Do Smart Technologies Deliver?
Smart Thermostats and Energy Conservation
Alec Brandon, Christopher M. Clapp, John A. List, Robert Metcalfe, and Michael Price
University of Chicago, Boston University, and University of Alabama
mail: cclapp@uchicago.edu web: www.chrisclapp.org twitter: @ChrisMClapp

1. Motivation: Big Costs & Bold Claims
- Residential energy use has significant private and social costs
 - Private: ~$2,000 in energy bills per household per year (EIA, 2019)
 - Social: ~20% of all US carbon pollution (EIA, 2019b)
- Largest share (~40%) of residential energy goes to heating & cooling (EIA, 2019a)
- Smart thermostat claim: ↑ efficiency ⇒ ↓ energy use w/out ↓ consumer utility
 - Based on engineering or correlation studies, not from “the field”
- Policy implications: ENERGY STAR & Smart Grid Investment Grant (SGIG) programs

2. Abstract: Smart Thermostat Field Experiment
- Goal: Test the hypothesis that smart thermostats reduce energy consumption

3. Experimental Design
3.1 Sample Randomization & Spatial Balance
- N = 1,385
- Control: 694
- Treatment: 691
- Failed Install: 64
- Decline: 129
- Install: 498

3.2 Descriptive Evidence
- Central CA - Treatment
- Central CA - Control
- Northern CA - Treatment
- Northern CA - Control

3.3 Empirical Model: DDIV
- Second-stage equation
 \[e_{it}^j = \alpha_i^j + \beta_i^j P_i + \gamma_s P_{it} + \delta_j + \epsilon_{it} \]
 \(e_{it}^j \): energy use of type j in (electricity, natural gas)
 \(\alpha_i^j \): an indicator for installation of a smart thermostat in home i
 \(\beta_i^j \): an indicator for post-assessment status in time period t
 \(\gamma_s \): an indicator for household i's treatment status in our experiment

4. Results: Null & Robust

5. Potential Mechanisms: Descriptive Evidence
- Do users program thermostats? ✓
- Program for energy savings? ✓

References