Extra Problems on Continuity

Definition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be lipschitz on open interval $(a, b) \subset \mathbb{R}$ if there is a positive constant $C>0$ such that $|f(x)-f(y)|<C|x-y|$ whenever $a<x<y<b$.

Further recall the definition of continuity:
Definition 2. A function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at p if for every $\varepsilon>0$ there is an associated $\delta_{\varepsilon}>0$ (depending on ε) such that $|f(x)-f(p)|<\varepsilon$ whenever $|x-p|<\delta_{\varepsilon}$. A function is continuous (with no qualification) if it is continuous at p for every p in the domain.

Here is an illustration of how these proofs go.
Exercise 0.1 (Example). For any $a \in \mathbb{R}$, function $a x$ is continuous on \mathbb{R}.

Proof. Let $a \in \mathbb{R}$ be given, and suppose (one case) that $a>0$ (what do you do when $a=0$ and when $a<0$?). Next, fix $p \in \mathbb{R}$. It doesn't matter what p is, but we need it to be a fixed value to continue with the proof $\left[^{1}\right.$ Next, suppose $\varepsilon>0$ is given (not chosen). We need to find a suitable δ so that if $|x-p|<\delta$ then we can be assured that $|f(x)-f(p)|<\varepsilon$. Well, let's start with what we want to achieve: we want that $|a x-a p|<\varepsilon$. This holds if and only if (after factoring out a), $|a(x-p)|<\varepsilon$ which holds if and only if $|x-p|<\epsilon / a$. In other words, if $|x-p|<\epsilon / a$, then $|a x-a p|$ will surely be less than ϵ. So let $\delta=\varepsilon / a$.

If we want to be really complete, we can reverse the steps to verify that this δ works (but it isn't necessary):

$$
\begin{array}{lll}
& |x-p| & <\delta \\
\Leftrightarrow & |x-p| & <\varepsilon / a \\
\Leftrightarrow & a|x-p| & <\varepsilon \\
\Leftrightarrow & |a(x-p)| & <\varepsilon \\
\Leftrightarrow & |a x-a p| & <\varepsilon \\
\Leftrightarrow & \mid f(x)-f(p) & <\varepsilon
\end{array}
$$

In particular since $A \Leftrightarrow B$ implies that $A \Rightarrow B$, we have that $|x-p|<\delta \rightarrow|f(x)-f(p)|<\varepsilon$.

Notice that we fixed p in the beginning, so technically we only showed continuity at p. But then again, I didn't really tell you where p was, so p could have been anywhere. This establishes that the argument works for any p and hence that $a x$ is continuous everywhere. (This is actually sortof what we do with ε, since technically ε can be anything, but we need it to be fixed in order to find δ.)

Ok, I'm gonna give another example which is a little bit more involved.
Exercise 0.2 (Example). Show that $\log (x)$ is continuous on $(0, \infty)$.

[^0]Proof. Let $p \in(0, \infty)$, and suppose that $\varepsilon>0$ is given. Start with what we need: $|f(x)-f(p)|<\varepsilon$, and from this let's try to derive what would be required of $|x-p|$. Well, $|\log (x)-\log (p)|<\varepsilon$ if and only if $-\varepsilon<\log (x)-\log (p)<\varepsilon$ if and only if $\log (p)-\varepsilon<\log (x)<\log (p)+\varepsilon$ if and only if $e^{\log (p)-\varepsilon}<x<e^{\log (p)+\varepsilon}$ (think about why the inequality direction is preserved when we apply the exponential).

Therefore if $x \in\left(e^{\log (p)-\varepsilon}, e^{\log (p)+\varepsilon}\right)$, then we are guaranteed that $|f(x)-f(p)|<\varepsilon$. Great!, but we don't yet have $|x-p|<\delta$. That's ok: we know that $e^{\log (p)-\varepsilon}<p<e^{\log (p)+\varepsilon}$ (how?: recall that $p=e^{\log (p)!}!$, or in other words that p is "somewhere" in the middle. Chances are it's closer to one side than the other. So let

$$
\delta=\min \left\{\left|p-e^{\log (p)-\varepsilon}\right|,\left|p-e^{\log (p)+\varepsilon}\right|\right\}
$$

Beautiful, so given this δ, if $|x-p|<\delta$, then for sure $x \in\left(e^{\log (\mathfrak{p})-\varepsilon}, e^{\log (p)+\varepsilon}\right)$, and from our calculation above that implies that $|f(x)-f(p)|<\varepsilon$. (Again, this can be verified by repeating an analogous computation as in the preceding problem, but usually this is not necessary; just become comfortable with why we can stop here.)

