JAMES SCHMIDT

Pendulum Control Project

July 16, 2014

Intermediate Controls 1

Abstract

The purpose of this project was to use technical mathematics and conceptual tools from
theoretical controls to identify a model for a mechanical system, an inverted pendulum, and
to design a controller to obtain desired behavior. The steps in this process began with system
identification, which employed empirical means, and design by theory. The plant was identified
to by G = 52%%12 and the controller was chosen to be a lead lag controller, namely G, =
90 sfoﬂ :j& , both of which together resulted in roughly the following performance specifications:
t. <0.25s,t; <1.5s, and O = 10%.

1 Introduction

Feedback is ubiquitous. We live and die according to whether feedback is efficiently operative in
our system (body). In engineering, we try to capture by mathematics the way which feedback
works. It’s important to notice, though, that feedback in many real systems is not mathematical:
the body e.g. does not compute the required input from a transfer function. We model systems
mathematically because by means of it we can realize the effects of feedback and thereby imitate
many real systems.

Consider an inverted pendulum. It is identical to the ordinary pendulum except that its
equilibrium point (vertical) is unstable rather than stable. But that instability can be removed by
feedback: continuously maintaining (or trying to maintain) a position near the origin. It is a good
model of human walking. However, we walk rather smoothly and have little trouble responding
to disturbances. In this project, our aim is to implement a controller to stabilize the pendulum
about its equilibrium point. Naturally, our efforts won’t result in a product as feedback-saavy as
the bipedal species. The reason forthis are threefold:

1. The mathematical model of the system does not exactly represent system dynamics.
2. The dynamics of the system are exaggerated (moment of inertia disproportionate).

3. The actuator is limited.

In what follows we will run through the mathematical derivation of the model to be used in
the control design. This part will be entirely empirical: we will look at the system response to
a step input and match parameters assuming a canonical system type, namely that the inverted
pendulum acts like a second order system. The reason for making this assumption is that the
system response looks like the system response of a second order system. But, as a precautionary
note, it’s not one! Then we will run through a design of the controller, which was also empirical.
The theory guiding the design isn’t (it’s math), but determining a controller which actually works
is, as will be discussed in §3. Finally we will show the results of the implementation and compare it
to theoretically expected response. For the latter, we used both plots from Matlab and simulations
from Simulink.

Intermediate Controls 2

2 System Identification

2.1 Empirical Correlations

The following figure shows the empirical data of the pendulum for a step input of unitless input
torque u = 100. We used the original code, varying from —20° to +20°; another plot in Appendix B
shows similar results varying the step input between v = 300 and v = 0. The results were averaged

and given as follows

Response (Degrees)

50

40

30

20

10

|
=
o

|
N
o

¢~ 0.12 (1)
Wq ~ 6.3 (2)
wp, ~ 3.4 (3)

10 15 20 25 30 35 40 45 50
Time (s)

Figure 1: System Identification with v = 100

They were obtained by using the following two equations:

and

2.1 Empirical Correlations Intermediate Controls 3

0 T
—— Theoretical

Actual
_10 -

Response (Degrees)

-80 1 1 | | |
0 2 3 4
Time (s)

Figure 2: Experimental and Theoretical System

both from [I], and Figure 9.24[I], which is verified by
3

=

As an aside, since the numerical values range from —50° to 50°, overshoot had to be normalized
by some constant, for which we used the absolute range of motion of the pendulum (50°). It is
important to point out exactly what these equalities mean. We are taking empirical data of a
physical system and trying to fit it into a model of a second order system, whose transfer function
is given by the equation

ts

(6)

w2

n
. 7
82 + 2Cwp s + w2 (7)

G(s) =

It is the second order system for which the use of these equations hold apriori (and even
then, they are not exact but [good] approximations). We can assume that a theoretical second
order system approximates the real system if in our extrapolation from the data of second order
parameters, the associated second order system actually does line up with the real system. Figure
2 above shows their correspondence.

The results are fairly accurate. The theoretical overshoot is greater than the actual overshoot,
but the amplitude following for the theoretical is greater than the actual. Thus perfectly matching
the real system behavior with a second order model is impossible, and we have a trade-off between
attempting to capture more of the tail or the front end. We opted for in between; so though not
ideal, the result is nevertheless sufficiently approximate. Whether ‘sufficient’ is satisfactory will
be made more apparent in the implementation of a controller. We should be able to predict with

2.2 Inverting the Pendulum Intermediate Controls 4

reasonable uncertainty (namely, uncertainty corresponding to the uncertainty of the second order
model) how the controlled system will behave.

