
HPVM2FPGA: Enabling True
Hardware-Agnostic FPGA Programming

Adel Ejjeh∗, Leon Medvinsky∗, Aaron Councilman∗, Hemang Nehra∗, Suraj Sharma∗, Vikram Adve∗,
Luigi Nardi†‡, Eriko Nurvitadhi§, and Rob A Rutenbar¶.

∗University of Illinois at Urbana-Champaign, Urbana, IL, USA
†Lund University, Lund, Sweden. ‡Stanford University, Stanford, CA, USA

§Intel Corp, Hillsboro, OR, USA. ¶University of Pittsburgh, Pittsburgh, PA, USA.

Abstract—Current FPGA programming tools require extensive
hardware-specific manual code tuning to achieve performance,
which is intractable for most software application teams. We
present HPVM2FPGA, a novel end-to-end compiler and auto-
tuning system that can automatically tune hardware-agnostic
programs for FPGAs. HPVM2FPGA uses a hardware-agnostic
abstraction of parallelism as an intermediate representation
(IR) to represent hardware-agnostic programs. HPVM2FPGA’s
powerful optimization framework uses sophisticated compiler
optimizations and design space exploration (DSE) to automat-
ically tune a hardware-agnostic program for a given FPGA.
HPVM2FPGA is able to support software programmers by shift-
ing the burden of performing hardware-specific optimizations to
the compiler and DSE. We show that HPVM2FPGA can achieve
up to 33× speedup compared to unoptimized baselines and can
match the performance of hand-tuned HLS code for three of four
benchmarks. We have designed HPVM2FPGA to be a modular
and extensible framework, and we expect it to match hand-
tuned code for most programs as the system matures with more
optimizations. Overall, we believe that it constitutes a solid step
closer to fully hardware-agnostic FPGA programming, making
it a suitable cornerstone for future FPGA compiler research.

Index Terms—High-level synthesis, FPGA, hardware-agnostic
FPGA programming, compilers for FPGA.

I. INTRODUCTION

Recently, FPGAs have become widely available in het-
erogeneous systems and public clouds, taking them beyond
the traditional audience of hardware designers and making
them accessible to the much larger category of software
application developers. When used for acceleration, FPGAs
have been known to provide significant benefits in energy and
performance for a wide range of domains, from image and
signal processing [1], to communications and networking [2],
and most recently machine learning [3]. However, these de-
vices have been primarily used by hardware designers due to
their complex programming models that rely heavily on low-
level hardware knowledge. Even high-level synthesis (HLS)
frameworks, which raised the abstraction level for FPGA
programming compared to RTL, are primarily focused on
increasing the productivity of hardware engineers, and require
significant hardware-specific manual code modifications and
tuning to achieve good performance.

Consider the Intel FPGA SDK for OpenCL, or AOC, as
an example of a popular HLS tool. Getting good performance
with AOC is non-trivial since it requires extensive hardware-
specific tuning that requires developers to adopt optimization

strategies and techniques proposed in the official supporting
documents. Xilinx’s HLS tools, VivadoHLS and VitisHLS, are
very similar in terms of the nature of the programming support.
The nature of these optimization strategies show clearly that
today’s HLS tools are primarily aimed at designers with
strong hardware knowledge and skills, which many application
software teams lack.

Software teams deal with large complex applications, with
stringent constraints on development cost, source code porta-
bility, code reuse, software security, and rapid development
cycles, in addition to performance. These constraints make it
difficult to invest extensive time and effort to tune application
components for specific hardware targets. In many cases, this
translates to an acceptable trade-off of raw performance for
improved programmability. As such, software designers would
greatly benefit from an end-to-end compiler framework that
supports hardware-agnostic programming of heterogeneous
devices, including FPGAs.

We informally define hardware-agnostic programming as
follows: the entire process, including the program itself (which
is usually part of a larger application) and the iterative devel-
opment and tuning steps, should not be specific to a particular
hardware target. Programming tools must automatically opti-
mize the code for a target FPGA, instead of requiring detailed
hardware understanding from the developer. More specifically,
we assume that the input source program must adhere to the
following constraints:

(C1) No manual code restructuring: The code should not be
explicitly rewritten in non-trivial ways for the explicit
purpose of achieving (or enabling) a performance im-
provement on the intended target hardware.

(C2) No hardware-specific tuning parameters: The code
should not specify tuning parameters aimed at optimiz-
ing performance for a specific hardware target, e.g.,
unroll factors, buffer sizes, memory banking strategies,
etc. Hardware-independent program properties, such as
the restrict keyword for declaring pointers are not
aliased, or size attributes of arrays, are acceptable.

(C3) No explicit platform-specific coding: The application
code should not include platform-specific code that han-
dles host-device communication like copying memory,
launching kernels, setting arguments, etc.



We also assume that the development flow must be
hardware-agnostic from the programmer’s perspective:

(C4) No hardware-specific optimization tuning by the pro-
grammer: The process of picking a combination of
optimizations, and the specific configurations of each
optimization, for optimizing a specific program on a
target FPGA, must be transparent to the programmer.
Any hardware-aware decisions or tuning must be done
automatically by the programming tools.

Hardware-agnostic programming of FPGAs remains a holy
grail in the FPGA community. We believe that the require-
ments to achieve this goal are the following: a) an end-to-
end compiler and autotuning system that tunes hardware-
agnostic kernels by automatically selecting FPGA-specific op-
timizations, and transparently handles host code generation, b)
a compiler intermediate representation that captures different
kinds of parallelism (task, data, pipeline) while identifying
units of acceleration, and c) a runtime system that transpar-
ently interfaces between host and device. This kind of end-to-
end flow is largely missing in the FPGA design community,
and state-of-the-art tools today lack one or more of these
components (see Section V, Table II). Commercial HLS tools
from Intel and Xilinx are too narrowly focused on hardware
designers, expecting the user to manually implement (with
limited guidance) a variety of non-trivial, hardware-specific
optimizations needed for high performance [4]. State-of-the-
art research compilers are either domain specific [5], or still
require some form of hardware-specific tuning/understanding
[6], [7]. Finally, some recent projects attempt to solve this
problem by compiling hardware-agnostic code [8]–[10], but
they use simplistic design space exploration, if any, and do
not perform inter-kernel optimizations.

