
HPVM2FPGA: Enabling True
Hardware-Agnostic FPGA Programming

Adel Ejjeh, Leon Medvinsky, Aaron Councilman,
Hemang Nehra, Suraj Sharma, Vikram Adve

University of Illinois at Urbana-Champaign
USA

Luigi Nardi
Lund University and Stanford University

Sweden and USA

Eriko Nurvitadhi
Intel
USA

Rob A Rutenbar
University of Pittsburgh

USA

ABSTRACT
We present HPVM2FPGA, a framework that enables hardware-
agnostic programming of FPGAs by coupling compiler optimization
techniqueswithDesign Space Exploration (DSE). By using a suitable
compiler Intermediate Representation designed for heterogeneous
parallel systems, called HPVM, suitable compiler optimizations, and
a state-of-the-art DSE framework (HyperMapper), we created an
extensible flow that automatically generates high-performing code
for FPGAs. In its current state, HPVM2FPGA can achieve up to 33×
speedup compared to unoptimized baselines, and can match hand-
tuned code for some programs. With an optimization framework
that can be easily extended with more compiler transformations, we
expect HPVM2FPGA to match hand-tuned code for most programs
as the system matures with more optimizations.

1 INTRODUCTION
FPGAs have become a more attractive hardware target for soft-
ware teams due to their increased public availability. However,
current FPGA programming paradigms are generally intractable
for this category of developers. While higher-level paradigms, like
High-Level Synthesis (HLS), have gained traction in the accelerator
design community, they still require hardware-specific knowledge
and tuning, which does not make them an acceptable solution for
software teams that do not possess hardware-design expertise.

It is beyond doubt that true, general, hardware-agnostic program-
ming of FPGAs remains a holy grail in our community. Achieving
such a capability requires three main components: 1) a representa-
tion that can efficiently capture parallelism in an application and
easily identify application components for acceleration, 2) a com-
piler and autotuner that can tune hardware-agnostic kernels by
automatically selecting FPGA-specific optimizations, while also
compiling the host code, and 3) a runtime system that can transpar-
ently interface the host and device code without any extra input
from the programmer. This kind of end-to-end flow is largely miss-
ing in the FPGA design community.

While we acknowledge the difficulty of this problem, we do
believe that it is attainable through a compiler-centric approach. We
take one step closer to achieving general hardware-agnostic FPGA
programming by presenting HPVM2FPGA, a novel compilation
framework that leverages a suitable Intermediate Representation
(IR) with automatic and sophisticated compiler optimizations, and
performs Design Space Exploration (DSE) to automatically generate

Figure 1: HPVM-to-FPGA back end.

the most optimized kernels it can find, shifting this burden from
programmer to compiler.

2 HPVM2FPGA
HPVM2FPGA leverages the existing HPVM infrastructure [3] and
adds to it: 1) an HPVM-to-FPGA back end, 2) runtime extensions,
and 3) an extensible optimization framework which includes a
number of compiler optimizations and DSE, with the ability to add
more optimizations in the future fairly easily. We chose the HPVM
IR for twomain reasons: 1) Its hardware agnostic nature allows us to
easily represent general, parallel, hardware-agnostic programs, and
(in future) target them to systems containing a mix of FPGAs and
other devices; and 2) Its ability to represent the different levels of
parallelism, using a hierarchical dataflow graph (DFG), is crucial for
optimizing hardware-agnostic codes for hardware-specific targets
like FPGAs.