The theoretical system is given by
T+2+35=0 (8)

with plant (system) transfer function

12

Gl = 3 1

(9)

the roots of which are approximately —0.5 4+ 1.8i. Again, given uncertainty and theoretical conces-
sions, values in these equations are approximate and rounded for simplicity.

2.2 Inverting the Pendulum

Consider the following figure, borrow from [I] 10.11. The equations of motion are given by

mi?6 = mglsin(0) + 7 (10)

Contrast this from the case of the non-inverted pendulum, for which the equations of motion are
given simply by)
mi*0 = —mglsin(f) + 7. (11)

The difference between the two equations consists in the sign preceding the gravity term. More
importantly, these equations of motion can be linearized as

mi?6 + mgld = 7 (12)
for 8 =~ 0. Bracketing for the moment that the behavior of our system will not remain close to zero,
the transfer function of input to output is given by

0 1
- - 13
T mi2s +mgl (13)

2.2 Inverting the Pendulum Intermediate Controls 5

where reference to and indicate that ‘+’ refers to the noninverted pendulum and ‘-’ to the
inverted. Furthermore, this equation does not contain a damping term, but supposing it did, the
gravity term would not be in it. So what falls out of this discussion is that the direction of gravity
is responsible in changing the equations of motion between the inverted and noninverted case, and
the result is that the 6 term (not 6 or) is altered only in sign.

With this preamble, we conclude that the transfer function for the inverted pendulum which
we will control is

12
G - = 14
and the corresponding system dynamics are given by
6+60—350=0 (15)

the roots of whose characteristic function are {3, —4}.

The following two plots are the root locus plots for the uncontrolled non-inverted and inverted
pendulum, respectively.

15 T T T T

Imaginary Axis (seconds)
o

-15 I I i I
-2 -1.5 -1 -0.5 0 0.5 1

Real Axis (seconds™?)

Figure 3: Root Locus for G), = 52;8%

Intermediate Controls 6

|
'_\

T

1

Imaginary Axis (seconds ™)
b o

-4 I I I I
-5 -4 -3 -2 -1 0 1 2 3 4

Real Axis (seconds ™)

Figure 4: Root Locus for G, = @72_12

3 Designing a Controller

It’s easy to see that in theory we can choose a controller to satisfy unrealistic performance specifi-
cations. Consider, e.g., a lead lag controller
s+.1 s4+1

Oy = 10,000 16
i S 001 s+ 100 (16)

Its behavior is shown in the following plot.

‘Unrealistic’ here has a technical meaning. The controller we implement isn’t working simply
by computer simulation. It operates in a physical system through a processor with limited comput-
ing power, and a motor with limited actuating power. These limits include speed of computation,
memory allocation, allowable output torque, communication clarity (noise), etc. Since the con-
troller is working at 20 H z, it’s more likely that the motor, not microcontroller, is the real culprit
for any limits on system behavior.

Therefore, our ambitions must be reigned. Theoretically we can be aggressive as we want and
design a controller with ¢, < 0.001s and O < 1%, but most likely the motor won’t be able to

Intermediate Controls 7

1.4 T T T T T

0.8

T

0.6

Amplitude

0.4

T

0.2f

0 0.02 0.04 0.06 0.08 0.1 0.12
Time (seconds)

Figure 5: Expected System Behavior with ‘Unrealistic’ Controller

handle itE| In fact, this was verified by experiment, using a lead lag controller

_ 9 s+2 s+1

Gels) = 20— o1 (17)

as shown in Figure 6.

However, the expected response wasn’t even that unreasonable (c.f. Figure 7), especially
compared to a controller which did in fact work as desired (c.f. §4).

Reference to Figure 4 will be necessary to consider a design of a controller. Note that as
it stands, the closed loop system is unstable. We didn’t encounter any apparent instabilities in
§2.1 because we weren’t looking at the behavior of the closed loop inverted system. In fact, we
weren’t considering the inverted system at all. For the hanging pendulum, both the open and
closed loop transfer function are stable. The closed loop inverted system can be stabilized alone
with a sufficiently high gain, but in this case the behavior still isn’t desirable (close to the real axis
it will take forever to reach the desired value and if we ramp up the gain a little to move the poles
farther from the origin, then it will very quickly oscillate like crazy).

