The Value of Renewables: Observational and Experimental Evidence from the United States and Europe

Kenneth Gillingham Marten Ovaere

Yale University, School of Forestry & Environmental Studies

Heartland Workshop - September 29, 2019
Motivation

Worldwide solar and wind capacity has increased dramatically

- Account for a sixth of global installed power capacity
- (IEA, 2018) expects installed capacity to double by 2023

because their output is variable and not perfectly predictable, open question whether part of the fuel savings are canceled by increased costs like backup capacity, network congestion and system balancing.
Major debate in many states about replacing net metering with a tariff that is closer to the value of renewable generation to the electricity system.

Figure: Map of U.S. states with net metering (blue) that are in the process of developing a successor for net-metering (darker blue).
What is the value of (distributed) solar and wind to the electricity system?
What is the value of (distributed) solar and wind to the electricity system?

- What are their full social costs and benefits in all stages of the electricity supply chain?
Research Question

What is the value of (distributed) solar and wind to the electricity system?

- What are their full social costs and benefits in all stages of the electricity supply chain?
Adding renewables to the electricity system: What happens?

GENERATION

- What is the value of the replaced electricity generation plants in the energy market?
- How much does the need for installed generation capacity change?
- Do solar and wind generation change the cost of ancillary services, like balancing the system and the reserve capacity needed?
Adding renewables to the electricity system: What happens?

EMISSIONS

- What are the avoided emissions of the replaced fossil fuel generation?
- What are the environmental benefits of the avoided emissions?
Adding renewables to the electricity system: What happens?

TRANSMISSION

- Do solar and wind generation change the cost of congestion and losses in the transmission network?
Adding renewables to the electricity system: What happens?

DISTRIBUTION

- Does distributed solar generation decrease peak loading on local lines and transformers?
- Do they lead to more or less local interruptions?
- Do they affect power quality?
Contributions

1. Most prior studies of solar and wind generation have focused on estimating in much detail a specific effect in a specific region.
 → **Quantify in all stages of the electricity supply chain and in all liberalized electricity markets in the United States.**

2. Prior multi-region studies (Callaway et al., 2017; Sexton et al., 2018) have used detailed hourly irradiance and wind speed data.
 → **Use hourly 2014-2018 data of actual solar and wind output.**

3. A blind spot in the literature is the effect of intermittent renewable generation on the distribution network.
 → **Estimate the effect on the distribution network in Connecticut.**
General methodology and literature

<table>
<thead>
<tr>
<th>Category</th>
<th>CAISO</th>
<th>ISONE</th>
<th>NYISO</th>
<th>ERCOT</th>
<th>MISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callaway, Fowlie and McCormick, JAERE, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2010-2012, hourly) solar and wind generation based and irradiance and wind data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexton, Kirkpatrick, Harris and Muller, WP, 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2007-2015, hourly, eGrid regions) solar generation based on irradiance data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fell, Kaffine and Novan, WP, 2019 (2011-2015, hourly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexton et al., WP, 2018 (2017, hourly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancillary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen et al., 2016 (2011-2012, hourly) data+simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 ISO (independent system operator) regions in the USA
Hourly observational data: 2014-2018

For each of the seven U.S. independent system operator regions:

1. **Generation**
 - Fuel mix: conventional + wind + solar
 - Load
 - Day-ahead hub (locational marginal) prices
 - Forward capacity market prices
 - Reserve price & quantity
 - Regulation/balancing price & quantity

2. **Transmission**
 - Congestion
 - Losses
Hourly observational data

3 **Distribution** (for one utility only)
 - Subcircuit-level network metrics: line loading, voltage, interruptions
 - Database of all solar installations in Connecticut

4 **Emissions**
 - AP2 (Muller, 2014)
 - Continuous Emission Monitoring System (CEMS) Database?
Installed wind capacity in 2014 and 2018

Installed wind capacity in 2014 and 2018
by independent system operator (ISO) region

Marten Ovaere (Yale University)
Installed solar capacity in 2014 and 2018
by independent system operator (ISO) region

Marten Ovaere (Yale University)
The Value of Renewables
Heartland Workshop - September 29, 2019
(1) Energy: Methodology

Energy: calculate the market value of electricity generated

\[\frac{\sum_{t} p_{it} \cdot q_{\text{solar},it}}{\sum_{t} q_{\text{solar},it}} \quad \text{and} \quad \frac{\sum_{t} p_{it} \cdot q_{\text{wind},it}}{\sum_{t} q_{\text{wind},it}} \tag{1} \]

where \(p_{it} \) is the price and \(q_{it} \) is the generation at time period \(t \) in ISO zone \(i \).
(1) Energy: Results

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>MISO</th>
<th>NYISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>36.50</td>
<td>25.67</td>
<td>48.24</td>
<td>29.39</td>
<td>45.72</td>
<td>36.71</td>
<td>23.48</td>
</tr>
<tr>
<td>Solar</td>
<td>34.15</td>
<td>37.56</td>
<td>41.14</td>
<td>/</td>
<td>/</td>
<td>35.05</td>
<td>30.60</td>
</tr>
</tbody>
</table>

Note: MISO and NYISO solar generation data are not available (Respectively 170-1,800 MW and 235-1,500 MW installed capacity in 2014-2018.).
Capacity: calculate the contribution to the decrease of yearly peak load and valued at 60,000$ /MW-year.

