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Mathematical tool to study stochastic RL algorithms

Analysis is much easier (generalization of bread-and-butter proof
techniques)

Direct tie-in to practical applications

Progress towards open questions about convergence of difficult
algorithms
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Dynamic Programming 101

Markov Decision Process (MDP) task:
e Given an MDP, find the policy which maximizes lifetime returns

Expected performance of a policy :

o0
Vﬂ(S) = ]EMDP [Z ’}/trt]
t=0
Value function is the fixed point of the 7™:

VT =T7V™ = R™ 4 4P V"

Value function of optimal policy 7* is the fixed point of T*:

V*=T*V* =maxT"V*
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Dynamic Programming

Policy evaluation algorithm:
Voti1(s) = T Vi(s)

e Proof of convergence to V™: contraction property of 77 and the
Banach fixed point theorem.
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Dynamic Programming

Policy evaluation algorithm:
Voti1(s) = T Vi(s)

e Proof of convergence to V™: contraction property of 77 and the
Banach fixed point theorem.

Policy iteration algorithm:

evaluate V7"
set mp+1 = greedy (V)

e Proof of convergence to m*: monotonicity property of 77.
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RL Proofs are Hard

In the Reinforcement Learning setting, we cannot evaluate 7™ or 7*.
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RL Proofs are Hard

In the Reinforcement Learning setting, we cannot evaluate 7™ or 7*.

Approximate them via sampling, e.g. TD(0) algorithm:

ar~m(ls)

Voia(s) = (-a)Vao)talriavals)) o {2570

e Proof of convergence: more involved due to sampling. Involves
stochastic approximation theory.
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Constant step-sizes

ar~m(ls)

TD(0) : Viaya(s) = (1 — a)Va(s) + a(r +7Va(s')) {r, s’ ~ MDP

e For constant step-sizes, the estimates will not converge to a single
point estimate in general.

e Does there exist a limiting behaviour of the algorithm that is
stationary?

e Running another iteration of the algorithm keeps this larger
behaviour unchanged.
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A Distributional Analysis

a~(s)

TD(0): Vpi1(s) = (L — @) Viu(s) + a(r + yVa(s")) + {r, < ~ MDP

The functions V), obtained from sample-based algorithms are random
variables. We study their distributions:
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A Distributional Analysis

a~(s)

TD(0): Vpi1(s) = (L — @) Viu(s) + a(r + yVa(s")) + {r, < ~ MDP

The functions V), obtained from sample-based algorithms are random
variables. We study their distributions:

=
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r=1,p=1/2

r=-1,p=1/2




Convergence of distributions

Does the sequence of distributions converge? To which limit?
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A Distributional Equation

A~ 7(-]s)
R,S' ~ MDP

e A similar equation can be written for any sampling-based algorithm
— Monte Carlo
— TD(A)
— Q-Learning
— SARSA
— Double Q-Learning
— etc...

TD(0) : Vpyi(s) e (1—a)Va(s)+a(R(s, A+ V,(S)  « {
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A Distributional Equation

A~ 7(-]s)
R,S' ~ MDP

e A similar equation can be written for any sampling-based algorithm
— Monte Carlo
— TD(A)
— Q-Learning
— SARSA
— Double Q-Learning
— etc...
e These equations define Markov chains over space of value functions
e Study this question for the case of constant step-sizes and
synchronous updates.
— Markov chains are homogeneous
e Inspired by Dieuleveut, Durmus, Bach (2017)
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A Distributional Equation

A~ 7(-]s)
R,S' ~ MDP

e A similar equation can be written for any sampling-based algorithm
— Monte Carlo
— TD(A)
— Q-Learning
— SARSA
— Double Q-Learning
— etc...
e These equations define Markov chains over space of value functions
e Study this question for the case of constant step-sizes and
synchronous updates.
— Markov chains are homogeneous
e Inspired by Dieuleveut, Durmus, Bach (2017)
e Special case: TD(0) with o = 1 is the distributional RL operator
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Operator between distributions

For any update rule and step-size, consider its Markov kernel K
K(Vn,B) =P{V,11 € B| V,}, B €Borel(R")
Lift stochastic update rule to operator over distributions:

