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Spoilers

• Mathematical tool to study stochastic RL algorithms
• Analysis is much easier (generalization of bread-and-butter proof

techniques)
• Direct tie-in to practical applications
• Progress towards open questions about convergence of difficult

algorithms
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Dynamic Programming 101

Markov Decision Process (MDP) task:
• Given an MDP, find the policy which maximizes lifetime returns

Expected performance of a policy π:

V π(s) = EMDP

[ ∞∑
t=0

γtrt

]
Value function is the fixed point of the T π:

V π = T πV π := Rπ + γPπV π

Value function of optimal policy π? is the fixed point of T ?:

V ? = T ?V ? := max
π
T πV ?
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Dynamic Programming 102

Policy evaluation algorithm:

Vn+1(s) = T πVn(s)

• Proof of convergence to V π: contraction property of T π and the
Banach fixed point theorem.

Policy iteration algorithm:{
evaluate V πn

set πn+1 = greedy(V π
n )

• Proof of convergence to π?: monotonicity property of T π.
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RL Proofs are Hard

In the Reinforcement Learning setting, we cannot evaluate T π or T ?.

Approximate them via sampling, e.g. TD(0) algorithm:

Vn+1(s) = (1−α)Vn(s)+α(r+γVn(s
′)) ←

{
a ∼ π(·|s)
r , s ′ ∼ MDP

• Proof of convergence: more involved due to sampling. Involves
stochastic approximation theory.
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Constant step-sizes

TD(0): Vn+1(s) = (1− α)Vn(s) + α(r + γVn(s
′)) ←

{
a ∼ π(·|s)
r , s ′ ∼ MDP

• For constant step-sizes, the estimates will not converge to a single
point estimate in general.

• Does there exist a limiting behaviour of the algorithm that is
stationary?
• Running another iteration of the algorithm keeps this larger

behaviour unchanged.
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A Distributional Analysis

TD(0): Vn+1(s) = (1− α)Vn(s) + α(r + γVn(s
′)) ←

{
a ∼ π(·|s)
r , s ′ ∼ MDP

The functions Vn obtained from sample-based algorithms are random
variables. We study their distributions:

s

s1

s2

r = 1, p = 1/2

r = −1, p = 1/2

V0(s) = 0

V1(s) = 1
s1
∼ MD

P

V1(s) = −1
s2 ∼

MDP

1+ γ 1+ γ + γ2

· · ·
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Convergence of distributions

Does the sequence of distributions converge? To which limit?

s

s1

s2

r = 1, p = 1/2

r = −1, p = 1/2

V0(s) = 0

V1(s) = 1
s1
∼ MD

P

V1(s) = −1
s2 ∼

MDP

1+ γ 1+ γ + γ2

?−→
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A Distributional Equation

TD(0): Vn+1(s)
D
= (1−α)Vn(s)+α(R(s,A)+γVn(S

′)) ←
{
A ∼ π(·|s)
R, S ′ ∼ MDP

• A similar equation can be written for any sampling-based algorithm
→ Monte Carlo
→ TD(λ)
→ Q-Learning
→ SARSA
→ Double Q-Learning
→ etc...

• These equations define Markov chains over space of value functions
• Study this question for the case of constant step-sizes and

synchronous updates.
→ Markov chains are homogeneous

• Inspired by Dieuleveut, Durmus, Bach (2017)
• Special case: TD(0) with α = 1 is the distributional RL operator
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Operator between distributions

For any update rule and step-size, consider its Markov kernel K

K (Vn,B) = P {Vn+1 ∈ B | Vn} , B ∈ Borel(Rn)

Lift stochastic update rule to operator over distributions:

Vn ∼ µn
Vn+1 ∼ µn+1 = (µn)K = (µ0)K

n+1.
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Convergence of stochastic processes

• Measuring convergence of Markov chains requires a metric between
probability distributions

• Common choice in the Markov chain literature is the Total Variation
metric

dTV(µ, ν) = sup
A
|µ(A)− ν(A)|

• Will not work for us!

dTV(δ0, δVn) = 1 ∀n

x

V0V1V2V3

· · ·

(1− α)V1 + α(0)
r = 0
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Wasserstein metric

• We use the Wasserstein metric between probability distributions

W(µ, ν) = inf
X∼µ
Y∼ν

E [‖X − Y ‖∞]

• Our choice of cost function: ‖·‖∞
• Minimization over couplings: pairs of random variables (X ,Y ) such

that X ∼ µ,Y ∼ ν marginally
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X = x1
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Contraction in the space of distributions on functions

Punchline: For TD(0), the induced operator K is contractive with respect
to the Wasserstein metric

W(µK , νK ) ≤ (1− α+ αγ)︸ ︷︷ ︸
<1

W(µ, ν),

By Banach’s fixed point theorem the distributions µKn converge to a fixed
point

ψ = ψK .