We propose HPVM2FPGA, a novel end-to-end com-
piler and autotuning system that can automatically tune
hardware-agnostic programs for FPGAs. HPVM2FPGA uses
a hardware-agnostic abstraction of parallelism as a compiler
intermediate representation (IR), building on the HPVM com-
piler IR [11], an explicitly parallel extension of LLVM IR [12]
designed for heterogeneous parallel systems. HPVM2FPGA
adds a powerful optimization framework that uses so-
phisticated compiler optimizations (both FPGA-specific and
generic) and design space exploration (DSE) to automati-
cally tune a hardware-agnostic program for a given FPGA.
HPVM2FPGA is able to support software programmers ef-
fectively by eliminating the need for hardware-specific details
from the code, and shifting the burden of performing host-
device glue code generation, and hardware-specific optimiza-
tions to the compiler and DSE.

HPVM2FPGA’s optimization framework uses parameter-
ized compiler optimizations and design space exploration
(DSE) to automatically tune programs (at the HPVM IR
level) for a target FPGA. We use HyperMapper [13] as our
DSE engine since it has been shown to optimize hardware
design problems [6], [14]. To make DSE practical for FPGAs,
we must estimate performance of sample designs without

generating a full design, including the (slow) “back-end” syn-
thesis stage of AOC. We developed an analytical performance
model that estimates the execution time of the optimized input
program on the target FPGA, using a loop pipeline latency cal-
culation and a critical path analysis to account for inter-kernel
parallelism. This performance model is independent of specific
optimizations, derives its required inputs from a static analysis
of the HPVM IR after optimizations and performance metrics
generated by the (fast) “front-end” RTL generation stage of
AOC. Moreover, our optimization framework is modular and
extensible, so that more optimizations can be added relatively
easily, and other DSE engines or performance models can be
plugged in with minimal effort.

The key contributions of our work are:
1) A modular and extensible end-to-end compiler frame-

work, HPVM2FPGA, that generates optimized FPGA
kernels from hardware-agnostic input programs, along
with the host code. The framework can continuously
improve with new compiler optimizations and cost esti-
mation for new hardware targets.

2) HPVM2FPGA’s optimization framework, which opti-
mizes the application kernels using compiler optimiza-
tions and design space exploration (DSE). DSE is guided
by an analytical performance model using inputs from
static analysis and the AOC front-end.

3) A variety of compiler optimizations designed to auto-
mate some of the manual tuning that is required for
FPGAs. These are a combination of loop-level, memory-
level, and multi-kernel HPVM DFG optimizations. To
our knowledge, at least four of these optimizations have
not been used in FPGA compilers before.

4) An experimental evaluation of our compiler, which
shows that our framework: a) can optimize hardware-
agnostic, multi-kernel benchmarks achieving up to 33×
speedup on an Arria 10 GX FPGA compared to unop-
timized baselines, and b) can match hand-tuned FPGA
designs in three out of four cases. Additional support for
generating NDRange OpenCL Kernels instead of Single
Work Item Kernels and channels for pipelining would
enable other cases to match hand-tuned designs.

The rest of the paper is organized as follows: Section II
provides background on the HPVM IR and the HyperMapper
DSE framework. Section III describes our overall compiler
workflow, including our optimization framework. Section IV
describes our experimental evaluation and results. Section V
presents the related work, and we conclude in Section VI.

II. BACKGROUND

A. HPVM

Heterogeneous Parallel Virtual Machine (HPVM) [11] is a
parallel program representation for heterogeneous hardware
that is designed to be used as a Virtual ISA, compiler IR, and
runtime representation. Built on top of LLVM [12], HPVM
benefits from all the optimization and code generation capa-
bilities of LLVM for scalar and vector code, and adds support



for parallel programs and heterogeneous systems. HPVM rep-
resents parallelism using a static, hierarchical dataflow graph
(DFG) with side effects. DFG nodes can represent the units
of parallelism, or can contain an entire (“nested” or “child”)
dataflow graph. This nesting allows HPVM to capture multiple
levels of parallelism in heterogeneous systems. DFG edges
describe explicit, “logical” data transfer between nodes. Each
static node in the graph can have multiple independent dy-
namic instances – or threads – specified as a replication factor.
These types of nodes usually correspond to parallel loops. In
this paper we refer to a leaf node without dynamic replication
as a task. This structure allows HPVM to capture loop-level
data parallelism, fine-grain (vector) data parallelism, task par-
allelism between concurrent nodes, and pipelined parallelism,
in a single parallel program representation. HPVM provides
front ends for hardware-agnostic input programs (HeteroC++
and HPVM-C), and supports back end code generation for
CPUs and GPUs. Additionally, HPVM provides a run-time
scheduler that invokes the corresponding device runtime to
launch the kernel and copy data in and out of the device.
Our work extends this infrastructure with a new FPGA back
end and runtime extensions, in addition to the HPVM2FPGA
optimizer (our primary contribution).

B. HyperMapper

HyperMapper (HM) [13] is an open-source software frame-
work1 used in several applications for computer systems
design space exploration and autotuning, including hardware-
software co-design [15], FPGA design [6], [14], computer
vision [16], robotics [17], [18], and automated machine learn-
ing [14], [19], [20]. HM aims to find a global minimizer of a
user-provided (black-box) objective function f : X → R (e.g.,
execution time of an application’s kernels on FPGA) under a
set of provided (black-box) constraint functions (e.g., whether
the kernels fit on the FPGA).

HM tackles the problem using Bayesian Optimization
(BO) [13], a machine learning optimization method which
approximates an optimal design x∗ ∈ X that maximizes a
utility metric, with each new xt+1 depending on the previous
sequence of function values f(x1), . . . , f(xt) at x1, . . ., xt.
BO achieves this by building a probabilistic surrogate model
on f based on the set of evaluated designs xt. At each
iteration, a new design xt+1 is selected and evaluated based
on the surrogate model, and this model is updated to include
the new data point (xt+1, f(xt+1)).

