Investigating the utility of Schwarz-Christoffel mapping theory for electric machine design and analysis

Tim C. O’Connell

Doctoral Student; Advisor: P.T. Krein
University of Illinois at Urbana-Champaign
Grainger CEME teleseminar
Monday, April 24th, 2006
Overview

• Machine design overview
• Schwarz-Christoffel (SC) mapping
• Application to motor design
• Examples
• Comparison to Finite Element Analysis (FEA)
• Conclusions
Overview

- Machine design overview
- Schwarz-Christoffel (SC) mapping
- Application to motor design
- Examples
- Comparison to Finite Element Analysis (FEA)
- Conclusions
1) Shape
 • Used to steer the flux

2) Materials
 • Affect efficiency, weight, acoustic properties, manufacturability, cost

3) Sources
 • Characteristics and placements of currents
 • Types and placement of permanent magnets
Machine design overview

Standard Methods

• Equivalent circuit models
 • use lumped parameters
 • derived empirically
 • may ignore certain higher order effects

• Magnetic circuit models
 • usually assume the flux direction
 • fringing is empirically modelled
 • force derived from coenergy formulations
Finite Element Analysis (FEA)

- Mature, widely available
- Can be extended to 3D
- Great for analyzing existing design
- Harder to use for design
- Accuracy depends on number, type of elements
- Solution is interpolated between nodes
- Optimization is time-consuming
- Force calculation tricky to program
• Machine design overview

• **Schwarz-Christoffel (SC) mapping**
 • Application to motor design
 • Examples
 • Comparison to FEA
 • Conclusions
Def’n: A **Schwarz-Christoffel map** is a function f of the complex variable z that conformally maps a canonical domain in the z-plane (a half-plane, unit disk, rectangle, infinite strip) to a “closed” polygon in the w-plane.
Def’n: A conformal transformation is a complex transformation that preserves angles locally. In other words, if Γ_1 and Γ_2 are two curves that intersect at an angle θ_z in the z-plane at point p, then the images $f(\Gamma_1)$ and $f(\Gamma_2)$ intersect at an angle $\theta_w = \theta_z$ at $q = f(p)$.

- All analytic, one-to-one mappings are conformal.
Def’n: Let \(f(z) = f(x+iy) = g(x,y) + i h(x,y) \) be an analytic function of \(z \). Then \(f \) satisfies Laplace’s equation and \(g \) and \(h \) satisfy the Cauchy-Reimann equations and are *conjugate functions*. Thus, if one of \(g \) or \(h \) describes a scalar potential function, then the other will describe the corresponding field lines.

<table>
<thead>
<tr>
<th>(g(x,y))</th>
<th>(h(x,y) = c1)</th>
<th>(h(x,y) = c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thm: Fundamental Theorem of Schwarz-Christoffel Mapping

Let D be the interior of a polygon P having vertices w_1, \ldots, w_n and interior angles $\alpha_1 \pi, \ldots, \alpha_n \pi$ in counterclockwise order. Let f be any conformal map from the unit disk E to D. Then

$$f(z) = f(z_0) + C \int_{z_0}^{z} \prod_{k=1}^{n} \left(1 - \frac{\zeta}{z_k}\right)^{\alpha_k - 1} \, d\zeta$$

for some complex constants $f(z_0)$ and C, where $f(z_k) = w_k$ for $k = 1, \ldots, n$.

z-plane \hspace{5cm} \Rightarrow \hspace{5cm} w$-plane

E \hspace{5cm} $f(z_0)$ \hspace{5cm} w_1, w_2, w_n \hspace{5cm} P
SC parameter problem: how do we determine the correct location of the prevertices z_k?

\[
f(z) = f(z_0) + C \int_{z_0}^{z} \prod_{k=1}^{n} \left(1 - \frac{\zeta}{z_k}\right)^{\alpha_k - 1} \, d\zeta
\]
SC mapping

• Most problems have no analytic solution for the prevertices
 • For $n>3$ vertices, unless lots of symmetry, no analytic solution

• Numerical solution required for
 1. Solving the parameter problem
 2. Calculating the SC integral
 3. Inverting the map
Historical milestones – machine design with SC mapping

- **1820’s**: Gauss – idea of conformal mapping
- **1867-90**: Schwarz and Christoffel discover SC formula and variants
- **1900-01**: F.W. Carter uses SC mapping for field between poles
 - “I by no means recommend that one should go to the trouble of using these somewhat difficult formulae in average practical cases…” – Carter
- **1980**: Trefethen – SCPACK FORTRAN program
- **1996**: Driscoll – SC Toolbox for Matlab®
- **1998**: Driscoll and Vavavis – CRDT algorithm for multiply elongated regions
Overview