Therefore, in order to proceed our first task will be to pull the root locus plot to the left.
However, taking into account the discussion of the divergence of real behavior from theoretical,
our approach won’t be quite so calculated as it could be. To reiterate, the reason for this is that
we can’t determine apriori whether a designed controller will in fact work as expected in the real

Tt’s worth noticing that these kinds of limitations are present everywhere in engineering systems. I would even
say from my experience as an undergrad that half of engineering practice is not applying theory but deciding what to
do when blockades require preference on tradeoffs. For senior design, e.g., we wanted a motor which was both really
torquey and really fast, but unfortunately- unless you want to shell out more cash for a monster motor- opting for
one ipso facto results in sacrificing the other.

Intermediate Controls 8

0(t) (Degrees)
5 8 3 8 8

N
(=]
T

301

20 1 1 1 1
0 5 10 15 20 25

Time (s)

Figure 6: Actual Response with Aggressive Controller

Amplitude

0 0.5 1 15 2 2.5 3 3.5 4
Time (seconds)

Figure 7: Expected Response with Aggressive Controller

system. Therefore, we have to use a trial and error approach: design a controller with satisfactory
system parameters, upload it into the controller, and see if it works. If it doesn’t, then design a

more modest controller.

Intermediate Controls 9

The fundamental philosophy to designing a controller is: pull stuff to the left and down
towards the real axis. Together these decrease overshoot, rise time, and settling time, all of which
are desirable features for almost any system behaviorﬂ

4 Implementation

In this section we present the results of a controller which we managed to successfully implement.
A video of the first controller used can be found at http://www3.nd.edu/~aschmid5/.

We used a lead lag controller with

s+5
ea 1
Glead(s) T (18)
and 41
s
Glag(s) = m7 (19)

the root locus of which with our system can be found in Appendix B. A sufficiently high gain needs
to be chosen to both stabilize the system and provide for satisfactory performance, but it is evident
that if too high a gain is chosen then performance will not meet specifications: overshoot will be
too high and there will be little damping.

In cases where controller limits aren’t immediately observable, or where those limits are able
to be more precisely correlated before hand with numerical values, and where actuation of an overly
aggressive controller could break components of the system, it would be advantageous to employ
more careful foresight in the design stage than we did. In our case, the worst that could happen
is that the pendulum breaks off, and luckily (admittedly, I say this perhaps too flippantly) that
didn’t happen. If it did, then I guess I would have to say: it would be good to be careful ahead of
time!

Our Controller was
s+5 s+1

s+ 1554 0.1
As it stands, this transfer function is useless. We need to translate the transfer function from
the continuous domain, where did the analysis, into the discrete time domain where the computer
operation lives, so that it can be used in a program. The programed controller runs through a loop
and at each iteration compares data from previous time steps; it works because the difference in
values over a short time interval approximates derivatives.

(20)

To perform the transformation, in Matlab we used the ‘c2d’ function with a frequency of
20 H z, and Tustins method, the result of which was

0.836522 — 1.446z + 0.6189
22 — 1.452z + 0.4523

Gc,dis = (21)

2To be precise, overshoot is related to the angle which poles make with the real (or equivalently, imaginary) axis,
whereas rise and settling time are related to distance from origin and imaginary axis, respectively.

http://www3.nd.edu/~aschmid5/

REFERENCES Intermediate Controls 10

Note that this transfer function is the transfer function of the controller; we need only it because
u = Ge- it represents the ratio of input to error= and we have knowledge of these values during
each loop. Even though the plant dynamics don’t appear at all in our program, they directed our
design of the controller (so implicitly they’re there).