The designs explored by BO are dictated by a utility
metric, which attributes a utility to each x ∈ X by balancing
the surrogate model predicted value and uncertainty of the
prediction for each xt. The utility function is maximized at
designs where the surrogate predicted function value is low
(i.e., minimization of the black-box objective function) or the
uncertainty of the prediction is high. HM adopts the Expected
Improvement (EI) utility function criterion. By evaluating the
design with the maximal utility function value, BO efficiently

1https://github.com/luinardi/hypermapper

Fig. 1: HPVM2FPGA Compiler Flow. Grey boxes represent existing
components. Orange boxes represent components we added.

explores X, and it is an efficient optimization approach in
terms of the number of function evaluations. This is especially
well-suited to expensive functions, such as FPGA design
optimization.

III. HPVM2FPGA

A. HPVM2FPGA Overview

HPVM2FPGA is an open-source2 end-to-end compiler in-
frastructure for hardware-agnostic programming of FPGAs.
Our tool flow builds on the existing HPVM infrastructure de-
scribed in Section II by adding the HPVM2FPGA optimization
framework, which includes seven compiler optimizations and
DSE, the HPVM2FPGA back end, and runtime extensions.
We chose the HPVM IR for two main reasons: 1) Its hardware
agnostic nature allows us to easily represent general, parallel,
hardware-agnostic programs, and (in future) target them to
systems containing a mix of FPGAs and other devices; and
2) Its ability to represent the different levels of parallelism is
crucial for optimizing hardware-agnostic codes for hardware
targets like FPGAs.

The HPVM2FPGA compiler, shown in Figure 1, comprises
two main components: the HPVM2FPGA optimizer, which
uses compiler optimizations and DSE to automatically tune
programs at the IR level, and the HPVM2FPGA back end,
which uses the Intel FPGA SDK for OpenCL (AOC) to
synthesize the FPGA bitstream. The compilation process goes
as follows: starting with an input program in an HPVM-
compatible language (Hetero-C++, HPVM-C, or any other
language that can be compiled to HPVM in the future), the
HPVM front end lowers the source code into a hardware-
agnostic HPVM IR representation of the program (C1). Next,
an optimization step, described below, optimizes the HPVM
leaf nodes, which will become FPGA kernels; the frame-
work supports both inter-node and intra-node optimizations to
achieve the best possible designs (C2,C4). Then, the HPVM-
to-OpenCL back end generates an OpenCL file containing the

2https://gitlab.engr.illinois.edu/llvm/hpvm-release/



optimized kernels, and generates the required runtime code
that launches and manages these kernels (i.e. creates OpenCL
buffers, sets the arguments, copies the memory, etc.) into the
host LLVM module (C3). Finally, the OpenCL kernels get
synthesized using AOC, and the host module gets compiled
using LLVM’s x86 back end to generate a binary.

We currently have seven optimizations in HPVM2FPGA,
implemented as either HPVM-DFG or LLVM transformations;
these are described in III-B, and they complement the standard
LLVM optimizations, and those performed by AOC (C2). The
optimizer can either run a predefined set of optimizations that
the compiler (or user) selects from the list of available ones,
or it can use DSE to automatically select and tune the opti-
mizations that would provide the best possible performance
on the FPGA (C4). DSE is guided by a performance model,
which we calculate using a static analysis of the HPVM IR
and information that we extract from the AOC pre-synthesis
report, as described in III-C. We use HyperMapper as our DSE
engine to explore the design space.

Note that we always generate Single Work Item (SWI)
Kernels from the HPVM leaf nodes, as they are recommended
by Intel’s manuals over NDRange Kernels. As such, for
leaf nodes that have dynamic replication factors (i.e. parallel
loops), we added an HPVM-DFG transformation pass, Node
Sequentialization, that transforms these nodes into “task”
nodes with loops in their body. No special consideration is
required for nodes without dynamic replication.

HPVM2FPGA is designed to be a cornerstone for fu-
ture hardware-agnostic FPGA compilers by providing a fully
extensible framework. Every component described above is
modular, making it easy to add more powerful optimizations,
add more advanced code-generation options to lower-level
hardware IRs, add more device back ends for different FPGAs,
and improve on the performance estimation with more accurate
or faster performance modeling, all within a unified, extensible
framework.

B. Implemented Optimizations

We currently have seven optimizations implemented in
our compiler as either HPVM-DFG or LLVM transforma-
tions: Automatic Input Buffering (BI), Guided Argument
Privatization (AP), Loop Unrolling (LU), Greedy Loop Fu-
sion (LF), Automatic ivdep Insertion (IV), Automatic Task
Parallelism (TP), and Automatic Node Fusion (NF). These
were chosen to implement some of the key optimization
techniques that are required for achieving good FPGA designs,
and are usually applied manually. These optimizations are
used in our optimization framework in addition to standard
LLVM optimizations and those that AOC applies internally.
To our knowledge, no other FPGA high-level-design-compiler
combines all these seven optimizations together, and at least
four of these optimizations (AP, LF, IV, and TP) have not been
used in this context before.

Most of our optimizations leverage HPVM’s DFG repre-
sentation. These optimizations can be run either as standalone
passes or as part of DSE. When used with DSE, the compiler

will determine which optimizations to apply on a given appli-
cation, and how to apply them. Table I lists these optimizations
and how they are parameterized for DSE. Each optimization is
parameterized for the appropriate granularity of code, enabling
a finer-grain design space exploration. When the optimizer is
used without DSE, heuristics are used to determine how to
apply them (e.g. Node Fusion fuses all fusible nodes instead
of making pairwise decisions as in DSE).