The HPVM-to-FPGA back end, shown in Figure 1, comprises two
main components: an HPVM-to-OpenCL back end, which is our
contribution, and the Intel FPGA SDK for OpenCL (AOC compiler),
which we leverage as is. The compilation process goes as follows:
starting with an input program in an HPVM-compatible language
(Hetero-C++, HPVM-C, or any other language that can be compiled
to HPVM in the future), the compiler lowers the source code into a
hardware-agnostic HPVM IR representation of the program. Next,
an optimization step, described below, optimizes the HPVM leaf
nodes, which will become FPGA kernels; the framework supports
both inter-node and intra-node optimizations to achieve the best
possible designs. Then, the HPVM-to-FPGA back end generates an
OpenCL file containing the optimized kernels, and generates the
required runtime code that launches and manages these kernels (i.e.
creates OpenCL buffers, sets the arguments, copies the memory,
etc.) into the host LLVM module. Finally, the OpenCL kernels get
synthesized using AOC, and the host module gets compiled using
LLVM’s x86 back end to generate a binary. Note that Figure 1



LATTE ’22, March 1, 2022, Virtual, Earth Ejjeh, et al.

only shows the kernel compilation process, omitting the host-code
compilation for simplicity.

We currently have seven optimizations in HPVM2FPGA, im-
plemented as either HPVM DFG or LLVM transformations. These
optimizations are: automatic input buffering, guided argument pri-
vatization, automatic loop unrolling, greedy loop fusion, automatic
node fusion, automatic task parallelism, and automatic ivdep in-
sertion. All the optimizations have been parameterized for DSE,
where the parameter is either a boolean turning it on or off, or
an integer that sets a specific value (e.g. unroll factors). Our DSE
framework, which uses HyperMapper (HM) [4], selects and tunes
the optimization passes to obtain the best possible performance
on the FPGA for a given application, by finding the best value for
every parameter of every optimziation. The DSE objective function
is calculated using a performance model that we have devised. This
model uses information extracted from the AOC pre-synthesis re-
port (specifically the loop initiation intervals, loop body latencies,
and frequency), to estimate the execution time of a program. The
model starts by estimating the execution time of each loop nest in
an HPVMnode (i.e. kernel), then of the node itself, then of the entire
dataflow graph using a critical path analysis and graph traversal.
Additionally, the resource utilization estimate for each design is
extracted from the AOC reports, and used to determine whether or
not the given design is “Valid” (i.e. fits on the FPGA). The objective
and “validity” are then used by HM to traverse the parameter space.

HPVM2FPGA is designed to be a cornerstone for new and im-
proved hardware-agnostic FPGA compilers by providing a fully
extensible framework. Every component described above is modu-
lar and extensible, making it easy to add more powerful optimiza-
tions, add more advanced code-generation options to lower-level
hardware IRs, or improve on the DSE performance modeling.

3 EXPERIMENTAL EVALUATION
We evaluate our framework on a selection of benchmarks, including
a 3D spatial audio encoder (Audio) from the Illinois Extended Reality
(ILLIXR) testbed [2], a camera vision pipeline (CAVA), an image
processing edge detection pipeline (Edge) [3], and four multi-kernel
benchmarks from the Rodinia benchmark suite (breadth-first search
(BFS), backpropagation (BP), and two algorithms of computational
fluid dynamics: euler (Euler) and euler with precomputed fluxes
(Pre-Euler)) [1]. Three of these Rodinia benchmarks have been
hand-tuned for the Arria 10 FPGA [6]. Each benchmark was ported
to hardware-agnostic code in HPVM-C or Hetero-C++, and then
compiled using HPVM2FPGA. Our evaluation setup uses an Arria
10 GX FPGA Development Kit FPGA with 2GB on-board memory,
connected over PCIe to an Intel Xeon W-2775 host CPU with 256
GB main memory. For synthesis, we use the Intel FPGA SDK for
OpenCL 19.3. Our results are presented in Figure 2.

To study the performance that our framework can achieve, we
compared the DSE-generated designs to a version compiled us-
ing our compiler without applying any optimizations (Figure 2(a)).
Our framework was able to achieve speedups ranging from 1.7×
to 33.5×, with applications that benefit more from the currently-
supported optimizations getting higher speedups. Given that these
benchmarks represent different workloads, with different character-
istics, this shows that our framework is effective on a wide variety

(a) (b)

Figure 2: (a) HPVM2FPGA DSE vs unoptimized baselines. (b)
HPVM2FPGA vs hand-tuned kernels.
of workload types, and we expect that as the framework matures
with more optimizations speedups would also improve.