Multiplying out, we obtain
(22 — 1.452 4 0.4523)U = (0.83652% — 1.4462 + 0.6189)E (22)
Since z’s represent time-shift, the update law is given as
Unew = (8365€rT ey — 14460err (T —1)46189%err (T —2) +14500u(T — 1) —4523u(T—2)) /10000 (23)

As it stands, we can’t accept this new torque without question, because there’s a limit to how much
the motor can accurately output. Therefore, we need to saturate u:

" { sgn(u) - 400 if |u] > 400

24
U otherwise (24)

Obviously, if the system wanted to output more, and we don’t let it, then it’s not going to respond
in exactly the way we want it to. We might as well catalog the causes of nonlinearity:

1. Saturation in motor actuation.

2. Assuming- not entirely incorrectly- that the physical system (i.e. inverted pendulum) is
second order.

3. Noise in the system.

4. Physical inefliciency, e.g. friction in components.

Figure 8 shows the implemented controller for our system, at a variety of angles. Intuitively,
the performance seems more like what would be expected (c.f. Figures 9 and 10) for small angles
and deviates for larger angles. We expect it to deviate for large angles since the derivation which
mathematically made a second order approximation plausible relied on that 6 ~ 0, which clearly
doesn’t hold for large angles.

The expected performance specificatios are verified by the Figure 11, for which the expected
rise time is about t, ~ 0.3 s. The overshoot is similar, with the behavior overshooting only once
and remaining below for the duration of its response. The actual response oscillates a good deal
more than the theoretical, but again, this disparity can be due to the innumerable nonlinearities
listed above.

References

[1] B. Goodwine. Engineering Differential Equations. Springer, 2010.

Intermediate Controls 11

B 2]
o o

Position (Degrees)
S

1
0 5 10 15 20 25 30 35
Time (S)

Figure 8: Basic Lead Lag Controller Behavior for System

1.2F a

Amplitude

0.4 y

0.2 1

O | | | | |
0 1 2 3 4 5 6

Time (seconds)

Figure 9: Expected Response with Lead Lag Controller, with ‘step(feedback(*,*))’” Command

5 Appendices

5.1 Appendix A: Code

/* Authors:
Bill Goodwine, April 6, 2009.

5.1 Appendix A: Code Intermediate Controls 12

35

data

4 5 6 7 8 9 10
Time (seconds)

Figure 10: Expected Response with Lead Lag Controller, using Simulink

|
&) o

Position (Degrees)
=

-15

0 05 1 15 2 25 3 35 4 45
Time (s)

Figure 11: Actual Response with Lead Lag Controller

Raymond Le Grand, May 26, 2010.
Blair Rasmus, Derek Wolf, John Gallagher, November 13, 2011
James Schmidt April 30,2014

*/

5.1 Appendix A: Code Intermediate Controls 13

#include "hcll.h"

#include "mc.h"

#include <math.h>

#include "vectors.c"

#include "serial.c"

#define CW O //Defines direction of pendulum movement (encoder)

#define CCW 1

#define OFFSET 1830

//This is the difference between the encoder zero and the pendulum straight up position.
//This may change slightly with each pendulum.

#define SCALE 18

/* the SCAlE constant represents the scale of the position decoder,

which is degrees per signal tick, but since the microcontroller only does integer math,
we will define the scale as an integer and divide by 100 every time.

*/

#define MAX_U 400
/*
The MAX_U constant represents the maximum amount of PWM signal that the system can handle,

without the signal being so fast that there are current/voltage spikes.

It is strongly recommended that this value not be changed.

*/

#define CONTROL_LOOP_FREQ 20 //Frequency of control loop calculations in Hz

#define CLOCK_FREQ 9830400

#define PWM_FREQ 880

// Initializing controller variables

long pos=0, pos_deg=0, u=0, ul=0, u2=0, err=0, errl=0, err2=0, r=0;

//keeps track of current angle. ’pos’ is in encoder counts, and ’pos_deg’ is in degrees*100
// Initializing PWM variables

unsigned int counts_total=((long)CLOCK_FREQ/4)/PWM_FREQ, t=0;

// counts_total is used for the counter for the PWM interrupt. This should give a 880Hz interrupt.
// We divide the clock frequency by 4 because the counter increments

//every fourth clock cycle when using a prescale of 1

unsigned int counts_high;

unsigned int counts_low;

// Initializing Timing Variables

unsigned int PWM_interrupt_scale=PWM_FREQ/CONTROL_LOOP_FREQ;

//Sets the ratio of PWM interrupts to control loop interrupts

unsigned int PWM_interrupt_counter = 0; //this keeps track of ticks from control loop interrupt, used for timing
long k=80; // This is our gain. Ideally it would be something like 20,

//but we’re limited by the physical control mechanism.

void printpos(void);

void setnew(int val);

int main(void)

{

//Initializing controller variables

long u=0; //This is what we use to store the calculated value for torque that we need

// Initialize hardware

init_ports();

init_interrupts(); //this also init’s the interrupts for tracking position

set_torque(0); //starts out at 0% torque

pause(brief); // power-on delay

init_serial(); //Initialize serial communication
welcome(); //Display welcome message
pause(brief) ;

set_zero();
while(1)

{

//this checks to see if the pendulum is in top position,

//which allows for greater position accuracy

if (check_encoder_top()){
pos = OFFSET/18; //pendulum has reached center, so reset position to zero + OFFSET.