TABLE I: Current optimizations and their use in DSE.
IB AP LU LF IV TP NF

Inter-Kernel No No No No No Yes Yes

DSE Param Categorical
(bool)

Categorical
(bool)

Ordinal
(int)

Categorical
(bool) N/A Categorical

(bool)
Categorical

(bool)
Param

Granularity
Kernel

Argument
Kernel

Argument Loop Kernel
Function N/A Application Pair of Kernels

Automatic Input Buffering (IB): This transformation au-
tomatically finds read-only kernel (i.e., leaf node function)
pointer arguments with constant size, and copies them from
Global memory to Local memory buffers. The constant size is
determined using a DFG traversal to determine the size of the
argument as allocated in the host code. In DSE, one boolean
parameter is created per pointer argument that determines
whether or not the argument will get buffered. For example,
if a given argument has locality and fits on the FPGA local
memory, then DSE may select it for buffering in the final
design if that improves performance.

Guided Argument Privatization (AP): Privatizable argu-
ments are ones that are completely generated and then read
within the kernel. We require that they must be of fixed size.
Such arguments may arise, e.g., when allocating all memory
objects in main(). This transformation finds such arguments
and creates private copies, converting all reads and writes
to access Local instead of Global memory. Since finding
privatizable variables is a difficult problem requiring inter-
procedural pointer analysis and array section analysis [21],
we instead make this a guided optimization requiring the
programmer to mark private arguments and their size
in HeteroC++, using a special keyword. This annotation is
completely hardware-agnostic. In DSE, one boolean parameter
is created per privatizable argument that determines if the
arguments gets privatized. As such, only the ones that improve
performance will be privatized in the final design.

Automatic ivdep Insertion (IV): The ivdep pragma (with
specified pointer parameters) informs AOC that a loop does
not have loop-carried dependencies on the specified pointers.
This may allow AOC to achieve lower initiation intervals
when pipelining the loop. HPVM guarantees that dynamic
node instances are parallel, i.e., there are no cross-instance
dependencies due to pointer arguments. As such, we insert the
pragma for any loop generated by Node Sequentialization, and
pass in all pointer input parameters of the node as arguments
to the array clause of ivdep. Since ivdep never hurts
performance, it is always enabled in DSE.

Loop Unrolling (LU): This transformation unrolls the loops
of a leaf node function with known trip counts. For loops with
variable trip counts, we added a HeteroC++ marker function
(isNonZeroLoop) which the programmer can use to specify



the run-time trip count of each loop (obtained perhaps from
profiling information). This marker function is not hardware
specific, and its insertion can be automated in the future
using an instrumentation pass. In DSE, an integer parameter
is created for the unroll factor of each loop, including ones
generated by Sequentialization. As such, DSE would unroll
each loop the appropriate number of times to achieve the best
performance.

Greedy Loop Fusion (LF): This transformation fuses all
the fusible loops of a leaf node function at each nesting level,
going from the outermost nesting level to the innermost. At
each level, we find the fusible loops by checking for matching
loop bounds and no fusion-preventing dependencies [22].
When ivdep is present, we also disallow a forward loop-
carried dependence that is otherwise legal, since ivdep will
no longer hold. Selectively removing these pointers from
ivdep is part of future work. In DSE, one boolean parameter
is created for every function with more than one loop, turning
LF on or off for the entire function.

In general, LU and LF can extract pipeline parallelism
together by unrolling outerloops and fusing innerloops. This
is how the optimizer applies them when used without DSE.

Automatic Node Fusion (NF): Node Fusion fuses multiple
leaf nodes in the DFG into one node, merging their function
bodies in what is effectively kernel fusion. Having the DFG
representation makes it easy to identify nodes with source-
sink relationships, allowing the compiler to focus on a subset
of possible fusions that are likely to be profitable. In DSE, one
boolean parameter is created for each pair of nodes that can
legally be fused and are connected by an edge. As such, DSE
tries to find the best combination of fused nodes that would
maximize performance in the final design.

Automatic Task Parallelism (TP): This optimization ana-
lyzes the DFG to determine if there exist any nodes that can
run in parallel (i.e. have no connecting path in the DFG), and
accordingly guides code generation to enable launching them
in parallel on the FPGA. In DSE, one boolean parameter is
created for the entire application, enabling task parallelism if
it is profitable.

C. Design Space Exploration and Performance Model

Our optimization framework sets up the parameter space
for DSE by performing a static analysis of the HPVM IR
and extracting the corresponding parameters for every possible
optimization. Then, it interacts with HyperMapper (HM),
where in every iteration HM sends a chosen design sample
(i.e. set of values for the parameters) and waits for a response.
For each sample, we apply the optimizations with the provided
parameter values, and then estimate the execution time.

To estimate execution time, we devised an analytical model
that uses the loop Initiation Intervals (II), latencies of basic
blocks (in cycles) (LAT ), and kernels’ estimated frequency
(Fmax), which we extract from AOC’s pre-synthesis report,
in addition to the profiled loop trip counts (TC) provided using
isNonZeroLoop. The total execution time is calculated as
follows:

CCL =



TCL × IIL L ∈ ImL (1)

TCL ×
∑

i∈IL(L)

CCi L ∈ OL (2)

(
TCL ×

∑
i∈IL(L)

CCi

)
+

∑
i∈{L,IL(L)}

LATi L ∈ OmL (3)

CCN =
∑

Li∈OmL(N)

CCLi (4)

CCTotal = CriticalPath(CCN ), ∀N ∈ DFG (5)
Texe = CCTotal/Fmax (6)

First, within a leaf node (kernel), the cycle count (CCL) of
a pipelined loop nest is calculated recursively such that: a)
for every innermost loop it is the loop’s trip count times its
initiation interval (Eq. 1); b) for every outer loop it is the
loop’s trip count times the sum of all its inner loops’ cycle
counts (Eq. 2); and c) for the outermost loop in the loop nest,
it would be the same as (b) plus the total latency of all the
basic blocks in all the loop nest bodies (i.e. time to drain
the pipeline) (Eq. 3). If a loop nest is not pipelined, the LATi

term should instead be added to every loop’s own cycle count.
This is done in our estimation model, but omitted from the
equations for simplicity.

Next, the cycle count of the DFG node (kernel) N is
calculated as the sum of all the cycle counts of all the loop
nests in that node (Eq. 4). The total cycle count of the
accelerated portion of the application (i.e. the HPVM DFG)
is calculated using a critical path analysis through the HPVM
DFG (Eq. 5). Finally, the total execution time (in seconds) is
calculated using Eq. 6.