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>MISO</th>
<th>NYISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>16.82</td>
<td>1.40</td>
<td>2.42</td>
<td>1.48</td>
<td>2.49</td>
<td>1.49</td>
<td>1.79</td>
</tr>
<tr>
<td>Solar</td>
<td>5.60</td>
<td>18.75</td>
<td>15.66</td>
<td>/</td>
<td>/</td>
<td>22.51</td>
<td>22.81</td>
</tr>
</tbody>
</table>

Note: MISO and NYISO solar generation data are not available (Respectively 170-1,800 MW and 235-1,500 MW installed capacity in 2014-2018.).
Ancillary services = reserves and regulation

- Reserves = ensuring enough generation capacity to deal with real-time imbalances (forecast errors, outages, line failures, etc.)
- Regulation = balance supply and demand in real time
(3) Ancillary services: Methodology

Ancillary services: estimate how the cost of reserves and regulation change in response to renewable generation

\[
\text{cost}_{\text{ancillary},it} = \beta_{\text{solar},i} q_{\text{solar},it} + \beta_{\text{wind},i} q_{\text{wind},it} + \sum_{n=1}^{3} \beta_{\text{load},i} \text{load}^n_{it} + p_{\text{commodity},it} + \delta_{hmy,i} + \epsilon_{it}
\]

where \(\text{cost}_{\text{ancillary},it}\) is the cost of an ancillary service at time \(t\) and in ISO zone \(i\). \(\delta_{hmy,i}\) is an hour-by-month-by-year fixed effect in ISO zone \(i\).
Table: Solar and wind generation generally **decrease** the total cost of reserves and regulation (2014-2018 average).

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>PJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>0.08</td>
<td>-7.78</td>
<td>-3.28***</td>
<td>-1.11</td>
</tr>
<tr>
<td>Wind</td>
<td>0.09</td>
<td>-0.87***</td>
<td>-3.46***</td>
<td>-0.70***</td>
</tr>
<tr>
<td>Total decrease of ancillary service costs</td>
<td>-14%</td>
<td>-0.7%</td>
<td>-6.6%</td>
<td></td>
</tr>
</tbody>
</table>

Note: $p < 0.05 (*)$, $p < 0.01 (**)$, $p < 0.001 (***)$

Decrease is entirely because of effect on prices, not on quantity.
(4) Emissions: Methodology

1. **Emissions**: estimate the marginal changes of conventional generation in response to renewable generation (Cullen, 2013; Novan, 2015)

\[
q_{\text{conventional},it} = \beta_{\text{solar},i} q_{\text{solar},it} + \beta_{\text{wind},i} q_{\text{wind},it} + \sum_{n=1}^{3} \beta_{\text{load},i} l_{\text{load},it}^{n} + \rho_{\text{commodity},it} + \delta_{\text{hmy},i} + \epsilon_{it}
\]

2. Monetize the resulting emission changes using AP2 (Muller, 2014)
Table: Effect of 1 MW of wind and solar generation (2014-2018 average)

<table>
<thead>
<tr>
<th>MW/MW</th>
<th>ERCOT</th>
<th>PJM</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wind</td>
<td>Solar</td>
<td>Wind</td>
<td>Solar</td>
<td>Wind</td>
<td>Solar</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>-0.27</td>
<td>-0.34</td>
<td>-0.47</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>-0.71</td>
<td>-0.61</td>
<td>-0.39</td>
<td>-0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>0</td>
<td>-0.01</td>
<td>0</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>0</td>
<td>-0.10</td>
<td>-0.04</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>-0.12</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>-0.99</td>
<td>-1.06</td>
<td>-1.02</td>
<td>-1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUE [$/MWh]</td>
<td>27.1</td>
<td>26.7</td>
<td>34.8</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Congestion and losses: estimate how much their costs change in response to renewable generation

\[
\text{cost}_{\text{losses/congestion},it} = \beta_{\text{solar},i} q_{\text{solar},it} + \beta_{\text{wind},i} q_{\text{wind},it} + \sum_{n=1}^{3} \beta_{\text{load},i} l_{\text{load}it}^n
\]

\[
+ p_{\text{commodity},it} + \delta_{\text{hmy},i} + \epsilon_{it}
\]
Effect is highly significant, positive or negative, but very small: $[-0.0063, 0.0078]$. Varies substantially depending on where the renewables are located.