}

PORTA ~= 0x10; //0b01000000; //toggle pinA.4 on/off to show user that interrupt is 20Hz with blinking LED
if (PWM_interrupt_counter>=PWM_interrupt_scale/*control_loop_limit*/){

//this checks to see if it is time to do 20Hz control calculations

5.1 Appendix A: Code Intermediate Controls 14

PWM_interrupt_counter=0;
PORTA ~= 0x40; //0b01000000; //toggle pinA.6 on/off to show user that interrupt is 20Hz with blinking LED
///1//1/7//7///////////// 20 Bz Operations//////////////////////7///////////
//////This where you need to calculate/set the torque////////////////////
//pos_deg=pos*((int)SCALE); //calculate the current position in degrees*100
out_unsigned_dec(t);
out_string(" ");
if (pos<0){
out_string("-");
out_unsigned_dec(-pos);
}
elseq{
out_unsigned_dec(pos);
}
out_string(" ");
out_unsigned_dec(u) ;
carriage_return();
err=(r-pos)*k;
//u = (8416*err -13840*errl + 5565%err2 +13910*ul -3910%u2)/10000;
u=(8783*err-16640*xerr1+7867*err2+16640*xul-6650*u2) /10000;
//setnew(u);
if (u>400)1{
u=400;
}
if (u<-400){
u=-400;
}

set_torque(-u);

u2=ul;

ul=u;
err2=errl;
///////////////End of 20Hz Operatiomns//////////////////////////7///7////7///////
t=t+50;

if (£==10000){
r=-100;

}

if (£==20000) {
r=0;

}

if (£==30000) {
r=110;

}

if (£==40000){
r=150;

}

if (t==50000) {
r=200;

}

if (t==60000) {
r=300;

}

}

}
}
//**** This begins the Interrupt Code ****/
// Programing interupts for PWM
void 0C3_handler(void){
if (! (PORTA & 0C3)){ //(portA.5==1low) so set the TOC3 to
//\\the time at which we want to end the low part of the PWM cycle
TOC3 = TOC3 + counts_low;
}else{
TOC3 = TOC3 + counts_high; // Set TOC3 to the time at which we want to end the high part of the cycle
PWM_interrupt_counter++;
}
TFLG1 |= 0C3;

5.1 Appendix A: Code Intermediate Controls

15

// Programming Interrupts for Tracking Movement
void PAI_handler(void)
{
//this checks direction of pendulum, then increments position variable
if ((PORTA & 0x02 /*0b00000010*/) == 0){
pos++;
Yelsed{
pos-—-;
}
TFLG2 |= PAIF; //reset interrupt flag
}
/* default interrupt handler (empty, just returns) */
void default_handler(void) {}
void printpos(void){
if (pos<0){
out_string("-");
out_unsigned_dec(pos)
}
elseq{
out_unsigned_dec(pos);
}
carriage_return();
}
/**%* End of Interrupt Code **xx/
// Function to initialize PWM
void init_interrupts(void){
// this also initializes position encoder
asm(" sei"); //disable interrupts
BAUD=BAUD9K_Turbo; //Use BAUD38K for non-turbo mode of microcontroller
// set register to next time for each interrupt
TOC3 = TCNT + counts_total;
// arm all interrupts
TMSK1 = 0x0;
TMSK1 |= 0C3;
//pulse accumulator setup: used to receive signal from decoder that gives pendulum angle
TMSK2 |= 0x10; //0b00010000; this enables pulse accumulator interrupt
// acknowldege all interrupts, in case they were already triggered
TFLG1 |= 0C3; //flag for pulse accumulator
TFLG2 |= PAIF; //flag for pulse accumulator
PORTA |= (0C3); //start off both PWM ports high
TCTL1=0L3; /*want PORTA.5 to toggle every time there’s an interrupt, but nothing elsex/