We use the feasibility feature of HM which allows it to
learn when a combination of parameter values may result
in infeasible designs as DSE progresses. We determine the
feasibility of a design point (i.e. whether or not it fits on the
FPGA) by extracting the estimated resource utilization from
the AOC reports. The estimated execution time and validity
of the sample are then sent back to HM in our response.

Finally, we performed a set of meta-experiments to
tune HM’s hyperparameters for our specific use case, i.e.,
HPVM2FPGA with an Arria 10 GX target FPGA. This
involved studying the type of random sampling to use to
initialize the Bayesian optimization phase (random sampling
versus latin hypercube sampling), whether or not to use
batching (which has the effect of speeding up the evaluations
by running them in parallel but has the effect of reducing
the statistical efficiency of the optimization procedure), for
how many iterations to perform DSE, etc. These settings
were tuned so that users won’t have to tune them themselves;
however they can be modified as command-line arguments to
our system. We used Random Forests as HM’s surrogate model
since it is recognized to be flexible for small data, discrete
and discontinuous design spaces, which is generally true for
computer system designs.



D. HPVM2FPGA Back End and Runtime Extensions

The HPVM2FPGA back end comprises of: 1) HPVM-to-
OpenCL code generation, 2) Intel FPGA OpenCL Compiler
(AOC) for kernel synthesis and bit-stream generation, and 3)
the LLVM x86 back end for host-code binary generation. Out
of these three components, the HPVM-to-OpenCL code-gen
is our contribution.

HPVM-to-OpenCL code-gen happens in two steps, an
HPVM-to-LLVM transformation and an LLVM-to-OpenCL
transformation. The HPVM-to-LLVM transformation is per-
formed by a set of back end passes. It starts by creating
a new LLVM module that will house all the FPGA kernel
code (i.e. the Kernel Module). Then, a bottom-up traversal
of the DFG is performed. For each HPVM leaf node that is
targeted to the FPGA (i.e. FPGA kernel), the transform starts
by running Node Sequentialization if the node hasn’t been
already sequentialized. Then, a new LLVM function is created
from the original leaf node function with the following extra
changes: all pointer arguments are marked to be in the global
memory address space by inserting the LLVM addrspace
attribute and an LLVM Metadata entry is created to mark that
this function corresponds to a kernel. The newly created kernel
function is inserted into the Kernel Module. A special map
is used to record that the node’s parent will be responsible
for launching this node. For each internal node, the transform
traverses the node’s children in topological order, and if the
child is an FPGA kernel, generates the required HPVM run-
time calls that would set up and launch that kernel as described
below. All the tasks in an internal node are launched first, and
then they are all waited on. This ensures that concurrent tasks
can run in parallel if Task Parallelism is enabled. To make
sure kernels are executed in the correct order, the transform
generates an “event list” for each kernel, which gets used by
the run-time to synchronize them. Additionally, the transform
generates the remaining host code which handles the DFG
and any leaf nodes that are targeted to the CPU into the Host
Module. The output of the pass will be the Kernel Module
and the Host Module.

The LLVM-to-OpenCL transformation takes the LLVM
kernel Module that is generated by the previous transform,
and generates an OpenCL file that contains the kernels. This
transformation is based on the deprecated LLVM “C” back
end. We extended the deprecated back end with a few key
features to function as a usable OpenCL code generator.
First, the deprecated back end generated loops using infinite
while loops and go to statements to handle all types of
loops and conditionals. This would not allow AOC to detect
the loops in the kernels and optimize them. As such, we
added the necessary functionality that correctly generates for
loops and if-else statements in the kernel body. Next, we
added functionality that parses our metadata, extra attributes
and intrinsic instructions to correctly generate the necessary
qualifiers and keywords (__global, __kernel) and the
ivdep pragma. Lastly, we updated the deprecated back end
to use the version of LLVM that we use in HPVM2FPGA.

The HPVM2FPGA run-time, which is an extension of the
HPVM run-time, provides necessary functions that interface
with the OpenCL runtime system of the Intel FPGA SDK
for OpenCL. These include calls that set up an OpenCL
Context for the platform, create OpenCL Kernel objects, create
OpenCL Buffers for kernel arguments, set the kernel argu-
ments, and launch the kernels. In order to support concurrent
execution of kernels for Task Parallelism, the run-time can
use separate command queues for each kernel, depending
on which calls are generated by the back end. OpenCL
events are used to synchronize the kernels based on their
dependencies in the DFG. Additionally, the HPVM2FPGA
uses a memory tracker which keeps track of the location of
each pointer (on the host or on the device). This memory
tracker is checked when memory locations are queried (either
directly using the HeteroC++ API, or when setting the kernel
argument) to make sure that memory is only copied when
needed. Effectively, HPVM2FPGA transparently handles host
and FPGA code-gen as well as automatically generating host-
device communication boiler-plate code, without any input
from the programmer.

IV. EXPERIMENTAL EVALUATION

A. Methodology

We evaluate our framework on a selection of benchmarks,
ranging from real-world applications with multiple kernels,
to computational kernel benchmarks. Our applications include
a 3D spatial audio encoder (Audio) from the Illinois Ex-
tended Reality (ILLIXR) testbed [23], a camera vision pipeline
(CAVA), and an image processing edge detection pipeline
(Edge) [11]. For computational kernels, we selected four multi-
kernel benchmarks from the Rodinia benchmark suite [24],
which have been used for multiple heterogeneous system
studies and some also hand-tuned for the Arria 10 FPGA [25].
These benchmarks are breadth-first search (BFS), backpropa-
gation (BP), and two algorithms of computational fluid dy-
namics: euler (Euler) and euler with precomputed fluxes (Pre-
Euler). We also selected eight single-kernel benchmarks from
MachSuite [26], which we used in an experiment to study the
individual contributions of our optimizations. We ported each
application and unoptimized computational kernel benchmark
to hardware-agnostic code in HPVM-C or Hetero-C++, adding
the necessary hardware-agnostic annotations where applicable
(restrict, private, and isNonZeroLoop).

