Exercise 0.3. Suppose that f is lipschitz on (a,b) ⊂ R. Then prove that f is continuous on (a,b).

Exercise 0.4. Suppose that f is differentiable at p. Then prove it is also continuous at p.

Hint. There will be two sets of (δ, ε) floating around, the first from the definition of derivative as

lim
x→p f(x) − f(p)x− p

= f ′(p)

which (recall, by definition of limit) means that for every ε > 0 there is a δε > 0 such that |x−p| < δ
implies that

∣∣∣ f(x)−f(p)x−p − f ′(p)
∣∣∣ < ε. But you need to show that given any ε ′ > 0, there is (for

this epsilon) an associated δ ′ such that |x− p| < δ ′ (not δ) implies that |f(x) − f(p)| < ε ′. Also,
remember the triangle inequality which says that |x+y| ≤ |x|+ |y|. And one more thing, add zero,
like this: f(x) − f(p) = f(x) − f(p) − a+ a. Hint again (because this is a challenging problem): let
a = f ′(p)(x− p).

Exercise 0.5. Let f : Q→ R be defined by f(x) = x (defined only for rational numbers). Prove that
f is continuous.

Note that this function is not defined for irrational reals. That is not a problem in terms of the
definition of continuity (can you explain in words why not?)!

Exercise 0.6. Let n ∈N be a natural number. Then show the n-th power function xn is continuous
on R.

Hint. Use the a similar strategy to the problems in Worksheet 2B. Another strategy would be to
show that this function is Lipschitz on any bounded interval.
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Exercise 0.7. Let p(x) =
n∑
j=0

ajx
j be a polynomial in R (with aj ∈ R). So for example 1+ x2 − 3x5.

Prove that p is continuous on R.

Hint. This is a challenging problem. There are two strategies. One is to show lipshitzness on any
bounded interval. The other is to show that addition + : R×R → R defined by (a,b) 7→ a+ b
is continuous. This is also difficult, so another hint is that for a function defined on two variables,
we no longer have |x− p| but ||x − p|| =

√
(x1 − p1)2 + (x2 − p2)2. Then there is another inequality

which you can use, which is that
√
a+ b ≤

√
a+
√
b.

Exercise 0.8. Let χQ : R → R be defined by χQ(x) =

{
1 if x is rational
0 else.

So for example

χQ(1/2) = 1 and χQ(π) = 0. Prove that χQ is nowhere continuous.

Hint. You need a fact in order to solve this problem which is that both the rationals and irrationals
are “dense” in R. What does that mean? Given any a < b in R, there are both a rational point
a < r < b and irrational point a < t < b (and therefore, infinitely many of each).