TCTL2=0xCO; //0b11000000; // this turns on error checking from h-bridge on pinA3

asm(" cli"); //enable interrupts
}
// Function to set PWM duty cycle, which changes torque
void set_torque(long p_rate){
// Accepts desired Torque percentage as an input,
//and uses the global direction flag to know which direction to apply torque
while ((PORTA & 0C3)); //while (portA.5==high) do nothing,
//b/c want to wait until low cycle has started,
//which means that we can load next high-low cycle without messing up PWM period
// This calculation is 50% + (p_rate%).
// 50% PWM = Otorque, and 95% PWM is Max torque in CW direction.
p_rate=((unsigned int) (counts_total/10)*p_rate)/(unsigned int)10;
counts_low=(unsigned int)counts_total/(unsigned int)2-p_rate/(unsigned int)10;
//divide p_rate by ten to get it as 0-40 instead of 0-400
counts_high = counts_total-counts_low;
}
// Read direction signal
unsigned char check_encoder_dir(void){
unsigned char dir_flag;

if ((PORTA & 0x02/%0b00000010%/) == 0){
dir_flag=0;

}

else{

5.1 Appendix A: Code Intermediate Controls 16

dir_flag=1;

}
return(dir_flag);

}

// Read vertical position sensor (tells when pendulum is vertical)
int check_encoder_top(void){

int top_flag;

//this checks pin A.2 to see if pendulum is vertical

if (! (PORTA & 0x04/%0b00000100*/)){ //note that this line was inverted to account for top signal being inverted
top_flag=0;

}

else{
top_flag=1;

}
return top_flag;

}

// Pause function waits for specified number of clock cycles before continuing
void pause(unsigned int duration)

{
unsigned int time;
time=duration; // small delay routine
while(time>0)
time-—-;

}
void setnew(int val){

if (val>400){
val=400;

}

if (val<-400){
val=-400;

}

}

// Initialize ports
void init_ports(void)

{

/* enable pulse accumulator on PA7, falling edge

PA3 is input capture IC4 */

PACTL = 0x40; //0b01000100;

//PACTL = 0b00000100; //this is the code to disable it

PORTA = O0xCF; //0b11001111; // disable H-bridge, photointerrupter
DDRD = 0x07; //0b00000111; // sets DO-D2 as outputs, the rest are inputs
PORTD = 0x04; //0b00000010; // clears Port D

PACNT = 0x00; //0b00000000; // clear Pulse Accumulator

}

// Function to prompt user to move pendulum through zero to initialize angle counter
void set_zero(void){

int de_ch=0,index=0;

while ((PORTD & 0x08 /*0b00001000%*/) == 0); // make sure ok button has been released

out_string("Move Through Vertical Position");

carriage_return();

pause (SECOND) ;

pause (SECOND) ;

pos=0;

out_string("DIR POS ");

carriage_return();

while(check_encoder_top()==0){ //checks to see if pendulum is at top position

//if pendulum not at the top, then keep looping
de_ch=check_encoder_dir(); //check the direction of the pendulum
if (index==1000){ // only updates screen every 1000 iterations
out_unsigned_dec(de_ch); //print out direction

//output position, account for positive/negative numbers

if (pos>=0){

out_string(" ");

out_unsigned_dec (pos*SCALE/100) ;

}else{

out_string("-");

out_unsigned_dec (-pos*SCALE/100) ;

}

5.2 Appendix B: More Plots Intermediate Controls

out_char (NEWLINE); //go back to column zero, but same line

index=0;

}else{

index++;

}

}

//pendulum has reached the top,so stop looping

pos = OFFSET/18;

carriage_return();

out_string("you finished!");

carriage_return();

pause (SECOND) ;

}

void welcome()

{

pause(brief);

out_string("AME 30315");

out_string(" Pendulum Project ");

carriage_return();

carriage_return();

}

// initialize MicroStamp 11. This function is called by _start, which is defined in crsO.s
// A __premain() is created by default by GCC compiler, but we have overwritten the default
// so that we can move the register block, which must be done within first 64 bus cycles
void __premain(void)

{

*(unsigned char volatile *)(0x3D) = 0x01; //Register block will start at 0x1000 instead of default 0x0000
TMSK2 = 0x0C; //0x0D; // =1101b, a prescale of 4 for the output compare,