Our evaluation setup uses an Arria 10 GX FPGA Develop-
ment Kit with 2GB on-board memory, connected over PCIe to
an Intel Xeon W-2775 host CPU with 256 GB main memory.
For synthesis, we use the Intel FPGA SDK for OpenCL 19.3.

We performed three main experiments to evaluate our
compiler. First, an evaluation of our optimization framework
with DSE, second, a comparison of HPVM2FPGA optimized
code to hand-tuned OpenCL kernels, and finally, a study of
the contribution of each optimization to the overall speedups.



Fig. 2: HPVM2FPGA DSE vs unoptimized baselines.

B. DSE Evaluation

We compiled all our multi-kernel benchmarks using
HPVM2FPGA with DSE enabled. Each DSE run was re-
peated five times to account for statistical variation caused
by the randomness in HM. The number of DSE iterations was
tuned along with the other HM hyperparameters, as described
in III-C. At the end of DSE, we collected the best version
generated by each repetition, and ran that on the FPGA to
measure its performance, averaged over five runs.

To study the performance that our optimization framework
can achieve, we compared the DSE-generated designs to a
version compiled using HPVM2FPGA without applying any
optimizations. Our results are shown in Figure 2, where each
column shows the speedup compared to baseline, and the error
bars show the variation over the five DSE runs. The figure’s
y-axis is cut-off at 10 for clarity, and the error bars for the
cut-off columns (BP and Pre-Euler) were insignificant.

Our framework was able to achieve a geometric mean
speedup of 5.4× compared to baseline across all our bench-
marks. For Edge Detection and CAVA, we respectively see
a 3.5× and 5.6× speedup compared to the baseline. These
applications each include 5 separate kernels, with complex
loop structures as well as potential for task parallelism, where
manual tuning to achieve similar speedups requires significant
restructuring and effort by the programmer. Note that we
see larger variation between the five DSE runs for these
benchmarks compared to the others due to the large number
of categorical parameters, which tend to have more variability
with Bayesian Optimization. Audio Encoder achieves a modest
speedup of 2.1×, due to memory indirection in the kernels
that prevents our optimizations from ruling out loop-carried
dependencies. For the Rodinia benchmarks, our speedups
range from 1.7× to 33.5×, depending on the effectiveness
of our optimizations on each benchmark.

Given that these benchmarks represent different workloads,
with different characteristics, this shows that our framework is
effective on a wide variety of workload types, and we expect
these speedups to improve as HPVM2FPGA matures with
more optimizations.

C. Comparison to hand-tuned code

Next, to study how the code that we generate compares
to hand-tuned FPGA kernels, we synthesized the versions
of those Rodinia benchmarks that were hand-optimized by
Zohouri in [25], [27] and compared them to the versions
that were optimized using HPVM2FPGA. These benchmarks

Fig. 3: HPVM2FPGA vs hand-tuned kernels. BFS, BP, and Euler
were tuned by Zohouri in [27] and CAVA was tuned by us in [4].

Fig. 4: Speedups on MachSuite and Edge Detection with all opti-
mizations applied (without DSE) compared to unoptimized baselines.

were BP, Euler, and BFS (Pre-Euler lacked an optimized
version in the repository). We also compared CAVA optimized
using HPVM2FPGA to a version that we manually tuned
in [4]. Figure 3 shows our results. For each benchmark, we
took the best hand-tuned version (i.e. the best out of all
the available versions in the Rodinia repository, and the best
version we tuned by hand in [4]; blue bar) and compared
that against the one generated by HPVM2FPGA with DSE by
synthesizing and running both on the same FPGA. We found
that HPVM2FPGA is able to match the performance of the
best version in cases where the hand tuning did not require a
different programming model (e.g. NDRange Kernels instead
of SWI Kernels) or a significant optimization not currently
supported (e.g. using channels for pipelining). This was case
for CAVA, Backprop, and Euler. In the case of BFS, the
best hand-tuned version used NDRange Kernels, and therefore
HPVM2FPGA was unable to match its performance since it
can only generate SWI Kernels.

To evaluate how well HPVM2FPGA was able to do given
this limitation, we took the best BFS version in the repo that
uses SWI Kernels and compared that against HPVM2FPGA.
This is the matchable hand-tuned version (orange bar) in the
figure. The comparison shows that HPVM2FPGA was able to
outperform the“matchable” version. This is due to the more
exhaustive search on optimizations that HPVM2FPGA can
perform with DSE, compared to hand-tuning.

Importantly, HPVM2FPGA was able to achieve these results
automatically from unmodified code, whereas hand-optimizing
for FPGAs takes significant time and effort. We expect
HPVM2FPGA to match hand-tuned designs in more cases as
it matures with more optimizations and more support for more
backends (e.g. NDRange Kernel generation).



D. Contribution of Optimizations

To analyze the impact of each optimization separately,
and in the presence of all the other optimizations, we com-
piled eight MachSuite benchmarks and the edge detection
pipeline using HPVM2FPGA with different combinations of
optimizations applied. In this case the optimization framework
was used without DSE, and the selected optimizations were
applied by the framework (automatically) using heuristics as
we described earlier. Our heuristics always consider Loop
Unrolling and Loop Fusion together and always fuse all fusible
nodes with Node Fusion, as described earlier. Note that the
MachSuite benchmarks are single kernel benchmarks, so Node
Fusion and Task Parallelism do not apply to them. Also,
Input Buffering was not included in this study because it did
not provide any considerable speedup on these benchmarks.
Finally, the effect of ivdep Insertion is relatively predictable,
adding 2 − 3× speedup in the few cases where it guides
AOC to make less conservative assumptions about inter-loop
dependencies while pipelining the loops. As such, we focus
this study on the other optimizations.

Figure 4 shows the speedup with all the optimizations ap-
plied. Figures 5(a-d) show the results where each optimization
is applied alone. Figures 5(e-h) show the results where the
corresponding optimization is removed, while the rest are
all applied. The light blue bars in these figures show the
maximum speedup from Figure 4 for ease of comparison. Note
that we only show edge detection when studying the inter-
kernel optimizations (i.e. Figures 5(c,d,g,h)) because these
optimizations don’t apply to MachSuite.

