Outline

• Permanent Magnet (PM) Machine Fundamentals
• Motivation and Application
• Design Aspects
 - PM Material
 - PM Rotor Configurations
 - Manufacturing Processes
• Design Tools
Permanent Magnet (PM) Machine Fundamentals

- Focus on electronically controlled PM AC synchronous machines
 - Rotor magnetic field is supplied by PMs
 - Stator windings are sinusoidally distributed windings, excited by sine-wave currents
- “Brushless DC” machines can also use PMs
PM Machine Theory

- Output torque is proportional to power
- Control instantaneous torque by controlling magnitude of phase currents

\[N = \frac{f \times 60}{p} \text{ RPM} \]

speed \(N \) in RPM
supply frequency \(f \)
number of pole pairs \(p \)

\[T = \frac{P}{\omega_{rm}} \]

output torque \(T \)
output power \(P \)
rotor speed \(\omega_{rm} \) in rad/s
PM Machine Control

• Instantaneous torque control
 - Servo performance 0.1-10 kW
 - Fast dynamic response
 - Smooth output torque
 - Accurate rotor position sensor information needed

Single-phase equivalent circuit
PM Machine Control

- Flux-weakening control
 - Constant power drives
 - Traction, washing machines, starter/alternators
 - Require constant output power over a speed range
 - To operate above rated speed while maintaining rated terminal voltage, reduce flux by controlling magnetizing current

\[
T \propto \phi I_{arm} \\
V \propto \phi \omega
\]

torque \(T \)
magnetic flux \(\phi \)
armature current \(I_{arm} \)
terminal voltage \(V \)
magnetic flux \(\phi \)
angular speed \(\omega \) in rad/s

[1] Soong
Motivation for PM Machine

- Motivation for PM machines:
 - High efficiency (at full load)
 - High power density
 - Simple variable-frequency control
 - Rotor excited without current
 - No rotor conductor loss and heat
 - Magnet eddy current loss is lower than iron loss and rotor cage loss
PM Machine Disadvantages

• Magnet cost
• New magnet manufacturing processes
• Magnet sensitivity to temperature and demagnetization
• Little control of magnet field
 – Always have no-load spinning losses
 – Without control, over speed means over voltage – fault management issues
PM Machine Applications

• AC PM machines
 - Servo control systems
 - Precision machine tools
 - IPM – washing-machines, air conditioning compressors, hybrid vehicle traction

• DC PM machines
 - Lower cost variable-speed applications where smoothest output torque is not required
 - Computer fans, disk drives, actuators

• Industrial applications where constant speed is necessary

IPM washing-machine motors
[5] Hendershot and Miller
Design Specifications

• Electrical
• Environmental
 - Ambient temperature
 - Cooling system
 - Structure
 - Vibration
• Mechanical outputs
 - Torque
 - Speed
 - Power
• Key features of machines
 - Flux linkage
 - Saliency, inductances
 - Assembly process
 - Magnet cost
 - Number of magnets
 - Simplicity of design
 - Field weakening
 - Reluctance torque
 - Field control
 - Line start, no inverter
PM Material

- Soft magnetic material (steel) – small B-H loop
- Hard magnetic material – (PM) – large B-H loop
- Choose magnets based on high B_r and H_c
PM Material

<table>
<thead>
<tr>
<th>PM</th>
<th>B_r (T)</th>
<th>H_c (kA/m)</th>
<th>Cost</th>
<th>Resistivity ($\mu\Omega$-cm)</th>
<th>Max. Working Temp. (°C)</th>
<th>Curie Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnico$_{5-7}$</td>
<td>1.3</td>
<td>60</td>
<td></td>
<td>47</td>
<td>> 500</td>
<td></td>
</tr>
<tr>
<td>Ferrite</td>
<td>0.4</td>
<td>300</td>
<td>low</td>
<td>>10,000</td>
<td>250</td>
<td>450</td>
</tr>
<tr>
<td>NdFeB (sintered)</td>
<td>1.1</td>
<td>850</td>
<td>medium</td>
<td>150</td>
<td>80-200</td>
<td>310-350</td>
</tr>
<tr>
<td>Sm$_2$Co$_7$ (sintered)</td>
<td>1.0</td>
<td>750</td>
<td>Higher than NdFeB</td>
<td>86</td>
<td>250-350</td>
<td>700-800</td>
</tr>
</tbody>
</table>

Other important characteristics: Field to Magnetize, Thermal Stability, Mechanical Properties, Corrosion Resistance, Manufacturability, Cost.