• Machine design overview
• Schwarz-Christoffel (SC) mapping
• Application to motor design
• Examples
• Comparison to FEA
• Conclusions
Design goal: Calculate the electromagnetic fields and corresponding rotor torques/forces for a given geometry and set of materials and sources
Application to motor design

Assumptions:

1. 2D developed machine cross-section
2. Air gap is a polygon (no curves) with \(n \) vertices
3. Linear magnetics
4. Periodic boundary condition (BC) at polygon edges
5. Finite, discrete currents as sources

Periodic BC

\[w_1 \rightarrow w_n \]

Periodic BC

\[P \]
Application to motor design

$w = u + iv$

$z = x + iy$

$z' = \exp(-iw')$

$w' = i \log(z')$
Application to motor design

\[w = f(z) \]

\[z = f^{-1}(w) \]

- \(H_{cc} \) known in infinite series form due to Hague circa 1930.
- Periodic BC automatically enforced

\[H_{mot}(w) = \frac{H_{cc}(f^{-1}(w))}{\left| f'(f^{-1}(w)) \right|^*} \]
Application to motor design

SC Toolbox for MATLAB®

• Released in 1996
• Solves parameter problem for half-plane, disk, strip, rectangle, and exterior maps
• Cross-ratio formulation of the parameter problem for multiply elongated regions (CRDT)
• Computes forward and inverse maps
• Computes derivative of maps (easier)
• Graphical and object-oriented user interfaces
Application to motor design

- Three prevertices can be placed arbitrarily
- Motor air gap polygon can have multiple elongations.
 - Leads to *crowding* phenomenon
 - Multiple prevertices indistinguishable in machine precision
 - Inaccurate SC integral
CRDT algorithm

• Eliminates crowding problem
• Driscoll and Vavasis 1998
• Incorporated in the SC Toolbox
• Very well suited for multiply-elongated regions
• Tends to be $O(n^3)$
Application to motor design

Force/torque calculation

1. **Coulomb Virtual Work (CVW) method**
 - Standard for FEA analyses
 - Coenergy method
 - Eases path dependencies inherent in FEA mesh

2. **Maxwell Stress Tensor (MST) method**
 - Integrate the MST around a closed path
 - Highly path- and element-dependent for FEA
 - Ideal for SC solution
 • No path dependence
Overview

• Machine design overview
• Schwarz-Christoffel (SC) mapping
• Application to motor design

• Examples
• Comparison to FEA
• Conclusions
Examples

Infinite vertices are mapped to the circle; crowding occurs.
Examples

- Infinite strip map used to plot field lines
- Constant potential surfaces
- Periodic BC not enforced here
Examples

• 40-vertex air gap polygon
• 2 coils
Solve for H_{cc} using Hague’s analytic solution.

\[\mu_r = 100 \mu_0 \]

\[\mu_s = 100 \mu_0 \]
Examples
MST Force Calculation

Integrate tangential and normal force densities around closed path:

\[
F_t = \frac{B_n B_t}{\mu_0} \quad \quad \quad F_n = \frac{1}{2\mu_0} \left(B_n^2 - B_t^2 \right)
\]
Examples
Normalized force density vector plot

x(cm.)
y(cm.)
Overview

- Machine design overview
- Schwarz-Christoffel (SC) mapping
- Application to motor design
- Examples
- Comparison to FEA
- Conclusions
Comparison to FEA

FEA

- Solution at mesh points with interpolation
- Solved in a finite algorithm $Ax = b$ (time-stepping algorithms may use iterative schemes)
- 3D capabilities
- Accuracy depends on type and number of elements used
- Force calculation is highly path dependent due to interpolation

SC Mapping

- Solution at every point, with same accuracy
- Solved iteratively by numerical integration
- 2D only
- With CRDT, accuracy depends on stopping criteria
- Force calculation is path independent
Comparison to FEA

FEA

- Balloon boundaries and other conditions must be enforced to simulate infinity.
- Usually solve for \(A \), then differentiate to find \(B \), introducing truncation errors.
- Geometric complexity scales with \(n^2 \).

SC Mapping

- Infinite vertices are naturally incorporated in the theory.
- Can solve for \(H \) directly in many cases, eliminating finite difference approximation for derivative of potential.
- Geometric complexity scales with \(n \).
Overview

- Machine design overview
- Schwarz-Christoffel (SC) mapping
- Application to motor design
- Examples
- Comparison to FEA
- Conclusions
Conclusions

• Design benefits
 • accurate field and force calculation
 • may be possible to design in conc. cylinder domain

• Iterative map solution still hides some of the variable dependencies from the designer

• Solution scaling
 • problem complexity grows with n, but CRDT is $O(n^3)$. May be OK since parameter problem solved only once
 • FEA problem complexity grows with n^2
Conclusions

- Can be useful when fields near sharp corners of poles and teeth are needed to high accuracy

- SC mapping is a promising technique due to its accuracy