Argument Privatization (AP) (Figure 5(a)) provides
speedups ranging from 2× to 66× on MachSuite. This op-
timization tends to help more in cases where the privatized
argument is larger and accessed more frequently, which is
clearly evident in the NW benchmark. This is also evident
when AP is removed from the version with all the optimiza-
tions (Figure 5(e)). The figure indicates that all the speedup
of NW is coming from AP3.

Loop Unrolling (LU) and Loop Fusion (LF) (Figure 5(b))
provide speedups ranging from 2× to 14×. Together, these
two optimizations increase pipeline parallelism and spatial
parallelism by unrolling inner loops, or unrolling outer loops
and fusing the resulting inner loops. Looking at Figure 5(f),
and comparing that to (e), we can see that LU and LF are
responsible for the majority of the speedups for most bench-
marks, except NW and AES whose speedups are primarily
coming from AP.

Node Fusion (NF) (Figure 5(c)) fused all nodes of Edge
together, and did not provide speedup on its own. However,
when it is removed (Figure 5(g)), the speedup is less than
the maximum. This indicates that NF is providing more
opportunities for the other optimizations (like LF and LU),
thus enabling higher speedups, which we expect.

3The slowdown in NW and SpMV CRS is due to IB, which reduced the
overall bandwidth, causing other memory accesses to stall more often.

Fig. 5: Speedups on MachSuite and Edge Detection achieved by
applying different combinations of optimizations. Light blue bars
show the speedup when all opts are enabled (Figure 4)

Finally, Task Parallelism (TP) seems to only provide a small
speedup of 10% (Figure 5(d)) when applied to Edge Detection,
since the kernels that can run in parallel constitute a small
percentage of the total execution time. We note that removing
TP does not decrease the speedups (Figure 5(h)) because NF
is fusing all the nodes of Edge together, removing the potential
for TP. We expect TP to provide more substantial speedups in
applications where the parallel tasks constitute a larger portion
of the total execution time.

V. RELATED WORK

A. HLS Tools

The most relevant related work is presented in Table II.
HeteroCL [7], and Spatial [6] provide higher-level abstrac-

tions and sophisticated methods for specifying optimizations
and low-level hardware details. While they do utilize compiler
optimizations, their languages do not aim to abstract the
hardware details, but rather help expert hardware designers
easily specify the detailed hardware optimizations they need
for high-performance designs. Additionally, HeteroCL does
not perform DSE, and while Spatial’s DSE is also based on
HyperMapper, the parameters have to be explicitly defined
by the programmer, whereas our framework automatically ex-
tracts the parameters from the program. Unlike HPVM2FPGA,
neither compiler performs inter-kernel optimizations. Finally,
HeteroCL does not generate host code, while Spatial does,
although it does not automatically infer all host-device com-
munication details.

ScaleHLS [8] is a new framework that does hardware-
agnostic code-generation for FPGAs by relying on compiler
optimizations and DSE. However, unlike HPVM2FPGA, they
do not perform inter-kernel optimizations or support host-
device partitioning and host code generation. Additionally,
their DSE optimization engine is based on a simple hill-
climbing strategy compared to ours, which uses HyperMap-
per’s Bayesian Optimization framework. Also, they only tune



parameters globally, while we can tune them at a fine-grain
level for every loop, function, and argument.

Artisan [10] and Pylog [9] support hardware-agnostic input
programs and support host-device code partitioning. However,
unlike HPVM2FPGA, PyLog’s DSE has a very limited scope,
and Artisan performs very simple tuning of parameters that
is limited to unroll factors. Also, both do not perform any
inter-kernel optimizations.

TABLE II: HPVM2FPGA vs state-of-the art HLS compilers.

Feature Hetero
CL [7]

Spatial
[6]

Artisan
[10]

PyLog
[9]

Scale
HLS [8]

HPVM2
FPGA

HW Agnostic ✗ ✗ ✓ ✓ ✓ ✓
Inter-Kernel Opts ✗ ✗ ✗ ✗ ✗ ✓
Fine-grain DSE ✗ ✓ ✗ ✗ ✗ ✓
Host Code ✗ ✓ ✓ ✓ ✗ ✓
Automatic Host-
Device Comm ✗ ✓ ✓ ✓ ✗ ✓

B. Design Space Exploration in HLS

There is significant work in the literature about design space
exploration techniques in HLS [28]–[32]. However, most ex-
isting work focuses on using DSE for tuning HLS parameters,
rather than using it to select compiler optimizations [28],
[29], [32]. We view these related works as orthogonal and
complementary to our work. Our goal is not the design
space exploration framework itself, but rather using DSE as
a component in an end-to-end system that enables hardware-
agnostic programming of FPGAs, with a focus on compiler
techniques and optimizations. HPVM2FPGA’s modular in-
frastructure allows a compiler designer to easily replace the
existing DSE framework with relatively little effort.

VI. CONCLUSION

We presented HPVM2FPGA, a novel and extensible end-
to-end system that enables more powerful hardware-agnostic
programming of FPGAs. HPVM2FPGA uses a suitable
hardware-agnostic abstraction of parallelism (HPVM IR), and
introduces a powerful optimization framework that uses so-
phisticated compiler optimizations and design space explo-
ration (DSE) to automatically tune a hardware-agnostic pro-
gram for a given FPGA. Our framework accepts full hardware-
agnostic applications parallelized via a HPVM-supported lan-
guage, and transparently handles the host-FPGA interaction
using our runtime system. Our goal is to provide the re-
search community with a framework that can act as a basis
for hardware-agnostic FPGA programming research, and that
would keep on improving with more compiler optimizations,
back end code-generation techniques, and performance esti-
mation models/DSE.

VII. ACKNOWLEDGMENTS

This work was supported in part by funding from an
Intel Research Award, from IBM under the DARPA DSSoC
program, and from the University of Illinois.

Luigi Nardi was partly supported by the Wallenberg AI, Au-
tonomous Systems and Software program (WASP) funded by
the Knut and Alice Wallenberg Foundation. Nardi’s research

was also supported in part by affiliate members and other
supporters of the Stanford DAWN project — Ant Financial,
Facebook, Google, InfoSys, Teradata, NEC, and VMware.