VnNMn

Vi1 ~ pint1 = (pn) K = (NO)KnJrl-
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Convergence of stochastic processes

e Measuring convergence of Markov chains requires a metric between
probability distributions
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Convergence of stochastic processes

e Measuring convergence of Markov chains requires a metric between
probability distributions

e Common choice in the Markov chain literature is the Total Variation
metric

dri(p,v) = sup|p(A) = v(A)]
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Convergence of stochastic processes

e Measuring convergence of Markov chains requires a metric between
probability distributions

e Common choice in the Markov chain literature is the Total Variation
metric

dri(p,v) = sup|p(A) = v(A)]

o Will not work for us!

dTV(5075Vn) =1 ‘v’n

r=20

(1-a)Va +a(0)

Philip Amortila Distributional Analyses of RL Apr. 10th 2020 11/28



\Wasserstein metric

e We use the Wasserstein metric between probability distributions

Y~v
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\Wasserstein metric

e We use the Wasserstein metric between probability distributions

W(p,v) = )i(nf E[[X = Y]]
~p
Y~v
e Our choice of cost function: -],

e Minimization over couplings: pairs of random variables (X, Y') such
that X ~ pu, Y ~ v marginally

~ X:X1

e <

/ Yzyl‘\“’
3 /

< Y=y Y,

7 X:X:-;
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Contraction in the space of distributions on functions

Punchline: For TD(0), the induced operator K is contractive with respect
to the Wasserstein metric

W(MK?VK) < (1 _a+a7)W(M7V)a
—_———

<1
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Contraction in the space of distributions on functions

Punchline: For TD(0), the induced operator K is contractive with respect
to the Wasserstein metric

W(MK,VK) < (1 —a—i—ory)W(u,y),
<1

By Banach's fixed point theorem the distributions K" converge to a fixed
point

= ¢K.

This is exactly the property of a stationary distribution!
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We have:

Bellman operator 77:

e Contraction with respect to |||, w/ factor v
e Unique fixed point V7 e RIS
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We have:

Bellman operator 77:

e Contraction with respect to |||, w/ factor v
e Unique fixed point V7 e RIS

TD(0) (with policy , step-size «):

e contraction with respect to W) w/ factor 1 —a + ay
e Unique fixed point ¢p™*™ ) ¢ pists(RIS))
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Contractive Algorithms

For any stepsizes « € (0, 1], the following algorithms are contractive:

e Monte Carlo Evaluation w/ factor 1 — «

e TD(\) w/ factor 1 — ar + ory%

e SARSA & Expected SARSA w/ factor 1 — a+ ary
e Q-Learning w/ factor 1 — av + avy

e Double Q-Learning w/ factor (2 — a + ay)

The same proof technique extends to all the above algorithms.
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Contractive Algorithms

Proof (TD(0)): Consider Vo ~ u, Wy ~ v. Define a coupling of V4 and W,
as follows:
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Contractive Algorithms

Proof (TD(0)): Consider Vo ~ u, Wy ~ v. Define a coupling of V4 and W,
as follows:

Q ?—‘\5\

HQQ r1+’yV0(Sl)< """""" > r1+7W0(51) Jx@
v N
™ N
Vo(s) V, samples s; <= W, samples s; Wo(s)
3 Q««
R ro+yVo(s2) ==mmnnnnn > W, f@
o>+ yVo(s2 r+yWo(s2) <

@
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Proof (TD(0)) (continued)

Proof (TD(0)): Distance between the targets (under the coupling):

Ecoupling [msax Ir +~yVo(s') —r — nyo(sl)q =~E [msax [Vo(s') — Wo(s/)q
<AE[||Vo — Woll,.]
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Proof (TD(0)) (continued)

Proof (TD(0)): Distance between the targets (under the coupling):

Ecoupting [Max|r +7Vo(s) = r = YWo(s')|| = 7E |max| Vo(s') — Wo(s)I]
< VE[[[Vo — Wolls]
Upper bound W(uK, vK) by the coupling:
WK, vK) < (1= a)W(p1, ) + arE [|| Vo — Voll.]

(1—a+ay)W(p,v)
—_———

<1
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Stationary distributions

Q: If an algorithm with constant step-sizes converges, what is its stationary

distribution?
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Stationary distributions

Q: If an algorithm with constant step-sizes converges, what is its stationary
distribution?