This is exactly the property of a stationary distribution!
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Analogies

We have:

Bellman operator T π:
• Contraction with respect to ‖·‖∞ w/ factor γ
• Unique fixed point V π ∈ R|S|

TD(0) (with policy π, step-size α):
• contraction with respect to W‖·‖∞ w/ factor 1− α+ αγ

• Unique fixed point ψπ,α,TD(0) ∈ Dists(R|S|)
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Contractive Algorithms

For any stepsizes α ∈ (0, 1], the following algorithms are contractive:

• Monte Carlo Evaluation w/ factor 1− α
• TD(λ) w/ factor 1− α+ αγ 1−λ

1−λγ
• SARSA & Expected SARSA w/ factor 1− α+ αγ

• Q-Learning w/ factor 1− α+ αγ

• Double Q-Learning w/ factor 1
2(2− α+ αγ)

The same proof technique extends to all the above algorithms.
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Contractive Algorithms

Proof (TD(0)): Consider V0 ∼ µ,W0 ∼ ν. Define a coupling of V1 and W1
as follows:

V0(s)

r1 + γV0(s1)

r2 + γV0(s2)

W0(s)

r1 + γW0(s1)

r2 + γW0(s2)

V1 samples si ⇐⇒ W1 samples si

r 1
, s 1
∼
MD

P

r2 , s2 ∼
MDP

r1 , s1 ∼
MDP,π

r 2
, s 2
∼
MD

P,π
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Proof (TD(0)) (continued)

Proof (TD(0)): Distance between the targets (under the coupling):

Ecoupling

[
max
s
|r + γV0(s

′)− r − γW0(s
′)|
]
= γE

[
max
s
|V0(s

′)−W0(s
′)|
]

≤ γE [‖V0 −W0‖∞]

Upper bound W(µK , νK ) by the coupling:

W(µK , νK ) ≤ (1− α)W(µ, ν) + αγE [‖V0 −W0‖∞]

= (1− α+ αγ)︸ ︷︷ ︸
<1

W(µ, ν)
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Stationary distributions

Q: If an algorithm with constant step-sizes converges, what is its stationary
distribution?

Suppose an algorithm has the form

fn+1 = (1− α)fn + α T̂ (fn)︸ ︷︷ ︸
target

,
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Evaluation setting

If the stochastic updates are, in expectation, a Bellman operator of π

Esampling[T̂ f ] = T πf , ∀f

then:

• The mean of the stationary distributions is the true value function
(V π or Qπ)

• The covariance is linear in the step-size and the covariance of
T̂ f − T πf
• The distributions concentrate around these means:

Pfα∼stationary dist.

{
min
i
|fα(i)− f π(i)| ≥ ε

}
α→0−→ 0
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Control setting

If the stochastic updates are, in expectation, a Bellman optimality operator

E[T̂ f ] = T ?f , ∀f

then:

• Mean of the stationary distribution overestimates the true value
function (V ? or Q?)
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A non-contractive example: Optimistic Policy Iteration

• Algorithms previously seen were sampling analogues of contractive
mappings.

• What about stochastic analogues of policy improvement algorithms?

We study the Optimistic Policy Iteration (OPI) algorithm

Qn+1(s, a) = (1− α)Qn(s, a) + αGπn(s, a),
πn+1 = greedy (Qn+1)

where Gπ(s, a) is a discounted return sampled from the MDP using π.
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Optimistic Policy Iteration

• The analysis of this method is not straightforward with typical
stochastic approximation techniques

• Convergence known only in limited cases (Robbins-Monro step-sizes
and sampling conditions)

• Contraction does not hold for classic policy iteration or its
sampling-based variant

• Simple coupling argument ruled out: different functions have different
sampling distributions
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Proof via greedy partitions

• Special case of α = 1

Qn+1(s, a) = Gπn(s, a),
πn+1 = greedy (Qn+1)

• Here the algorithm is Markovian over the greedy partition of R|S|×|A|
• This is a finite state Markov chain

R2

π2

π1

π?

f0

Gπ1
Gπ2

Gπ?
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Proof via greedy partitions

• Probabilistic policy improvement:

P {sampling Gπn that has greedy(Gπn) = greedy(Qπn)} > 0

• Therefore every initial policy π can reach π? with some probability...
• ...and π? is a recurrent state
• So the Markov chain is ergodic and converges to a stationary

distribution over policies!
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Difficulty of the α < 1 case

• The analysis does not quite extend to the general case of α < 1

• No longer Markovian over policies, now on the continuous space of
value functions
• Continuous space ergodic theorems require “smoothness” properties
• Not satisfied by this algorithm
• Discontinuous at the boundary between greedy partitions
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Boltzmann OPI

For α < 1, can establish convergence for a variant that uses
Boltzmann (softmax) policies

πf ,β(a|s) =
exp(βf (s, a))∑
a exp(βf (s, a))

, β > 0

This system is Lyapunov stable with respect to Wasserstein metric:

lim
ν→µ

sup
n≥0
W(νKn, µKn) = 0

→ (via. another simple coupling argument)
Establishes convergence when combined with reachability and
aperiodicity of π?, as before.
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Future work

• Decreasing step-sizes and/or online updates
→ Corresponds to time-dependent Markov chains
→ Applying a sequence of contractive kernels µKα1Kα2 · · ·Kαn

• Function approximation
→ Preliminary results for linear function approximation

• Optimistic Policy Iteration and other stochastic policy iteration
methods (e.g. actor-critic methods)
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