We would also like to thank Joseph Garvey and Michael
Kinsner from Intel PSG for their insights and feedback
throughout this work.

REFERENCES

[1] A. De La Piedra, A. Braeken, and A. Touhafi, “Sensor systems based
on FPGAs and their applications: A survey,” Sensors, vol. 12, no. 9, pp.
12 235–12 264, 2012.

[2] R. Ricart-Sanchez, P. Malagon, P. Salva-Garcia, E. C. Perez, Q. Wang,
and J. M. Alcaraz Calero, “Towards an FPGA-Accelerated pro-
grammable data path for edge-to-core communications in 5G networks,”
Journal of Network and Computer Applications, vol. 124, pp. 80–93,
2018.

[3] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A
scalable deep learning accelerator unit on FPGA,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 3, pp. 513–517, 2016.

[4] A. Ejjeh, V. Adve, and R. A. Rutenbar, “Studying the potential of
automatic optimizations in the Intel FPGA SDK for OpenCL,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2020.

[5] J. Pu et al., “Programming heterogeneous systems from an image
processing DSL,” ACM Transactions on Architecture and Code Opti-
mization (TACO), 2017.

[6] D. Koeplinger et al., “Spatial: a language and compiler for application
accelerators,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2018.

[7] Y.-H. Lai et al., “HeteroCL: a multi-paradigm programming infrastruc-
ture for software-defined reconfigurable computing,” in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2019.

[8] H. Ye et al., “ScaleHLS: scalable high-level synthesis through MLIR,”
arXiv preprint arXiv:2107.11673, 2021.

[9] S. Huang, K. Wu, H. Jeong, C. Wang, D. Chen, and W.-M. W. Hwu,
“Pylog: An algorithm-centric python-based FPGA programming and
synthesis flow,” IEEE Transactions on Computers, 2021.

[10] J. Vandebon, J. G. Coutinho, W. Luk, E. Nurvitadhi, and T. Todman,
“Artisan: a meta-programming approach for codifying optimisation
strategies,” in Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2020.

[11] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve,
and S. Adve, “HPVM: heterogeneous parallel virtual machine,” in
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: ACM, 2018.

[12] C. Lattner and V. Adve, “LLVM: a compilation framework for life-
long program analysis & transformation,” in International symposium
on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 2004.

[13] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical design space
exploration,” in International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2019.

[14] A. Souza, L. Nardi, L. B. Oliveira, K. Olukotun, M. Lindauer, and
F. Hutter, “Bayesian optimization with a prior for the optimum,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2021.

[15] B. Bodin et al., “Integrating algorithmic parameters into benchmarking
and design space exploration in 3D scene understanding,” in Interna-
tional Conference on Parallel Architectures and Compilation, 2016.

[16] L. Nardi, B. Bodin, S. Saeedi, E. Vespa, A. J. Davison, and P. H. Kelly,
“Algorithmic performance-accuracy trade-off in 3D vision applications
using HyperMapper,” in International Parallel and Distributed Process-
ing Symposium Workshops, 2017.

[17] S. Saeedi, L. Nardi, E. Johns, B. Bodin, P. H. Kelly, and A. J. Davison,
“Application-oriented design space exploration for SLAM algorithms,”
in International Conference on Robotics and Automation (ICRA). IEEE,
2017.



[18] M. Mayr, F. Ahmad, K. I. Chatzilygeroudis, L. Nardi, and V. Krüger,
“Skill-based Multi-objective Reinforcement Learning of Industrial
Robot Tasks with Planning and Knowledge Integration,” CoRR, vol.
abs/2203.10033, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2203.10033

[19] C. Hvarfner, D. Stoll, A. Souza, L. Nardi, M. Lindauer, and F. Hut-
ter, “PiBO: Augmenting Acquisition Functions with User Beliefs for
Bayesian Optimization,” in International Conference on Learning Rep-
resentations, 2022.

[20] K. Šehić, A. Gramfort, J. Salmon, and L. Nardi, “LassoBench: A High-
Dimensional Hyperparameter Optimization Benchmark Suite for Lasso,”
arXiv preprint arXiv:2111.02790, 2021.

[21] P. Tu and D. Padua, “Automatic array privatization,” in Compiler
optimizations for scalable parallel systems. Springer, 2001.

[22] J. Warren, “A hierarchical basis for reordering transformations,” in
SIGACT-SIGPLAN symposium on Principles of programming languages.
ACM, 1984.

[23] M. Huzaifa et al., “Exploring extended reality with ILLIXR: a new
playground for architecture research,” 2021.

[24] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in International Symposium on Workload Characterization
(IISWC). IEEE, 2009.

[25] H. R. Zohouri, “High performance computing with FPGAs and
OpenCL,” Ph.D. dissertation, Tokyo Institute of Technology, Tokyo,
Japan, 2018.

[26] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
2014.

[27] H. R. Zohouri, “Rodinia OpenCL benchmarks for FPGA.” [Online].
Available: https://github.com/fpga-opencl-benchmarks/rodinia fpga

[28] P. Bruel, A. Goldman, S. R. Chalamalasetti, and D. Milojicic, “Auto-
tuning high-level synthesis for fpgas using opentuner and legup,” in
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2017.

[29] L. Ferretti, A. Cini, G. Zacharopoulos, C. Alippi, and L. Pozzi, “A
graph deep learning framework for high-level synthesis design space
exploration,” 2021.

[30] N. Wu, Y. Xie, and C. Hao, “Ironman: Gnn-assisted design space
exploration in high-level synthesis via reinforcement learning,” in Great
Lakes Symposium on VLSI, 2021.

[31] J. Wang, L. Guo, and J. Cong, “AutoSA: a polyhedral compiler for
high-performance systolic arrays on FPGA,” in SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2021.

[32] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-Analyzer:
A high-level performance analysis tool for fpga-based accelerators,” in
ACM/EDAC/IEEE Design Automation Conference (DAC), 2016.