[3] Hendershot and Miller
PM Material

- Chinese dependency
- No shortage
 - Mountain Pass, CA
 - Idaho
 - Nd is about as common as Cu

Major Exporters to the US

Arnold Magnetic Technologies
PM Machine Rotor Configurations

- **Surface-mounted PM rotor**
 - Maximum magnet flux linkage with stator
 - Simple, robust, manufacturable
 - For low speeds, magnets are bonded to hub of soft magnetic steel
 - Higher speeds – use a retaining sleeve
 - Inset – better protection against demagnetization; wider speed range using flux-weakening; increases saliency; but also increases leakage
PM Machine Rotor Configurations

- Interior-mounted PM (IPM) rotor
- IPM Advantages
 - Extended speed range with lower loss
 - Increases saliency and reluctance torque
 - Greater field weakening capability
PM Machine Topology

• SMPM:
 - More mechanically robust
 - Magnet losses can be an issue (not shielded by rotor iron); reduce by segmenting magnets axially or radially or increasing magnet resistivity

• IPM:
 - Better demagnetization withstand

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SMPM</th>
<th>IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saliency</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Field Weakening</td>
<td>Some</td>
<td>Good</td>
</tr>
<tr>
<td>Controller</td>
<td>Standard</td>
<td>More Complex</td>
</tr>
</tbody>
</table>
PM Manufacturing Practices

- Realistic manufacturing tolerances
 - Key parameters – stator inner diameter, rotor outer diameter, no load current, winding temperature
 - Issues with core steels – laser cutting, punched laminations, lamination thickness
 - Issues with magnets – dimensions, loss of strength due to thermal conditioning
 - High speed practice and limits – rotor diameter limits speed

Hybrid Camry PM synchronous AC motor/generator
ecee.colorado.edu
PM Machine Design Process

- Design and simulate motor and driver
 - Separately
 - Combined
- Analytical, lumped-circuit, and finite-element design tools
- Different tools are used to trade-off understanding of the design, speed, and accuracy

Finite element meshing, flux lines and B for SMPM machine

A.O. Smith
Analytical Design Tools

• Broad simplifying approximations
 – Equivalent circuit parameters
• Use for initial sizing and performance estimates
• Performance prediction
• Limitations
 – Does not initially account for local saturation
 – Requires tuning with FE results
Analytical Design Tools

• Core losses
 – Hysteresis loss
 – Eddy current loss
 – Anomalous loss – depends on material process, impurities

• Problems with core loss prediction
 – Stator iron loss: based on knowledge of stator tooth flux density waveforms
 – Usually assumes sinusoidal time-variation and one-dimensional spatial variation
 – Flux waveforms have harmonic frequency and rotational component
 – Use dB/dt method for eddy-current term, frequency spectrum method

• Torque, efficiency, inductance

Lumped-Circuit Design Tools

- Non-linear magnetic material modeling of simple geometries
- Need a good understanding of magnetic field distribution to partition
- Fast to solve, good for optimization
- Limitations
 - Requires tuning with FE results

Lovelace, Jahns, and Lang
Finite-Element Modeling and Simulation Tools

- Important aspects – model saturation
- More accurate
- Essential when saturation is significant
- Limitations
 - Meshing
 - Only as accurate as model design – 2D, 3D
 - Not currently used as a design tool due to computational intensity

Nonlinear magnetostatic FE average magnetic flux density solution for machine with solid rotor
Ideal Design Tool

- Easy to set up
- Models all significant aspects of machine that affect performance – magnetic saturation
- Efficiently simulates transient conditions and steady-state operation
References

Questions?