Table: Average congestion and losses (2014-2018 average, day-ahead)

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>MISO</th>
<th>NYISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion</td>
<td>0.73</td>
<td>1.36</td>
<td>0.03</td>
<td>0.66</td>
<td>1.14</td>
<td>5.54</td>
<td>0.27</td>
</tr>
<tr>
<td>Losses</td>
<td>1.27</td>
<td>/</td>
<td>0.07</td>
<td>0.18</td>
<td>1.19</td>
<td>0.10</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Randomized controlled trials of the Solarize campaigns in Connecticut. Compare changes in (peak) line loading, voltage and interruptions between treated and control towns, using subcircuit-level data from a local utility.
Results: Wind [$/MWh]

Value of wind (2014–2018 average)
by independent system operator (ISO) region

Energy Emissions Capacity Ancillary

CAISO ERCOT ISONE MISO NYISO PJM SPP

Marten Ovaere (Yale University)
Results: Solar vs. wind [$/MWh]

Value of wind vs. solar (2014–2018 average)
by independent system operator (ISO) region

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>PJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wind</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy | Emissions | Capacity | Ancillary | Energy | Emissions | Capacity | Ancillary |

Marten Ovaere (Yale University)
Results: Solar vs wind [$/MW-year]

Value of wind (2014–2018 average) by independent system operator (ISO) region

- **CAISO**: Value of wind
- **ERCOT**: Value of wind
- **PJM**: Value of wind

The Value of Renewables

Marten Ovaere (Yale University)
Results: value of renewables by renewable penetration

Value of renewables (2014–2018 average)
by renewable penetration
[(annual renewable generation)/(annual load)]

Value [$/MWh]
0 10 20 30 40 50 60 70 80 90
Renewable penetration in 2018
by renewable penetration [(annual renewable generation)/(annual load)]

Value of renewables (2014–2018 average)
0 10 20 30 40 50 60 70 80 90
Renewable penetration in 2018
by renewable penetration [(annual renewable generation)/(annual load)]
Summary of findings

1. Importance of value categories: Energy $>$ Emissions \geq Capacity $>$ ancillary services $>$ transmission \approx 0

2. Expressed per MWh generated: solar \geq wind
 - [70 – 85] $/MWh for solar vs [55-85] $/MWh for wind

3. Expressed per capacity installed: wind \geq solar
 - [130,000 – 160,000] $/MW-year for solar vs [160,000-200,000] $/MWh for wind $$/MW-year

4. Solar and wind have significant but very small effect on transmission network

5. Some evidence that value decreases when the penetration level increases
Table: Effect of 1 MW of wind generation on different generation technologies + exchange (2014-2018 average).

<table>
<thead>
<tr>
<th>MW/MW</th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>MISO</th>
<th>NYISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>-0.70</td>
<td>-0.27</td>
<td>0.02</td>
<td>-0.53</td>
<td>-0.01</td>
<td>-0.47</td>
<td>-0.53</td>
</tr>
<tr>
<td>Gas</td>
<td>-0.71</td>
<td>-1.00</td>
<td>-0.36</td>
<td>-0.23</td>
<td>-0.39</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>Exchange</td>
<td>-0.26</td>
<td>/</td>
<td>0.03</td>
<td>-0.07</td>
<td>-0.40</td>
<td>-0.04</td>
<td>-0.09</td>
</tr>
<tr>
<td>Other</td>
<td>-0.04</td>
<td>0</td>
<td>-0.07</td>
<td>-0.03</td>
<td>-0.25</td>
<td>-0.12</td>
<td>-0.01</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-1.00</td>
<td>-0.99</td>
<td>-1.02</td>
<td>-0.98</td>
<td>-0.89</td>
<td>-1.02</td>
<td>-1.00</td>
</tr>
</tbody>
</table>
(4) Emissions: Monetized results wind

<table>
<thead>
<tr>
<th></th>
<th>CAISO</th>
<th>ERCOT</th>
<th>ISONE</th>
<th>MISO</th>
<th>NYISO</th>
<th>PJM</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>9.0</td>
<td>2.5</td>
<td>4.0</td>
<td>2.8</td>
<td>15.2</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>SO₂</td>
<td>1.7</td>
<td>0.8</td>
<td>0</td>
<td>2.9</td>
<td>2.1</td>
<td>3.7</td>
<td>1.3</td>
</tr>
<tr>
<td>NOₓ</td>
<td>0.2</td>
<td>1.3</td>
<td>0</td>
<td>2.0</td>
<td>0.1</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>CO₂</td>
<td>16.7</td>
<td>22.5</td>
<td>14.2</td>
<td>29.3</td>
<td>20.2</td>
<td>25.2</td>
<td>29.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27.6</td>
<td>27.1</td>
<td>18.2</td>
<td>37</td>
<td>37.7</td>
<td>34.8</td>
<td>34.9</td>
</tr>
</tbody>
</table>