// which must be set within 64 cycles of microcontroller reset,

// which is why we set it here

CONFIG = 0x04; // disable COP timer

}

5.2 Appendix B: More Plots

20r b

|
iy
o
1

ponse (Degrees)

Rles
N
<

Il

-30+ -

1 1 1 1
0 10 20 ~ 30 40 50
Time (s)

Figure 12: System Identification with « = 200

5.3 Appendix C: C2D Intermediate Controls 18

40 ‘
—~ 30t | |
o \
[72] \
2 20f \ 1
@) \
o
0 10¢ \ i
~— —
§% T
X Or 9] o - il
<
>
o -10- 1
£
<
_207 -
=
_307 |
_40 | | | | | | I |

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
Real Axis (seconds ™)

Figure 13: Basic Shape of Root Locus with Lead Lag Control

5.3 Appendix C: C2D

Here we present the computations for converting a controller from continuous to discrete time. The
transform, using ‘Tustin’s method’, can be obtained simply by substituting

21-1
== 25
STT1+1 (25)

into G(s) to obtain Gy;s(2).

We verify for a simple lead or lag compensator, G;(s) = ziz Inserting s(z), we ostensibly get

Gais(2) = TiyT 77 (26)

(27)

or

(28)

5.4 Appendix D: PID Intermediate Controls 19

15 T T T T T

~—~~

7 10 1
%)
©
c
(@)

O 5 1
()
0
N
2

ER C— A
P
o
@©

£ 51 il
o
@©
E

_lO . -

-15 1 1 1 | 1
-20 -15 -10 -5 0 5 10

Real Axis (seconds ™)

Figure 14: Basic Shape of Root Locus for PID Control for Inverted Pendulum

and finally normalizing the highest order coefficient in the denominator, the final form is
2/T+a a—2/T
3T+p? T pr2/T

p=2/T
Z+ 5T

Indeed, for T'=1/20, a = 3, p =5, ¢2d(G(s)) in Matlab produces

0.95562z — 0.8822
z—0.7778

Gais(z) = (30)

which agrees with our calculations.

5.4 Appendix D: PID

In this report, it would have been nice to include a different kind of controller. Of course, I could
have included data of lead lag controllers with different parameters, but the controller we used
gave us satisfactory performance and it seems like unnecessary detail to do anything more with this
(after all, I am- Deo volente- graduating in two weeks and it’s better not to add too much pressure
before then).

But a PID controller was unable to be implemented. Here’s why: look at Figure 14; the root
locus plot shows that the system is unstable no matter what k is. Nevertheless, a PID controller
would have been worked on the hanging pendulum, as Figure 15 indicates.

5.5 Appendix E: Screenshots Intermediate Controls

1.4

0.8]

Amplitude

0.2f]

O Il Il Il Il Il
0 2 4 6 8 10 12

Time (seconds)

Figure 15: Theoretical Response with PID Control for Hanging Pendulum

5.5 Appendix E: Screenshots

n_um.fsju = i L = : » simout
s+.1 s+15 s=+5-12
Step Trarsfer Fond Transfer Fon2 Transfer Fen To Works pace
B Command Prompt [E=REEE

Parity:

Data Bits:

Stop Bits:

Timeout :

HON-HOFF =

CT8 handshaking:
handshaking:
zensitivity:
circui
circuit:

1 file(s> copied.
[EEPROM programming complete.
WRITE PROTECT MicroStampll.
Place MicroStampll in RUN mode.
[Press RESET button.
Your program is now running...

N:“PrivatesDesktop~controlproj>C:susr~hinmb811l-elf—gcc —Wall N —mshort —UW1l,-—m.
m6Bhcllelfh —mzoft-—reg—count=H —o studentcode.elf studentcode.c

ssusrsbins. oslibsgee—1ibsmb811-e 153 .3 .6 mbBhelx— 28868122 . .~ N .S .~mbB11-e1f
“binsld.exe:ldscripts/mbBhcllelfb.xbn:264: warning: memory region eeprom not dec
lared 437 DM

N:“PrivatesDesktop~controlproj>_

	Introduction
	System Identification
	Empirical Correlations
	Inverting the Pendulum

	Designing a Controller
	Implementation
	Appendices
	Appendix A: Code
	Appendix B: More Plots
	Appendix C: C2D
	Appendix D: PID
	Appendix E: Screenshots