Next, to compare HPVM2FPGA-generated designs to hand-tuned
FPGA kernels, we synthesized the versions of those Rodinia bench-
marks that were hand-optimized by Zohouri [5, 6] and compared
them to our DSE results. These benchmarks were BP, Euler, and
BFS (Pre-Euler lacked an optimized version in the repository). Our
results (Figure 2(b)) show that for BP and Euler, we are able to
match the performance of the hand-tuned code. For BFS, we were
able to outperform the version that was hand-tuned without us-
ing algorithmic changes because DSE explored more optimization
options. However, we were unable to match the version that in-
cluded algorithmic changes (i.e. “Absolute” best in the figure). In
this case the “Absolute” best point uses NDRange kernels, whereas
we always generate single work item kernels in our framework. We
believe that as our framework matures to also support NDRange
kernel generation as part of DSE we would be able to match the
hand-tuned code for more applications.

4 CONCLUSION AND FUTURE DIRECTIONS
We presented HPVM2FPGA, a novel extensible framework designed
to enable more powerful hardware-agnostic programming of FP-
GAs. Our framework uses a suitable compiler IR, HPVM, and power-
ful compiler optimizations, coupled with Design Space Exploration
(DSE) that tunes the optimization parameters, to find the best com-
bination of optimizations for a hardware-agnostic application and
a given FPGA. Our goal is to pave the path for future hardware-
agnostic FPGA programming research, by providing a modular and
extensible framework that would keep on improving with more
compiler optimizations, more advanced back end code-generation
techniques, and faster and more accurate performance estimation
models used in DSE.

With that, there are numerous possible directions to move for-
ward within this research goal of providing hardware-agnostic pro-
gramming of FPGAs. Some of these directions include incorporating
more loop-level, memory-level, and data-movement optimizations
that have been shown to improve performance in the context of
HLS; extending the framework to support optimizing across multi-
ple different devices in a heterogeneous system; adding automatic
selection of nodes for device offloading; adding more options for
backend code-generation (e.g. generating NDRange Kernels, sup-
porting Xilinx FPGAs); and adding more advanced inter-kernel
optimizations.

REFERENCES
[1] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC). 44–54. https://doi.org/10.1109/IISWC.2009.5306797

https://doi.org/10.1109/IISWC.2009.5306797


HPVM2FPGA: Enabling True Hardware-Agnostic FPGA Programming LATTE ’22, March 1, 2022, Virtual, Earth

[2] Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee,
Fang Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, Boyuan Tian, Hengzhi
Yuan, Jeffrey Zhang, and Sarita V. Adve. 2021. Exploring Extended Reality with
ILLIXR: A new Playground for Architecture Research. arXiv:2004.04643 [cs.DC]

[3] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Komuravelli,
Vikram Adve, and Sarita Adve. 2018. HPVM: Heterogeneous Parallel Virtual
Machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Vienna, Austria) (PPoPP ’18). ACM, New York,
NY, USA, 68–80. https://doi.org/10.1145/3178487.3178493

[4] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical design space
exploration. In 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE,
347–358.

[5] Hamid Resa Zohouri. [n. d.]. fpga-opencl-benchmarks/rodinia_fpga. https:
//github.com/fpga-opencl-benchmarks/rodinia_fpga

[6] Hamid Reza Zohouri. 2018. High performance computing with FPGAs and OpenCL.
Ph. D. Dissertation. Tokyo Institute of Technology, Tokyo, Japan, Tokyo, Japan.

https://arxiv.org/abs/2004.04643
https://doi.org/10.1145/3178487.3178493
https://github.com/fpga-opencl-benchmarks/rodinia_fpga
https://github.com/fpga-opencl-benchmarks/rodinia_fpga

	Abstract
	1 Introduction
	2 HPVM2FPGA
	3 Experimental Evaluation
	4 Conclusion and Future Directions
	References