Suppose an algorithm has the form

for1 = (1 — @)y + aT(f),
——
target
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Evaluation setting

If the stochastic updates are, in expectation, a Bellman operator of 7

]Esampling[/fdf] = Tﬂ-f, Vf

then:
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Evaluation setting

If the stochastic updates are, in expectation, a Bellman operator of 7

]Esampling[’?df] = Tﬂ-f, Vf

then:
e The mean of the stationary distributions is the true value function
(V™ or QM)
e The covariance is linear in the step-size and the covariance of
Tf—T7f
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Evaluation setting

If the stochastic updates are, in expectation, a Bellman operator of 7

]Esampling[’?df] = Tﬂ-f, Vf

then:
e The mean of the stationary distributions is the true value function
(V™ or QM)
e The covariance is linear in the step-size and the covariance of
Tf—T7f

e The distributions concentrate around these means:

. . . 0
Pfawstationary dist. { m’,m |fa(’) - fﬂ(’)‘ > 5} Oi) 0
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Control setting

If the stochastic updates are, in expectation, a Bellman optimality operator

E[Tf] = T*f, Vf

then:
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Control setting

If the stochastic updates are, in expectation, a Bellman optimality operator

E[Tf] = T*f, Vf

then:

e Mean of the stationary distribution overestimates the true value
function (V* or Q*)
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A non-contractive example: Optimistic Policy Iteration

e Algorithms previously seen were sampling analogues of contractive
mappings.

e What about stochastic analogues of policy improvement algorithms?
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A non-contractive example: Optimistic Policy Iteration

e Algorithms previously seen were sampling analogues of contractive
mappings.

e What about stochastic analogues of policy improvement algorithms?

We study the Optimistic Policy Iteration (OPI) algorithm

Qn+1(s,8) = (1 — @) Qn(s, a) + aG™(s, a),
Tnt1 = greedy (Qn41)

where G (s, a) is a discounted return sampled from the MDP using 7.

Philip Amortila Distributional Analyses of RL Apr. 10th 2020 21/28



Optimistic Policy Iteration

e The analysis of this method is not straightforward with typical
stochastic approximation techniques

e Convergence known only in limited cases (Robbins-Monro step-sizes
and sampling conditions)

e Contraction does not hold for classic policy iteration or its
sampling-based variant

e Simple coupling argument ruled out: different functions have different
sampling distributions
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Proof via greedy partitions

e Special case of a =11

Qn+1(57 a) = gﬂ-n(s7 3),
Tn1 = greedy (Qni1)
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Proof via greedy partitions

e Special case of a =11

Qn+1(57 a) = gﬂ-n(57 a)a
Tn1 = greedy (Qni1)

e Here the algorithm is Markovian over the greedy partition of RISI*IAl
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Proof via greedy partitions

e Special case of a =11

Qn+1(57 a) = gﬂ-n(57 a)a
Tn1 = greedy (Qni1)

e Here the algorithm is Markovian over the greedy partition of RISI*IAl
e This is a finite state Markov chain

B
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Proof via greedy partitions

e Probabilistic policy improvement:

P {sampling G™ that has greedy(G™") = greedy(Q™)} >0
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Proof via greedy partitions

e Probabilistic policy improvement:
P {sampling G™ that has greedy(G™") = greedy(Q™)} >0
e Therefore every initial policy m can reach 7* with some probability...

e ..and 7* is a recurrent state

So the Markov chain is ergodic and converges to a stationary
distribution over policies!
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Difficulty of the @ < 1 case

e The analysis does not quite extend to the general case of o < 1
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e No longer Markovian over policies, now on the continuous space of
value functions
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Difficulty of the @ < 1 case

e The analysis does not quite extend to the general case of o < 1

e No longer Markovian over policies, now on the continuous space of
value functions

e Continuous space ergodic theorems require “smoothness” properties

e Not satisfied by this algorithm
e Discontinuous at the boundary between greedy partitions
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Boltzmann OPI

For v < 1, can establish convergence for a variant that uses
Boltzmann (softmax) policies

e stals) — 2PLB1(5.2)
7 >, exp(5f (s, a))’

This system is Lyapunov stable with respect to Wasserstein metric:

5>0

lim sup W(vK", uK") =0

v— i n>0

— (via. another simple coupling argument)

Establishes convergence when combined with reachability and
aperiodicity of 7*, as before.
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Future work

Philip Amortila Distributional Analyses of RL Apr. 10th 2020 27 /28



e Decreasing step-sizes and/or online updates
— Corresponds to time-dependent Markov chains
— Applying a sequence of contractive kernels Ky, Ko, - - - Ka,
e Function approximation
— Preliminary results for linear function approximation
e Optimistic Policy Iteration and other stochastic policy iteration
methods (e.g. actor-critic methods)

Philip Amortila Distributional Analyses of RL Apr. 10th 2020 27 /28



Merci

Philip Amortila Distributional Analyses of RL Apr. 10th 2020 28 /28