Exercise 0.3. Suppose that f is lipschitz on $(a, b) \subset \mathbb{R}$. Then prove that f is continuous on (a, b).
Exercise 0.4. Suppose that f is differentiable at p. Then prove it is also continuous at p.

Hint. There will be two sets of (δ, ε) floating around, the first from the definition of derivative as

$$
\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}=f^{\prime}(p)
$$

which (recall, by definition of limit) means that for every $\varepsilon>0$ there is a $\delta_{\varepsilon}>0$ such that $|x-p|<\delta$ implies that $\left|\frac{f(x)-f(p)}{x-p}-f^{\prime}(p)\right|<\varepsilon$. But you need to show that given any $\varepsilon^{\prime}>0$, there is (for this epsilon) an associated δ^{\prime} such that $|x-p|<\delta^{\prime}(\operatorname{not} \delta)$ implies that $|f(x)-f(p)|<\varepsilon^{\prime}$. Also, remember the triangle inequality which says that $|x+y| \leq|x|+|y|$. And one more thing, add zero, like this: $f(x)-f(p)=f(x)-f(p)-a+a$. Hint again (because this is a challenging problem): let $a=f^{\prime}(p)(x-p)$.

Exercise 0.5. Let $\mathrm{f}: \mathrm{Q} \rightarrow \mathbb{R}$ be defined by $f(x)=x$ (defined only for rational numbers). Prove that f is continuous.

Note that this function is not defined for irrational reals. That is not a problem in terms of the definition of continuity (can you explain in words why not?)!

Exercise 0.6. Let $\mathfrak{n} \in \mathbb{N}$ be a natural number. Then show the n-th power function x^{n} is continuous on \mathbb{R}.

Hint. Use the a similar strategy to the problems in Worksheet 2B. Another strategy would be to show that this function is Lipschitz on any bounded interval.

Exercise 0.7. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial in \mathbb{R} (with $a_{j} \in \mathbb{R}$). So for example $1+x^{2}-3 x^{5}$. Prove that p is continuous on \mathbb{R}.

Hint. This is a challenging problem. There are two strategies. One is to show lipshitzness on any bounded interval. The other is to show that addition $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $(a, b) \mapsto a+b$ is continuous. This is also difficult, so another hint is that for a function defined on two variables, we no longer have $|x-p|$ but $\|\mathbf{x}-\mathbf{p}\|=\sqrt{\left(x_{1}-p_{1}\right)^{2}+\left(x_{2}-p_{2}\right)^{2}}$. Then there is another inequality which you can use, which is that $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$.

Exercise 0.8. Let $\chi_{Q}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\chi_{Q}(x)=\left\{\begin{array}{ll}1 & \text { if } \\ 0 & \text { else. }\end{array} \quad\right.$ is rational So for example $\chi_{Q}(1 / 2)=1$ and $\chi_{Q}(\pi)=0$. Prove that χ_{Q} is nowhere continuous.

Hint. You need a fact in order to solve this problem which is that both the rationals and irrationals are "dense" in \mathbb{R}. What does that mean? Given any $\mathrm{a}<\mathrm{b}$ in \mathbb{R}, there are both a rational point $\mathrm{a}<\mathrm{r}<\mathrm{b}$ and irrational point $\mathrm{a}<\mathrm{t}<\mathrm{b}$ (and therefore, infinitely many of each).

[^0]: ${ }^{1}$ This is a technical point about the definition of continuity, which is that continuity is continuity at a point. So even though ε can be whatever, it is whatever after you have selected which point you want to show continuity around.

